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Abstract—This paper presents an analysis of the stability
and quality of the distributed generation planning problem’s
investment solution. A two-stage stochastic programming model
is used to find the optimal distributed generators’ installed
capacities. We emphasize the design of scenarios to represent the
stochasticity of power production from renewable sources. For
scenario generation, a method is proposed based on the clustering
of real measurements of meteorological variables. The quality
and stability of the optimal investment solutions are thoroughly
analysed as a function of the number of selected scenarios.
The results show that a reduced selection of scenarios can give
an inadequate solution to distributed generators’ investment
strategy.

Index Terms—Clustering, Distributed generators, Investment
solution, Stochasticity.

NOMENCLATURE

Indices and Sets
(n,m)∈L Index/set of lines
ω∈Ω Index/set of scenarios
tech Set of installable technologies {PV, WT, CG}
n∈N Index/set of power nodes
t∈T Index/set of time blocks
Production Models Parameters
α Temperature coefficient power [%/°C]
GT Solar radiation incident on the PV array [kW/m2]
Ta, Tc Ambient and PV cell temperature [°C]
TNOCT/STC
c PV cell temperature under NOCT/STC [°C]
vi, vr, vo Cut-in, rated, and cut-off wind turbine speeds [m/s]
YPV, YWT PV array and wind turbine rated capacity. [kW]
GNOCT/STC
T Solar radiation at NOCT/STC [kW/m2]

Parameters
βtech
n Binary parameter for buses available to install DG
λ+/-,tech Technologie’s lead/lagging power factor [p.u.]
Pn Maximum installable active power at n [p.u.]
pf+/-,tech Technologies’ lead/lagging power factor angle [rad]
Rn,m Resistance line from bus n to bus m [p.u.]
Sb Apparent power base [kVA]
Xn,m Reactance line from bus n to bus m [p.u.]
Zn,m Impedance of branch n, m [p.u.]

This work was funded by the Skolkovo Institute of Science and Technology
as a part of the Skoltech NGP Program (Skoltech-MIT joint project).

Variables
Variables are defined within the text in section II-A.

I. INTRODUCTION

In modern distribution networks, users can inject active
power into the grid via small capacity generation [1]. The
generators connected near demand buses are called distributed
generation units (DG units) [2]. Large amounts of power are
being injected through DG units due to policies that promote
renewable energies in different countries [3]–[5]. With DG’s
widespread deployment, the distribution system operator needs
to plan and coordinate the new DG units’ installation capacity.
DG planning can reduce operating costs and provide support
during the operation regime [6].

The investment solution in distribution networks refers to
determining the installed capacities and locations of DG units.
When DG units are power-based on renewable technologies,
they behave as non-controllable stochastic negative load. Thus,
we need to capture the uncertainty associated with mete-
orological measurements [7]. Modeling the stochasticity of
renewable generation sources has been widely confronted by
several authors [2], [6], [8], [9]. Jooshaki et al. [10] propose
a tool for integrating DG units using a mixed-integer linear
stochastic model and perform a case study on a 24-node dis-
tribution network. In [11], the authors proposed a methodology
using mixed-integer stochastic programming to find the best
reinforcement plan for mitigating greenhouse gas emissions. In
[12], a stochastic model is proposed to address the problem of
distribution system expansion with uncertainties of DG units
and issues related to CO2 emissions [13].

Stochastic programming is a mathematical framework that
allows modeling the uncertainty of power production from
non-conventional renewable sources [14], [15]. It has been
proposed in [16] to use Sample Average Approximation (SAA)
to generate scenarios in the planning problem with stochas-
tic parameters. Nevertheless, scenario generation techniques
are limited because they are a discrete approximation of
(most times unknown) probabilistic distributions. Therefore,
the stochastic model relies on scenario representation, and if
the scenario representation is deficient, information about the
actual probability distribution may be lost. This work proposes
a two-stage stochastic programming model that provides an978-1-6654-3597-0/21/$31.00 ©2021 IEEE



MODEL 1 Sitting and sizing of distributed generation with
non-conventional renewable energies
Objective:

min (πinv + πOM) (1)
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λtech,+/- = ∓ tan(cos−1(pf+/-)) (20)
πinv ≤ Πbgt (21)
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Figure 1. Two-stage stochastic approach.

investment solution considering short-term uncertainty in a
long-term planning problem, analyzing the quality of the
investment solution as a function of the number of scenarios
used. We employ the popular k-means clustering technique
for scenario generation to reduce the problem’s dimensionality
and capture the underlying correlation between the random
variables.

This work’s main contribution is the analysis of the quality
and stability of the investment solution in the DG planning
problem using empirical measurements. We assess how the
investment solution deviates from its ground-truth value when
we use an inadequate description of the problem’s stochasticity
(few numbers of scenarios). The remainder of this work is
organized as follows: Section II describes the two-stochastic
programming model and the estimation of the upper and lower
boundaries. Section III introduces the case study and the
scenario generation technique. Section IV shows the findings
and simulations performed on a test distribution system with
real measurements. Section V provides the discussions and
conclusions of the observed empirical stability.

II. METHODOLOGY

Stochastic programming provides solutions using scenarios
to represent possible uncertainty realizations. This section de-
scribes our methodology for solving the problem of investment
in DG units using stochastic programming. In Section II-A,
we briefly describe the employed model, and in Section II-B,
we describe the metrics to evaluate the quality of the solution
obtained.

A. Two-stage problem formulation

This article addresses DG planning’s problem through a
two-stage stochastic programming approach (Fig. 1). The first
stage consists of the sizing and location of the investment
on DG units. Three technologies of DG units are considered:
solar photovoltaic (PV), wind turbines (WT), and conven-
tional fuel-based generators (CG). The first-stage variables
are integers since the power plant units are manufactured in
discrete modules of installed power. The first stage considers
the investment costs, while the second stage consists of the
computation of the operation and maintenance cost for every
scenario. The second stage calculates the expected operation
cost of the power produced by the newly installed DG units.
The uncertainty of power production and energy balance is
associated with the meteorological variables of solar radiation,
wind speed, temperature, and energy demand. Evaluating the
expected value of power production given an investment de-
cision requires numerous second-stage optimization problems
representing the scenarios.

The objective function (1) minimizes the system’s energy
cost over the analyzed time horizon. The total cost is the
sum of the investment cost and the cost of operation and
maintenance. The investment cost (2) is equal to the sum of the
installation costs per technology in each node. The expected
operation and maintenance cost πOM (3) is calculated as the
sum of the products of the operation and maintenance costs



per scenario and the scenario’s probability of occurrence, ρτ .
Each scenario’s operation and maintenance costs depend on
the costs of active power losses, the energy imported from
the power grid, and the new DG units’ power production
costs. Demand profiles and weather conditions only depend
on the scenario and not on the system nodes since distribution
networks cover the same area.

The constraints of the stochastic DG planning approach
are divided into physical law constraints (8)-(10) and engi-
neering constraints (15)-(20). The physical law constraints are
the active and reactive power balance constraints (generated
power must supply the demanded power) and the power flow
constraints through the transmission lines. The power flow
constraints are modeled through the DistFlow equations [17],
[18]. The McCormick envelope (11)-(14) is used as a relax-
ation technique to solve the product of two bounded variables
for calculating the apparent power of the DistFlow equations.
Engineering constraints are set by the distribution system
operator and include: node voltage limits, line loadability
limits, installed DG capacity limits, reactive power DG limits
set by power factors, and investment limits determined by the
available budget (21).

B. Quality and stability of the optimal solution
Our investment problem formulation described in Model 1

can be compactly summarizes as a classical two-stage stochas-
tic optimization problem (22).

z∗ = min cTx+ EP
[
dTy

]
(22a)

s.t.: x ∈ X (22b)
y ∈ Y(x) (22c)

The vector x is representing investment decisions at the first
stage while the random vector y represents the operational
decisions at the second stage. The objective (22a) aims to min-
imize the capital and expected operational costs. At the same
time, the budget-limit constrains and power grid operational
feasibility constraints are represented by (22b) and (22c),
respectively. The symbol EP is the expected operator over the
random parameter distribution P . If P represents a continuous
distribution vector, this problem is infinite-dimensional, and
different approaches have been proposed for solving it.

In the rest of this subsection, we describe the metrics to
evaluate the investment solution’s quality and stability. We will
use the sample-average approximation (SAA) method, [16] for
approximating problem (22).

A particular feature of this work is that data is collected
from an actual grid. Thus, instead of inferring continuous
parametric distributions, we use directly observed data in the
investment problem addressed here. Still, data can potentially
have massive amounts of data points, so we need to find means
to reduce the problem’s computational complexity. We denote
by N the total number of collected data points, i.e., the original
set of scenarios.

In this work, a set of SAA scenarios are generated using the
k-means clustering technique explained in Section III-A. The
solution of Model 1 using SAA has the following properties.

1) Lower bound estimation: Using the SAA algorithm, we
estimate the lower bound value for the DG planning problem’s
investment solution. To evaluate the lower bound, we solve m
replicas of the two-stage problem (22) with n scenarios (where
n < N ). We initially generate m sample sets independently
with n scenarios and then solve the approximated sample-
based optimization problem (23). The optimal objective of
this problem is a lower bound of the original problem (22),
i.e., LBm(n) ≤ z∗ for any replica m. Because the n-drawn
scenarios are random, the LB is also a random parameter.

LBm(n) = min cTx+
1

n

n∑
k=1

dT yk (23a)

s.t.: x ∈ X (23b)
yk ∈ Yk(x) (23c)

2) Upper bound estimation: Given a trial (not necessarily
optimal) solution for the first stage decision variables denoted
by x̂, we can compute an upper bound of the original problem
(22) by (24), i.e., z∗ ≤ UBm(x̂).

UBm(x̂) = cT x̂+ EP
[

min
y∈Y(x̂)

dTy
]

(24)

Optimization problem (24) is scenario-decomposable due to
the fixed value of the first-stage decision variables. When the
probability distribution function P is discrete, the expected
value can be computed exactly for each possible random state
that can be observed (scenarios). However, if the number of
discrete values of the probability distribution P is large or if
P is continuous, we can approach the upper bound by the law
of large numbers (25).

UBm(x̂, N̂) = cT x̂+
1

N̂

N̂∑
k=1

+ min dT yk (25a)

s.t.: yk ∈ Yk(x̂) (25b)

The first observation is that UBm(x̂, N̂) is random when N̂
random scenarios are drawn. The second observation is that for
discrete distributions, as in this paper, the random UBm(x̂, N̂)
should be approaching to the deterministic UBm(x̂) when
N̂ → N .

Finally, we can estimate the optimal solution gap between
the lower and upper bounds (26), which gives the statistical
information about the problem’s stability.

gapm(x̂, n, N̂) = UBm(x̂, N̂)− LBm(n) (26)

III. SCENARIO GENERATION AND TEST CASE

There are several methods for generating scenarios from a
known probability distribution or a large historical data set.
In Section III-A we present the scenario generation technique
based on clustering. Besides, we present a description of the
case study for the computational tests in Section III-B.



A. Scenario generation

In the stochastic programming model, we analyze four
parameters of uncertainty: solar radiation (W/m2), wind speed
(m/s), temperature (°C), and active power consumption (W).
We use a set of historical data measured with a weather
station a power meter. The database has hourly measurements
of the uncertainty parameters over one year of recording.
The technique used for the generation of scenarios is the k-
means clustering technique [19]. The k-means technique is a
method to create representative clusters of a data group whose
partitions are given in k clusters. All k clusters have a centroid
representing the mean value of the uncertainty parameters
contained in that set, minimizing variances within each cluster.

The generation of scenarios is done using the historical
record of uncertainty parameters (Fig. 2). Initially, we generate
k clusters containing representative data of solar radiation,
wind speed, temperature, and power demand. Then we calcu-
late the probability of occurrence of that scenario depending on
the cluster’s size (amount of data it represents) over the total of
registered empirical scenarios. Then, the weather variables are
the input to the power production models (27)-(29) of the DG
units. The power production model of the PV units depends
on solar radiation and ambient temperature, as worked in [20],
[21]. The power production model of WT depends only on
wind speed. All variables are scaled for the distribution system.

P PV = Y PV
(
GT
GSTC
T

)[
1− α

(
Tc − T STC

c

)]
(27)

Tc = Ta +
GT

GNOCT
T

(
TNOCT
c − TNOCT

a

)
(28)

PWT =


Y WT v−vi

vr−vi , vi ≤ v < vr

Y WT, vr ≤ v < vo

0, otherwise
(29)
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Figure 2. Scenario generation methodology.

B. Case study

The stability analysis of the investment solution is applied
to the 34-node distribution system with the topology presented
in [22]. The total installed system demand is 5.4 MW with an
average power factor of 0.85 in the lag. Historical data was

recorded from January 1 to December 31, 2018, with a weather
station with an elevation of 36m at 11.02°N - 74.85°W. The
two-stage stochastic programming problem was formulated in
Julia v1.6 using JuMP v0.21.3 and Gurobi v9.1.1. The test
machine features Microsoft Windows Server 2016 Standard,
Intel Xeon Gold 6148 CPU @ 2.40GHz, 2394 Mhz, 20 Cores,
40 Logical Processors, Total Physical Memory 256 GB.

Figure 3. Empirical distribution clustering (n = 10).

IV. RESULTS AND SIMULATIONS

We apply stability tests for the investment solution with
different numbers of generated scenarios for the DG planning
problem. For scenario size n, we solve the optimization
problem a total of 10 times (replications). The reference value
for the solution that we call ground truth is calculated with
the maximum number of scenarios that we computationally
manage to solve (5000).

Fig. 4 shows the optimal solution’s value solution from the
investment problem (Model 1), the estimated lower and upper
bounds. We can see that the bounds vary with the number of
generated scenarios. The optimal solution’s value improves,
and the optimality gap size narrows when we increase the
size of the generated scenarios’ set. This mainly results from
the fact that the lower bounds variance decreases as we
approach the full empirical distribution. This occurs because
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the generated scenarios are clustered, and their values may
be outside the initial set. The previous problem can be solved
with much higher replication values, but it would considerably
increase the simulation time, Fig. 5.
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Figure 5. Solution time for the optimization problem.

The results show that using a few scenarios to solve a
stochastic programming problem can lead to substantial errors
and sub-optimal solutions. Additionally, the actual probability
distribution and stochasticity may not be properly represented
in the generated scenarios.

Fig. 6 shows the in-sample stability calculated as the optimal
solution’s relative value in the n scenario vs. the optimal
ground actual value. Also, Fig. 6 shows that in-sample stability
is improved when we increase the number of scenarios used
significantly. On the other hand, Fig. 7 shows the out-of-
sample stability for different numbers of scenarios. The in-
sample stability is calculated using the equations and based on
our previous notation; the optimal derived values are calculated
using different scenarios (M sets of scenarios with N scenarios
each). On the other hand, to calculate out-of-sample stability,
we will insert the fixed first-stage solution of each sample
m with n size into an optimization problem using the N-
scenarios, representing the true distribution. From the figures,
we can conclude that high variability in in-sample stability is
correlated with high out-of-sample variability.

Diesel

%

Figure 8. Normalized DG units’ installed capacities mix.

Finally, we analyse the optimal technology mix resulting

from the capacity investment problem under different numbers
of scenarios. Fig. 8 shows the mix of installed capacities when
there is no budget constraint. Total new capacity is normalized.
We can see that the installed capacities highly fluctuate when
we have a small number of scenarios. At the same time, that
variability becomes smaller when we have a more significant
number of scenarios.

V. CONCLUSIONS

This paper applies the sample average approximation (SAA)
technique and stability tests to evaluate the optimal distributed
network investment solution’s quality obtained from a two-
stage stochastic optimization model. We show that an in-
vestment solution based on a few scenarios can lead to
misestimation and deviations from the true solution. On the
other hand, the representation of stochasticity and scenarios’
use affects the solution’s quality when we have uncertainty
parameters. From the stability perspective, we can conclude
that the solution satisfies the criteria of in-sample and out-
of-sample stability. We can conclude that the model has
an excellent out-of-sample stability performance when the
number of scenarios generated surpasses 1000 data points
for this particular distribution grid. The deviations from the
optimum relative value are less than 10% for all scenarios. For
the in-sample stability test, we can conclude that for several
scenarios greater than 500, the optimal value deviations are
less than 10%.

The optimal share of installed technologies depends on
the number of scenarios used; few scenarios lead to high
variations in the optimal energy mix. A poor representation
of the scenarios can lead to the oversizing of fuel-based gen-
eration, resulting in higher operational costs for the distribu-
tion network operator. Finally, we recommend using scenario
generation techniques to adequately capture and represent the
uncertainty parameters’ real distributions. Besides, using as
large a number of scenarios as is computationally feasible is
highly recommended to find stable and quality solutions to
stochastic DG planning.
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