Research

Adversarial planning via MPDM

We proposed a new method for navigation amongst pedestrians in which the trajectory of the robot is not explicitly planned, but instead, a planning process selects one of a set of closed-loop behaviors whose utility can be predicted through forward simulation. In particular, we extend Multi-Policy Decision Making (MPDM) to this domain using the closed-loop behaviors Go-Solo, Follow and Stop.

By dynamically switching between these policies, we show that we can improve the performance of the robot as measured by utility functions that reward task completion and penalize inconvenience to other agents. In MPDM a robot’s policy is elected by sampling from the distribution of current states.

Discovering potentially dangerous configurations through random sampling may require drawing many samples, which becomes a performance bottleneck. We described a risk-aware approach which augments this sampling with an optimization process that helps discover those influential outcomes.

Anticipative Kinodynamic Planning (AKP)

The AKP provides a solution for robot navigation in crowded urban environments, while satisfying both dynamic and nonholonomic constraints. To this end, we propose to integrate seamlessly a human motion prediction algorithm into the planning algorithm. The limitations of previous approaches can be observed on the right video. The AKP generates a set of paths in a kinodynamic RRT fashion and choses, among a set of candidates, the best path. The planning problem is formulated from a multi-objective perspective, where we seek to optimize different and independent measures, such as, the robot cost, pedestrians trajectories costs, etc… There is more material at the project webpage.

Robot companion

In this work we propose that a robotic platform accompanies or walks side-by-side to a target pedestrian. To achieve that, we introduce the Extended Social-Force Model (ESFM), based on the Social Force Model, to consider the person-accompanied and robot interactions. Second, a human motion predictor is used to estimate the destination of the person being accompanied. Third, a robot social-aware navigation model is designed, which relies on the ESFM and the people motion predictor. More videos here.

Social-aware Navigation

We present a novel robot navigation approach based on the so-called Social Force Model (SFM). First, we construct a graph map with a set of destinations that completely describe the navigation environment. Second, we propose a robot navigation algorithm, called social-aware navigation, which is mainly driven by the social-forces centered at the robot. Multiple experiments have been carried out in simulations and real scenarios. More material here.