
Eigen-Factors: Plane Estimation for Multi-Frame and Time-Continuous
Point Cloud Alignment

Gonzalo Ferrer

Abstract— In this paper, we introduce the Eigen-Factor (EF)
method, which estimates a planar surface from a set of point
clouds (PCs), with the peculiarity that these points have been
observed from different poses, i.e. the trajectory described by
a sensor. We propose to use multiple Eigen-Factors (EFs) or
different planes’ estimations, that allow to solve the multi-
frame alignment over a sequence of observed PCs. Moreover,
the complexity of the EFs optimization is independent of the
number of points, but depends on the number of planes
and poses. To achieve this, a closed-form of the gradient is
derived by differentiating over the minimum eigenvalue with
respect to poses, hence the name Eigen-Factor. In addition,
a time-continuous trajectory version of EFs is proposed. The
EFs approach is evaluated on a simulated environment and
compared with two variants of ICP, showing that it is possible
to optimize over all point errors, improving both the accuracy
and computational time. Code has been made publicly available.

I. INTRODUCTION

Robots are capable of gathering information while moving
which stands apart robotics from other related fields. In this
paper, we present a new method, Eigen-Factors (EFs), for
calculating the alignment over a sequence of observations or
point clouds (PCs) which complexity is independent of the
number of points. We will refer to our proposed method as
Eigen-Factors (EFs), since multiple planes are required to
calculate a well-posed alignment problem.

The problem of alignment is typically formulated between
a pair of poses and most of the contributions are from the
graphics community [1]–[7]. All these methods and variants
are extensively used in multiple robotic applications for 3D
alignment, but under slightly different conditions for what
they were originally designed, e.g. sensing error, density or
dispersion of points.

The advances on depth sensors have been spectacular;
however, they still are not exempt from limitations. Current
lidars present non-uniform beam patterns which increase
dispersion on PCs. Point density on lidars decreases with
distance resulting in regions with few sampled points. On
the other hand, mass-produced RGBD cameras output dense
with low accuracy information. These limitations can be
alleviated by moving the sensor, leading to a richer sampling
of the same surfaces from different points of view.

The challenge is how to process all these sensed data while
maintaining computational budget affordable. Our approach
is capable of aggregating all information while drastically

The author is with Skolkovo Institute of Science and Technology.
g.ferrer@skoltech.ru.

This research is based on the work supported by Samsung Research,
Samsung Electronics.

Fig. 1. Left: A sequence of point clouds before any alignment. Three
planes are observed while moving under a strong rotation. Right-Top: The
initial alignment of a single plane on a perpendicular view. Right-Bottom:
The effect of EFs minimizing the plane error and optimizing the trajectory.

reducing the complexity. To achieve that, EFs require a
preprocessing step for semantic segmentation of planes,
which are fairly common in indoors, urban and semi-urban
environments. Not surprisingly, planes have been used in
multiple works in robotics [8]–[12]. EFs do not require
explicit parametrization of the planes, they only require
points and sensor poses. In this regard, EFs behave as non-
parametric landmarks of planes.

The main idea behind EFs is to re-formulate plane estima-
tion to reduce the error in fitting planes and optimize over the
corresponding eigenvalue w.r.t. sensor poses to improve the
accuracy of the trajectory. Furthermore, EFs are able to store
a compact representation of points belonging to the same
plane and process them without any loss of information.

The contributions are listed below:

• EFs are a reformulation of plane estimation for multi-
frame PC alignment. EFs’ complexity is independent of
the number of points.

• Closed-form derivation of the EFs’ gradients using
SE(3) and Lie algebra.

• A time-continuous derivation of EFs using interpolation
in the manifold.

In addition, our formulation is easily translated to the 2D
domain, where instead of planes, Eigen-Factors estimate
lines to optimize a 2D robot trajectory.

II. PRIOR WORK

The seminal work of Besl and McKay [1], Iterative Closest
Point (ICP), is one of the most influential papers on PC
alignment or registration. ICP finds the closest point in
Euclidean distance over either pair of point clouds or other
surface representations. This work sets the grounds for state
of the art methods which are using similar approaches due
to their simplicity and their performance.

PC alignment can also be calculated with direct methods
such as the works of Horn [2] using quaternions or Arun et
al. [3] and Umeyama [4] using the SVD factorization. Chen
and Medioni [5] introduce a point-to-plane approach to ICP
which improves over point-to-point, and the work of Zhang
[6] on curves and surfaces.

Multiple variations for point association are surveyed
by Rusinkiewicz and Levoy [7]. Most of the techniques
are meant for dense point clouds, where the density and
dispersion on the sampled points is similar to all regions
of the point cloud, plus there are numerous points for
surface estimation. These different association techniques
are essential for a correct convergence of the algorithm. No
algorithm can converge to a solution with poor data, hence
EFs use all available data.

The robotics community is also interested in scan-
matching showing large basins of convergence, as the work
by Olson [13], although the same technique is not easily
transferred into 3D.

Segal et al. [9] introduce the generalized-ICP (GICP)
which effectively seeks for plane-to-plane relations between
pairs of points. This is achieved by proposing virtual co-
variances to emulate planes. By doing this, the association
distance can be increased, searching for further correspon-
dences than ICP. Serafin and Grisetti [10] propose a variant
of GICP which in addition takes into account the normal
alignment (NICP). These ICP variants are a step forward
into exploiting local geometry without explicitly assuming
it. Nevertheless, these methods need to process all points.

Other 3D alignment approaches consider probabilistically
point associations as an improved input for ICP, such as the
works of Hahnel and Burgard [14] or Armesto et al. [15].
On the other end of the spectrum are 3D descriptors [16],
[17] but they are not the default approach as is the case for
images.

SLAM [18], [19] also proposes the use of planar features
[8], [12], [20], [21] or a mixture of points and planes [11].
Most of these approaches suffer when the number of planes
is insufficient, thus Visual-Intertial SLAM based on planes
[22], [23].

III. BACKGROUND

A. Plane estimation

In general, a plane can be determined by a normal vector
η, and the plane distance to the origin d, where π = [η>, d]>.

In total 4 variables and 1 constraint. A point p = [x, y, z]>

belongs to the plane π if:

η>p+ d = 0 or π>
[
p
1

]
= π>p̃ = 0, (1)

either for points expressed in Cartesian coordinates p or in
homogeneous coordinates p̃.

We are mostly concerned with 3-dimensional planes, how-
ever, there are different methods to estimate them given a set
of N points P = {pn} sampled from the same geometric
plane π. The most popular plane estimation method, which
we refer as the centered method, uses a centered set of points.
The expectation of these points, according to (1), should be

E{η>p+ d} = 0

E{η>p} = −d.

Therefore, we can write the optimization objective

min
η

{
N∑
n=1

||η>pn + d||2
}

min
η

{
N∑
n=1

||η>pn − E{η>p}||2
}

min
η

{
N∑
n=1

||η>(pn − E{p})||2
}

min
η

{
N∑
n=1

η>(pn − E{p})(pn − E{p})>η

}
min
η

{
η>Cη

}
, (2)

where the matrix C ∈ R3×3 resembles an inner product
of centered data or a covariance matrix. The well-known
solution to (2) corresponds to the eigenvector associated with
the minimum eigenvalue of C. The eigendecomposition is
coincident with the Singular Value Decomposition (SVD)
for symmetric and semi-positive definite matrices, and by
construction C is. In the second step, the parameter d is
calculated as d = −η>E{p}.

The disadvantage is that every time a new sample is added
or modified, for instance as a result of a pose being updated
(see below), C is modified as well and all calculations should
be carried out again.

There exists an alternative method, the homogeneous
method, that allows to calculate the plane parameters π
without centering the data points:

min
π
||π>P̃ ||2 = min

π

[
η
d

]>
P̃ P̃>︸ ︷︷ ︸
S

[
η
d

]
, (3)

where P̃ is the 4 × N matrix corresponding to N stacked
homogeneous points. The solution of (3) is calculated again
using the SVD decomposition of the 4× 4 matrix S. If we
seek a plane π as defined in (1), it is necessary to scale this
solution such that the first three elements for η are unitary.
The great advantage is that S allows for incremental updates.

There is a third approach to estimating a plane from a set
of points, and it is based on the principle of orthogonality:

η ∝ E{(pn′ − pn)× (pn′′ − pn)}. (4)

The work of Klansing et al. [24] reports on the perfor-
mance of these and other methods for plane estimations.

Lines in a 2-dimensional space are the equivalent for
planes in 3D. The homogeneous equation of a line is
expressed as

[mx,my, d][x, y, 1]> = 0, (5)

from where we could follow an analogous derivation of
Eigen-Factors in 2D.

B. Rigid body transformations and its Lie Algebra
All possible matrix rotations in 3D (generalizable to any

dimension) are included in the special orthogonal group
SO(3) = {R ∈ R3×3 |RR> = I ∧ det(R) = 1}. Simi-
larly, all possible rigid body transformation (RBT) matrices
conform the special Euclidean group

SE(3) =

{
T =

[
R t
0 1

]
|R ∈ SO(3) ∧ t ∈ R3

}
, (6)

which is the result of a rotation and a translation. The group
operation is the matrix multiplication.

The solution to the alignment of a pair of point clouds
is a rigid body transformation. The Lie algebra se(3) asso-
ciated with the group of RBT SE(3) represents the group
infinitesimal RBT around a given pose. There exist operators
that relate both groups. In particular, the exponent operator
exp : se(3) → SE(3) and the logarithm ln : SE(3) →
se(3). The matrix of generators of the se(3) group is

ξ∧ =

[
w∧ v
0 0

]
=

0 −w3 w2 v1

w3 0 −w1 v2

−w2 w1 0 v3

0 0 0 0

 , (7)

where there are 6 elements on the 4×4 matrix of generators.
We will make use of this equation for deriving the gradients
of the eigenvalues.

The vee ∨ and hat ∧ operators simply encode (7) into
a vector, which space is called the manifold and from the
manifold back to the Lie group. One can map a RBT
T ∈ SE(3) to ξ ∈ R6 by ξ = ln(T)∨ and vice-versa
T = exp(ξ∧). We will follow a more compact convention
ξ = Ln(T) and T = Exp(ξ). In general, this mapping is
surjective, but if ||w|| < π, then we can consider it bijective.

One of the main advantages of using the Lie algebra
associated with SE(3) is that differentiation becomes enor-
mously simplified.

For updating a pose ξ, we will follow the left-hand side
update convention. Let the operator ⊕ be

∆ξ ⊕ ξ = Exp(∆ξ)Exp(ξ). (8)

This topic is vast and well documented. We just reviewed
those concepts that are used on the sections below. For a
more complete discussion on Lie algebra and its applications
please check [25]–[28].

IV. APPROACH

A. Problem formulation
Given a set of observations, or point clouds Pt = {pnt }

during a time interval t ∈ [1, H], the problem is to estimate
the trajectory of 3D poses ξt ∈ SE(3) from where these
observations have been taken, such that the trajectory mini-
mizes certain objective.

This statement is formulated as

min
ξ
J(ξ1, . . . , ξH), (9)

where ξ = [ξ>1 , . . . , ξ
>
H]> is the column vector containing

all poses of the trajectory. In the following sections, we will
define what this objective J is and how to minimize this
expression.

B. Eigen-Factors
A single Eigen-Factor is the optimal estimation of a plane,

given a set of points Pt observed from different poses
ξt. From a single Eigen-Factor, or plane estimation, the
alignment problem is ill-posed. On the other hand, multiple
Eigen-Factors (EFs) result in a well-posed problem, if some
conditions are met. In this section we will derive the solution
for a single EF, bearing in mind that the alignment problem
requires several of them, therefore we named our method
Eigen-Factors (EFs).

From the homogeneous method in (3) one can derive
an expression that considers the error from each point and
the plane π. Now, each of these (homogeneous) points is
observed from a different reference frame, such that

min
π

N∑
n=1

||π>Ttp̃nt ||2, (10)

where Tt corresponds to the transformation associated with
some pose ξt. This equation is equivalent to (3) with all
points {p̃nt } = P̃t observed at time t, transformed by Tt.
Thus, we can rewrite this summation as a matrix product of
P̃t matrices

min
π
π> TtP̃tP̃

>
t T
>
t︸ ︷︷ ︸

Qt

π, (11)

where the matrix Qt is a 4 × 4 matrix. It could also be
written as Qt = TtStT

>
t , using a similar notation than in

(3). The solution to this problem, which is solved by the
SVD, is a plane π which parameters are roughly speaking
rotated from a local coordinate system to a different one
through the transformation Tt. Note that Qt requires only
once the calculation of the squared term St obtained from
all raw homogeneous points. Then, updating the matrix Qt
takes only two multiplications. There is no need to store all
points, only the matrix St. Thus, the complexity no longer
depends on the number of points N , but on the number of
planes and poses. The number of points N(t) may vary with
t and there is no information loss.

For multiple poses, the overall error is accounted as

min
π

H∑
t=1

N(t)∑
n=1

||π>Ttp̃nt ||2, (12)

which can be grouped into

min
π

H∑
t=1

π>TtStT
>
t π. (13)

The plane vector π is independent of the time index t so it
moves out of the summation and the 4×4 matrix Q =

∑
Qt

provides the solution to the plane estimation problem. More
concretely, the accumulated matrix Q is

Q =

H∑
t=1

Qt = S1 + 1T2S2
1T>2 + . . .+ 1THSH

1T>H , (14)

where we have chosen a fixed reference frame at the initial
pose to be T1 = I and all the remaining transformations
relate to frame 1.

The equivalent derivation obtained for the centered method
for plane estimation (2), requires to recalculate the mean after
each alteration/update of Tt, which makes the classical plane
estimation a much less efficient option.

In addition, we could construct a weighted squared matrix
S = P̃WP̃>, if there was a need to penalize points. In this
work, we consider that all points are equal, in other words,
they are the output of the same sensor, hence we set W to
the scaled identity 1

σ2
z
I , where σz is the standard deviation

from sensing depth.
The error corresponding to the plane estimation is

min
π

(π>Qπ) = λmin(Q), (15)

which equals the minimum eigenvalue of Q. It is important
to note that Q depends on the trajectory ξ, so we can now
define the cost function J(ξ) = π>Qπ. However, we are
interested in the following problem:

{ξ1, ξ2, . . . , ξH} = argmin J(ξ). (16)

which does not include the plane parameter π on the estate
variables to be estimated. The plane is just a mean to
connect all poses in the trajectory that have observed the
same geometric entity (sampled points). As an implicit result
of evaluating the current trajectory ξ we obtain the plane
parameters π, which are not required as state variables at
all, thus EF is a non-parametric landmark. This is another
advantage of the EFs method, the storage of PCs and plane
parameters are not required.

Another important property of λmin(Q) is that it exactly
accounts for the summation of squared errors of each point
fitting to the plane λmin(Q) =

∑
e2
n, where en = π>p̃n.

Moreover, it is worth mentioning that this error follows a
Chi-squared distribution.

C. Gradient over a time-sequence

After defining the EF, it is desirable to calculate its
gradient to optimize the trajectory. By definition, the eigen-
decomposition is expressed as Qπ = λπ. The vector of
parameters π is a unit vector s.t. ||π||2 = π>π = 1.

Assuming small perturbations of the form Q = Qo + dQ,
λ = λo+dλ and π = πo+dπ, then the eigenvector definition
is derived as

Q dπ + dQπ = λ dπ + dλπ (17)

s.t. π> dπ = 0. (18)

Taking into account that the matrix Q is symmetric by
construction, then

Q = Q> =⇒ π>Q = λπ>. (19)

One can pre-multiply the expression (17) by π>, substitute
(19) and do some manipulations:

π>Q dπ + π>dQπ = π>λ dπ + π>dλπ

λπ> dπ︸ ︷︷ ︸
(18)

+π>dQπ = λπ>dπ︸ ︷︷ ︸
(18)

+ dλπ>π︸︷︷︸
1

π>dQπ = dλ. (20)

This compact result expresses the small perturbations on
our cost function by λ = λo+π>dQπ. We can differentiate
this small perturbation w.r.t the manifold ξt ∈ R6

∂λ

∂ξt
=

∂

∂ξt
(λo + π>dQπ) = π>

∂Q

∂ξt
π. (21)

The expression ∂Q
∂ξt

is the partial derivative of a 4-by-4
matrix which results in a tensor 4×4×6. Using Lie algebra
greatly simplifies the calculation of the derivatives, which
are obtained on closed form.

The matrices Qt are each of the components of Q, as
defined in (14). In addition, it is symmetric by construction,
and hence the column vectors spanning Qt can be written

Qt = [q1, q2, q3, q4] =

q>1
q>2
q>3
q>4

4×4

. (22)

From (14) and being ∆ξt the infinitesimal update to the
current transformation 1Tt = Exp(ξt)

∂Q

∂∆ξt
=

∂

∂∆ξt

(
K + Exp(∆ξt)

1TtSt
1T>t Exp(∆ξt)

>)
=

∂

∂∆ξt

(
K + Exp(∆ξt)QtExp(∆ξt)

>)
=
∂Exp(∆ξt)

∂∆ξt
Qt︸ ︷︷ ︸

AL
t

+Qt
∂Exp(∆ξt)

>

∂∆ξt︸ ︷︷ ︸
AR

t

, (23)

where K is a constant matrix independent of ∆ξt and we
follow the left-hand side convention to expand and update
transformations (8).

Now, we need to derivate the matrix of generators (7) for
each of the components and multiply it to (23). For the sake

of simplicity we omit temporal indexes, which are referring
to the matrix Qt according to (22)

ALt =

0 q>3 −q>2 q>4 0 0
−q>3 0 q>1 0 q>4 0
q>2 −q>1 0 0 0 q>4
0 0 0 0 0 0

4×4×6

(24)

where each of the “columns” ALt (i) is a matrix 4 × 4 and
the index i = 1, . . . , 6 stands for each of the variables of a
pose in the manifold.

Exploiting again the symmetry on the matrix Qt, we
rewrite the expression

ARt (i) = Qt
∂Exp(∆ξt)

>

∂∆ξt(i)
=

(
∂Exp(∆ξt)

∂∆ξt(i)
Q>t

)>
= AL>t (i)

∂Q

∂∆ξt(i)
= ALt (i) +AL>t (i). (25)

Finally, the overall gradient is defined as

∂λ

∂∆ξ
=

[(
π>

∂Q

∂∆ξ1
π
)>
, . . . ,

(
π>

∂Q

∂∆ξH
π
)>]>

, (26)

which is a column vector composed of each of the gradients
with respect to ∆ξt.

D. Gradient-based optimization

Once a gradient ∂λ
∂∆ξ is obtained over the sequence of

poses ξ = [ξ1, ξ2, . . . , ξH], we choose an optimization
method in order to calculate the optimal trajectory, according
to the minimization for plane estimation. For this task, we
choose a simplification over the Nesterov Accelerated Gra-
dient (NAG) [29] proposed by Bengio et al. [30]. Although
the original NAG is meant for convex function and its main
contribution is on achieving super linear convergence, for
this problem we could not assume such strong conditions as
convexity and Lipschisz continuity.

Bengio and collaborators describe the NAG method as
a momentum gradient-based optimization. We consider the
particular update for poses in the manifold

vk = βk−1vk−1 − αk−1
∂λ

∂∆ξk−1
, (27)

ξk =

(
βkβk−1vk−1 − (1 + βk)αk−1

∂λ

∂∆ξk−1

)
⊕ ξk−1,

(28)
where k expresses the iteration index on the optimization
sequence. On an abuse of notation, the operator ⊕ updates
all poses ξ, each of them as in (8). The velocity term vk, is
required to be calculated before (28).

E. Time Continuous trajectory as Interpolation on SE(3)

We define the continuous time trajectory as an interpola-
tion directly in the manifold. In general, interpolation of RBT
T (τ) : [0, 1]→ SE(3) of any pair of poses To, Tf ∈ SE(3)
is expressed as

T (τ) = Exp
(
τLn(TfT

−1
o)

)
To. (29)

If we set the initial transformation as the identity To = I ,
then (29) becomes

T (τ) = Exp
(
τLn(Tf)

)
(30)

which always holds.
We derive the corresponding gradient to the interpolation

process with respect to the only pose to optimize, ξf =
Ln(Tf). Using the previous gradients from (26) and the chain
rule to express the gradient between the pose at time t and
the final pose ξf , then

∂λ

∂∆ξf
=

H∑
t=1

π>
∂Q

∂∆ξt

∂∆ξt
∂∆ξf

π =

H∑
t=1

τ(t)π>
∂Q

∂∆ξt
π, (31)

where τ(t) is the sequence of values from τ(1) = 0 to
τ(H) = 1.

V. EVALUATIONS

The evaluation environment generated a random trajectory
and simulated the synthetic data corresponding to various
planes. The points on planes are sampled at the XY plane
and transformed according to a random transformation and
the trajectory is generated by sampling in the manifold. The
sampled values corresponding to poses, where each pose is
ξ = [w>, v>]>, are obtained from a uniform distribution
w ∼ U(−π, π) and v ∼ U(−4, 4). Fig. 2 shows an example
of one of such trajectories, most of them describing sharp
turns.

Although we showed a derivation for sequences of poses,
the results showed that they simply over-fit to the observa-
tions giving raise to discontinuities on the trajectory. This
result is expected, since we are not giving extra constraints
in the form of other factors or any other regularizer. Still,
EFs are able to calculate very smooth planes at the cost
of displacing trajectories. For this reason, we have only
evaluated the continuous-time interpolation version of EFs.

The second consideration is initialization. EFs are sensitive
to initialization, so we provide a coarse initial alignment
which is calculated between pairs of poses, mainly from the
origin to subsequent poses. The result is depicted in Fig. 2-
Center, however it is still a noisy initialization. Distance
between transformations or poses is defined as the Eu-
clidean distance of components in the manifold d(Ti, Tj) =
||Ln(TiT

−1
j)||2.

First, we have selected the hyper-parameters for the opti-
mization as α = 0.2

NallH
and β = 0.7. The number of points

accounted is Nall. The cost function considers all observed
points, and therefore it is natural to normalize the gradient
with respect to Nall. This was achieved by running some
experiments and sweeping over the parameters. For β = 0
NAG behaves as a gradient decent without momentum. The
number of planes ranges from 3 to 8, the number of points
per observation [400, 6400] and number of poses [2, 40]. Each
point on the plane is sampled according to de ∼ N (0, 0.012).

Once obtained the best possible set of parameters, we
compared NAG with Gradient Descent (GD). In total, 20k
simulations were taken. Fig. 3-Top shows the number of

Fig. 2. Eigen-Factors qualitative results. Left: No alignment, all point clouds are rendered on their respective origin frames. Still it can be observed some
persistent geometry as the sensor rotates. Center: Initialization of the trajectory. An orthogonal view to one of the planes shows the plane fitting error.
Right: Result of EFs with interpolation. The trajectory is clearly described and the plane is better aligned, close to the sampling error.

iterations, w.r.t. number of poses and on the Bottom the full
trajectory RMSE using the previous distance. The interesting
result is that as we increase the number of observations, EFs
keep improving.

5 10 15 20 25 30 35 40
number of poses

500

1000

1500

2000

2500

iterations
EFs-NAG
EFs-GD

5 10 15 20 25 30 35 40
number of poses

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Trajectory RMSE
EFs-NAG
EFs-GD

Fig. 3. EFs optimization. NAG gradient in blue is compared with Gradient
Descent in lined red. Median results are drawn and the colored area
corresponds to the 0.25 and 0.75 intervals.

On the next stage of evaluations we compare EFs with
NAG versus a baseline of ICP-point-to-point and ICP-point-
to-plane on a similar setting as described above. Both ICP
algorithms are implemented on the Open3d library [31] and
appear to be highly efficient. Both ICPs are aligning the
initial PC and the final PC, discarding all other observed
information. We have used the same initialization for the
3 methods. Fig. 4 depicts the main result that supports EFs.
For very short trajectories (2-4 poses) the ICP-plane performs
better than EFs. For larger trajectories, and thus more PCs

evaluated, the error decreases for EFs.
The time of execution for EFs is shown in Fig. 5, and it

supports the claim that EFs are more efficient than ICPs or
any other method based on computing point error. ICPs use
multiple cores while EFs is a single-threaded process, but
still EFs outperform them.

5 10 15 20 25 30 35 40
number of poses

0.05

0.10

0.15

0.20

0.25

0.30

Last Pose Error
EFs
ICP
ICP-pl

Fig. 4. Error of the last pose. Eigen-Factors improve its accuracy with more
poses on the trajectory. ICP-plane (red) achieves high accuracy, but it is only
considering a pair of poses, with its implicit error and is outperformed by
EFs. ICP-point (green doted) performs worse given the initial conditions.

For a more precise description, please check the supple-
mental material showing short videos of our method1. This
environment is coded on C++ and for visualizations and PC
routines we used the Open3d library. Code is published at2.

VI. CONCLUSIONS

We have presented Eigen-Factors, a new method for point
cloud alignment over multiple frames and time-continuous
trajectories. EFs optimize trajectories by estimating the fit
of planar surfaces and calculates at each iteration the miss-
alignment between different poses. Our formulation accounts
for all points, while it does not require to keep them or even
recalculate point errors, since these are kept on 4 × 4 St

1https://youtu.be/_1u_c43DFUE
2https://gitlab.com/gferrer/eigen-factors-iros2019

5 10 15 20 25 30 35 40
number of poses

10

15

20

25

30

35
Time [ms]

EFs
ICP-pl
ICP

Fig. 5. Median execution time. EFs scale linearly with the number of
poses, while ICPs stay constant. The size of the PC ranges from 400 to
6400.

matrices. We have also derived a closed-form of the gradient
for the eigenvalue w.r.t the manifold, as a very effective way
to manipulate rigid body transformations.

To the best of our knowledge, this is the first attempt
to optimize trajectories by minimizing over eigenvalues on
planes. We have showed on a simulated environment that
EFs reduce plane and trajectory errors, on a continuous
interpolated trajectory, although for multiple frames it over-
fits. More constraints are needed to address this issue.

In this work, we have used EFs on fixed time-window
optimization for point cloud alignment, but indeed there is a
direct link to other SLAM applications, which we intend to
explore in the near future.

REFERENCES

[1] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on pattern analysis and machine intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[2] B. K. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America A, vol. 4,
no. 4, pp. 629–642, 1987.

[3] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting
of two 3-D point sets,” IEEE Transactions on pattern analysis and
machine intelligence, no. 5, pp. 698–700, 1987.

[4] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on pattern analysis
and machine intelligence, vol. 13, no. 4, pp. 376–380, 1991.

[5] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” in IEEE International Conference on Robotics and
Automation. IEEE, 1991, pp. 2724–2729.

[6] Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” International journal of computer vision, vol. 13, no. 2,
pp. 119–152, 1994.

[7] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in Proceedings Third International Conference on 3-D Digital
Imaging and Modeling. IEEE, 2001, pp. 145–152.

[8] J. Weingarten and R. Siegwart, “3D SLAM using planar segments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2006, pp. 3062–3067.

[9] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics:
science and systems, vol. 2, no. 4, 2009.

[10] J. Serafin and G. Grisetti, “NICP: Dense normal based point cloud
registration,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on. IEEE, 2015, pp. 742–749.

[11] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng, “Point-plane
SLAM for hand-held 3D sensors,” in Robotics and Automation (ICRA),
2013 IEEE International Conference on. IEEE, 2013, pp. 5182–5189.

[12] M. Kaess, “Simultaneous localization and mapping with infinite
planes,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2015, pp. 4605–4611.

[13] E. B. Olson, “Real-time correlative scan matching,” in IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2009, pp.
4387–4393.

[14] D. Hähnel and W. Burgard, “Probabilistic matching for 3d scan
registration,” in Proc. of the VDI-Conference Robotik, 2002.

[15] L. Armesto, J. Minguez, and L. Montesano, “A generalization of the
metric-based iterative closest point technique for 3D scan matching,”
in International Conference on Robotics and Automation. IEEE, 2010,
pp. 1367–1372.

[16] J. Serafin, E. Olson, and G. Grisetti, “Fast and robust 3D feature
extraction from sparse point clouds,” in Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016,
pp. 4105–4112.

[17] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point
cloud views using persistent feature histograms,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on. IEEE, 2008, pp. 3384–3391.

[18] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous local-
ization and mapping via square root information smoothing,” The
International Journal of Robotics Research, vol. 25, no. 12, pp. 1181–
1203, 2006.

[19] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[20] L. Ma, C. Kerl, J. Stückler, and D. Cremers, “CPA-SLAM: Consistent
plane-model alignment for direct rgb-d slam,” in IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 1285–
1291.

[21] S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up SLAM: Semantic
monocular plane slam for low-texture environments,” arXiv preprint
arXiv:1703.07334, 2017.

[22] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “LIPS: Lidar-
inertial 3d plane slam,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 123–130.

[23] M. Hsiao, E. Westman, and M. Kaess, “Dense planar-inertial slam with
structural constraints,” in IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 6521–6528.

[24] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of
surface normal estimation methods for range sensing applications,” in
IEEE International Conference on Robotics and Automation. IEEE,
2009, pp. 3206–3211.

[25] B. Hall, Lie groups, Lie algebras, and representations: an elementary
introduction. Springer, 2015, vol. 222.

[26] E. Eade, “Lie groups for 2d and 3d transformations,” URL
http://ethaneade.com/lie.pdf, revised Dec, 2013.

[27] J. Solà, J. Deray, and D. Atchuthan, “A micro lie theory for state
estimation in robotics,” arXiv preprint arXiv:1812.01537, 2018.

[28] T. D. Barfoot, State Estimation for Robotics. Cambridge University
Press, 2017.

[29] Y. Nesterov, “A method for unconstrained convex minimization prob-
lem with the rate of convergence o (1/kˆ 2),” in Doklady AN USSR,
vol. 269, 1983, pp. 543–547.

[30] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances
in optimizing recurrent networks,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, 2013, pp. 8624–8628.

[31] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

