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Abstract—Modern power systems problems recognize the value
of using stochastic information to model renewable generation
operations properly. Many optimal operation and planning
problems can be formulated as two-stage stochastic optimization
problems, typically employing discrete probabilistic scenarios
to describe stochastic information. Large discrete scenario sets
increase the computational complexity of these problems. There-
fore, it is essential scenario reduction techniques that provide
a good representative scenario set yielding the same or similar
optimal results as the original probabilistic set.

This paper describes a generalized adaptive partition-based
method (GAPM) for finding an optimal representative scenario
set for two-stage stochastic optimization problems. The iterative
methodology obtains the optimal partition for a scenario set while
providing the optimality gap at each iteration. Numerical tests
are performed to compare the GAPM with popular scenario
reduction techniques employed in the power systems literature.
We show that even for a simple small problem, popular scenario
reduction techniques based on the Kantorovich distance exhibit
optimally gaps of more than 5%, performing even worse than
vanilla methods of scenario reduction. Our methodology, in
principle, can guarantee any optimality gap between the original
problem and the reduced one.

Index Terms—Stochastic Optimization, Scenario Reduction,
Renewable Generation

NOMENCLATURE

Most of the notation of this paper is introduced throughout

the text. Regarding the probabilistic uncertainty description,

the symbol ξ represents a vector of random variables. For

simplicity, the source of uncertainty used in this work is

a two-dimensional vector capturing demand and renewable

generation. Realizations or scenarios of ξ, are represented by

ξω or, in short as ω ∈ Ω for convenience. Ω is the sample

space set of ξ (either continuous or discrete). P refers to a

partition of the sample space Ω, thus P ⊆ Ω. A collection

of partitions P of the sample space Ω is denoted by P .

The symbol E[ν] denotes the mathematical expectation of a

random variable ν, while E[ν|P ] represents the conditional

mathematical expectation of ν on the partition P . Probability

of an scenario ω is represented by P(ω), or alternative by

ρ(ω), while the probability of a partition P is given by P(P ).

This work was partially funded by the Skolkovo Institute of Science and
Technology as a part of the Skoltech NGP Program (Skoltech-MIT joint
project).

I. INTRODUCTION

The rapid integration of renewable energy sources in power

systems, supported by technological and political develop-

ments, requires introducing stochastic information in opera-

tion and planning decision-making processes [1]. A common

approach for the characterization of stochastic information

in power system models is to employ discrete probabilistic

scenarios based on historical or forecasted data. The discrete

probabilistic scenarios can be generated using auto-regressive

models [2], or more sophisticated hybrid methods [3]. Once

the discrete scenario set that characterizes the stochastic infor-

mation has been defined, the stochastic optimization problem

with fixed recourse can be represented as the following equiv-

alent two-stage stochastic program:

z =min.
x∈X

{

c⊤x+ E[Q(x, ξ)]
}

(1)

where

Q(x, ξ) = min.
y≥0

{

q⊤y|Wy = hξ − T ξx
}

(2)

The standard approach for solving problem (1) is to repre-

sent the random vector ξ by drawing finite set of realizations

(scenarios) indexed by ω, with an associated probability P(ω)
[4]. Then, the expectation term can be rewritten as:

E[Q(x, ξ)] =
∑

ω∈Ω

P(ω)Q(x, ξω) (3)

A sufficiently large number of scenarios is desired to

represent the stochastic nature of the optimization problem

properly while inferring optimal or near-optimal first-stage

decisions on the original problem (1). However, in practice,

the number of discrete scenarios in the set Ω must be kept

relatively low to guarantee the two-stage stochastic programs’

computational tractability. Therefore, there exists a need to

reduce the number of discrete scenarios employed while pre-

serving the problem’s stochastic information. This procedure

is called scenario reduction and there have been proposed

several approaches in the literature [5]. We refer to some of

the prominent works applied to power systems problems in

the subsequent sections.

II. SCENARIO REDUCTION TECHNIQUES

To identify the optimal partitions of an uncertainty scenario

set Ω, the most common approach is to group scenarios into978-1-6654-3597-0/21/$31.00 c©2021 IEEE



a representative set ΩR⊂Ω that recovers the features of the

original set Ω. The representative set is said to be close to

the original problem if there is a sufficiently small distance

between the scenario sets of the reduced and original problems

[6]. The Kantorovich distance, DK(Q,Q′), is commonly

employed to determine the probabilistic distance between two

scenario sets Ω and Ω′ with probability functions Q and

Q′, respectively. Thus, the Kantorovich distance could be

employed for determining the optimal reduced scenario set ΩR.

DK(Q,Q′) is obtained by solving the Monge-Kantorovich

mass transportation problem for discrete scenario sets [7]:

DK(Q,Q′) = min.
ρ(ω,ω′)

{

∑

ω,ω′

c(ω, ω′)ρ(ω, ω′) :

∑

ω

ρ(ω, ω′) = πω′

∑

ω′

ρ(ω, ω′) = πω

}

, (4)

where πω and πω′ are the scenario probabilities in their

respective sets. ρ(ω, ω′) is the joint probability defined over

Q × Q′. The function c(ω, ω′), known as the cost function,

is continuous, nonnegative, and symmetric. Common choices

for the cost function c(·) are norms on R
n.

Problem (4) could be computationally challenging for sets

with large number of scenarios. To overcame this issue, a

forward selection algorithm can be employed as a heuristic

procedure to determine the composition of a representative

set with a given cardinality [6]. In this algorithm, the reduced

set is filled by iteratively adding the scenario that minimizes

the Kantorovich distance between the reduced set ΩR and that

of the remaining scenarios, ΩJ = Ω \ ΩR.

A. Forward Selection Algorithm

The pioneer work of Dupačová et al. [6] introduced a

forward selection algorithm for scenario reduction in stochas-

tic optimization problems with discrete probability distri-

butions.The forward selection algorithm is an heuristic for

solving the problem (4).

The steps of the forward selection algorithm are:
Step 0) Scenario pre-processing. Calculate the c(ω, ω′)

value for each scenario pair in the original scenario set ω, ω′ ∈
Ω. Initiate the empty representative set ΩR = ∅ and the set

of non-selected scenarios Ω
[0]
J = {1, ..., NΩ}.

Step 1) Select the scenarios to be added to the repre-

sentative set. In an iterative manner, identify the scenarios

ωi ∈ Ω, such that at iteration i:

ωi ∈ argmin
ω∈Ω\ΩR

dω (5)

where

dω =
∑

ω′∈Ω
[i−1]
J

\ω

πωc(ω
′, ω) (6)

In each iteration i, ωi is added to the representative set ΩR

and removed from the non-selected set Ω
[i]
J = Ω

[i−1]
J \ ωi.

At the beginning of each new iteration i, the cost function

between non-selected scenarios ω, ω′ ∈ Ω
[i−1]
J is updated by:

c[i](ω, ω′) = min
{

c[i−1](ω, ω′), c[i−1](ω, ωi−1)
}

(7)

Step 2) Stopping criteria. This iterative greedy algorithm

stops once the desired number of scenarios NR, in the reduced

set, is reached or when the Kantorovich distance between the

original and reduced set is below a threshold.
Step 3) Update the representative scenarios’ probability.

The new assigned probability for the representative scenarios

is calculated as [8]:

π∗
ω′ ← πω′ +

∑

ω∈J(ω′)

πω, ∀ω
′ ∈ Ω′ (8)

where

J(ω′)={ω∈ΩJ |ω
′=j(ω)}, j(ω)∈ argmin

ω′∈ΩR

c(ω′,ω) (9)

The choice of the cost function c(·) influences the scenario

selection. Three popular scenario reduction techniques (SRTs)

with their cost functions are presented in the next subsections.

B. Norm of the Difference Between Pairs of Random Vectors:

Dupačová et al. [6] introduced the forward selection al-

gorithm depicted in the previous subsection. The proposed

approach focuses on reducing the scenario set based on the

random input parameters, e.g., renewable generation or electric

demand. In this sense, there is no contextual information about

the problem where the reduced scenario set should be applied.

The cost function is defined as:

c(ω, ω′) = ‖hω − hω′

‖ (10)

In this manner, the scenario reduction procedure would find

representative scenarios based on how similar is the behavior

of the stochastic parameter hω among scenarios. Thus, pre-

serving the original set’s stochastic information.

C. Difference between Single-Scenario Objectives with Fixed

First Stage:

The methodology proposed by Dupačová et al. guarantees

that the reduced scenario set being statistically close to the

original scenario set. However, this method does not guarantee

that the reduced set’s second-stage decisions will be close to

those of the original one. Therefore, it can be said that the

SRT proposed by Dupačová et al. is based on the nature of

the stochastic parameters, rather than that of the stochastic

problem itself. To overcome this issue, Morales et al. [9],

presented a modified cost function based on the objective

function of the deterministic expected-value problem (DP),

i.e., the random parameters are replaced by their expectation.

The cost function is given by:

c(ω, ω′) = ‖zDP
ω − zDP

ω′ ‖, (11)

where zDP
ω is the objective value of the stochastic problem

if the second stage is represented solely by scenario ω and

the first stage is fixed at the DP solution. Note that in this

methodology, firstly, the DP problem must be solved, and then

zDP
ω is calculated for every scenario ω in the original set Ω.



D. Difference between Disjoint Single-Scenario Objectives:

The approach employed by Morales et al. might yield risk–

averse solutions, since in the initial DP, the optimal solution

will avoid making use of highly-expensive load shedding

mechanisms. Thus, resulting in generation over-scheduling

that does not consider the possible contributions of higher-

than-average renewable generation scenarios. Bruninx et al.

presented a risk-neutral SRT based on the forward selection

algorithm [10]. This SRT’s cost function is given by:

c(ω, ω′) = ‖zSS
ω − zSS

ω′‖, (12)

where zSS
ω is the objective value of the stochastic problem

with the second stage being the realization of scenario ω. In

this sense, the first-stage decisions will be calculated N=|Ω|
times, once per scenario in the original set.

III. GENERALIZED ADAPTIVE PARTITION-BASED METHOD

We propose to divide the full space of random values,

either discrete or continuous, into partitions represented by P .

Using similar jargon from the scenario reduction techniques,

a representative scenario is defined by a partition P . They can

be used for building the expected cost function (3) as

E[Q(x, ξ)] ≈
∑

P

P(P ) · Q(x,E[ξ|P ]), (13)

where the partition’s second stage problem takes the form

Q(x,E[ξ|P ]) = min.
y≥0

{

q⊤y|Wy = hP − TPx
}

. (14)

A fundamental question emerges: how should we select the

partitions P to have a good approximation (or exact value)

of the original problem?

We base our partition selection criteria (a.k.a. scenario

reduction in other related works) on the theoretical finding

from the work of Ramirez-Pico and Moreno [11]. The authors

proved that for a two-stage optimization problem it is always

possible to find a finite optimal partition that satisfies (13)

exactly, i.e., with no approximation. The optimal partition set

can be found when, for the optimal primal and dual solutions x̄

and λ, the following conditions are satisfied for each element

P :
(

E
[

hξ|P
]

)⊤
(

E
[

λξ|P
])

= E

[

hξ⊤λξ|P
]

(15a)

x̄
(

E
[

T ξ|P
]⊤

E
[

λξ|P
]

)

= x̄⊤
E

[

T ξ⊤λξ|P
]

(15b)

It is worth to mention that conditions (15) are always

fulfilled in two cases:

1) If for each partition the value of the random parameters

remains the same throughout the partition, i.e.,

hP=hξ=E
[

hξ
]

and TP=T ξ=E
[

T ξ
]

. (16a)

2) If the optimal dual value λξ does not change within the

partition, i.e.,

λP=λξ=E
[

λξ
]

. (16b)

Note that the first case leads to having a partition for each

scenario, becoming impractical for realistic implementations.

On the other hand, since the second case (16b) indicates that

the optimal dual variable must not change within the partition,

the scenarios can be classified by the values of their optimal

dual variables, providing a way to discretely group them.

The discrete scenario partition is guaranteed in most power

systems problems since the dual variables tend to take non-

continuous values, e.g., under marginal pricing, the electricity

price reflects the cost of the marginal generation unit, and this

changes discretely with the load level.

Once the optimal partition set that satisfies the conditions

(15) is found, problem (1) is equivalent to:

min.
x∈X

{

c⊤x+
∑

P

P(P ) · Q(x,E[ξ|P ])

}

(17)

To find a partition set defined as P , that makes problem (17)

exactly equivalent to problem (1), Ramirez–Pico and Moreno

[11] proposed a sequential algorithm that iteratively updates

the partition set P . The algorithm, refereed by the authors as

generalized adaptive partition-based method (GAPM), is

summarized in Fig. 1 and described as follows:

Step 0) Initialization:

During the initial step, the iteration counter is initialized,

k=1. The partition P(k) is equal to the original uncertainty set

Ω. Finally, the upper and lower bounds are respectively set to

negative and positive infinity, z
(k=1)
L =−∞, and z

(k=1)
U =∞.

0) Initialization:

Set k=1, P(k=1)={Ω}

z
(k=1)
L =−∞, and z

(k=1)
U =∞

Step 1 – Solve problem

(17) for P(k) and set its

objective value to z
(k)
L

and its solution to x̄(k).

Step 2 – Compute

the upper bound

z
(k)
U =c⊤x̄(k)+E

[

Q
(

x̄(k), ξ
)]

.

k=k + 1.

Step 5 – Run the

disaggregation

procedure to

obtain P(k+1).

Step 4 – Evaluate

second-stage (14)

for every P∈P(k).
Step 3

z
(k)
U −z

(k)
L <ǫ

or

P(k) satisfies

(15).

Optimal results:

z
(k)
L , x̄(k).

No

Yes

Figure 1. Flowchart of the generalized adaptive partition-based method



Step 1) Deterministic equivalent solution:

With the computed partition, solve the deterministic equiv-

alent problem (17), setting its objective value as the problem’s

lower bound z
(k)
L and storing the optimal optimal solution x̄(k).

Step 2) Upper bound computation:

With the optimal solution of problem (17), x̄(k), compute

the problem’s upper bound with the expression:

z
(k)
U = c⊤x̄(k)+E

[

Q
(

x̄(k), ξ
)]

(18)

Step 3) Convergence test:

If it is possible to compute the upper bound in Step 2,

then verify whether the gap between the upper and lower

bounds is below the convergence tolerance ǫ. However, if it

is not possible to evaluate the upper bound on Step 2, the

convergence to the optimal solution is confirmed by verifying

that partition P(k) satisfies conditions (15).

When one of the tests passes, the algorithm terminates,

yielding x̄(k) and z
(k)
L as the ǫ–optimal solution and objective

value. Otherwise, the algorithm advances to Step 4.

Step 4) Subproblems evaluation:

Solve the second-stage subproblem (14) for each partition

P ∈ P(k). The partitions’ results are then evaluated in Step 5

to determine the new disaggregated partitions.

Step 5) Disaggregation:

The disaggregation procedure can follow two different ap-

proaches depending on the problem structure:

(i) Sensitivity-analysis partitioning (GAPM-SP): by divid-

ing the partitions P ∈ P(k) based on a dual sensitivity

analysis of the uncertain parameter hP for subproblem

(14). This analysis yields the bounds for hP within which

the dual solution does not change. Thus setting the limits

that will subdivide each of the current partitions.

(ii) Dual-value partitioning (GAPM-DP): by identifying

the possible values that the dual variable associated with

the second stage subproblem (14) can obtain as a step

function of the uncertain parameter hP , and splitting the

partition P based on this function’s domain intervals.

After the disaggregation procedure, the step counter is

updated, k = k + 1 and the algorithm proceeds to Step 1.

IV. NUMERICAL TESTS

To compare the performance of the scenario reduction

techniques based on the forward-selection algorithm with the

GAPM, we present a simple wind investment problem (19)

analyzed for two different scenario sets of cardinality 15 and

10 000. Additionally, we also employ the popular K-means

technique [12], and the representative scenario blocks, based

on load- and wind-duration curves, described by Baringo and

Conejo in [13].

The objective of the investment model (19) is to determine

the optimal wind capacity x that will minimize both the

investment costs, x·C inv, and the expected operational costs,

Q(x, ξ), under the uncertainty ξ. The uncertainty vector ξ is

two-dimensional, capturing normalized wind production and

load demand uncertainty, ξ = [W,D]. However, abusing

notation, we add superscript ξ to random input variables for

clarity. For instance W ξ and Dξ refers to the random wind

and demand respectively.

The operational costs, (19b), can be expressed as the sum

of the generation (g·Cg), wind spillage (wsp·Csp), and load

shedding
(

lsh·Csh
)

costs. The load balance, (19c), ensures

that the requested uncertain demand
(

Dξ
)

is matched by the

sum of the uncertain wind generation
(

x·W ξ
)

and the electric

generation (g), wind spillage (wsp) and load shedding
(

lsh
)

.

The electric generation is limited by the generation capacity
(

G
)

(19d). Whereas the wind spillage and load shedding are

bounded by the uncertain wind generation and demand levels,

respectively in (19e) and (19f).

z = min.
x≥0

{

x·C inv + E[Q(x, ξ)]
}

(19a)

where

Q(x, ξ) = min.
g,wsp,lsh

{

g·Cg + wsp·Csp + lsh·Csh
}

(19b)

s.t. Dξ = x·W ξ + g − wsp + lsh (λ) (19c)

0 ≤ g ≤ G (19d)

0 ≤ wsp ≤ x·W ξ (19e)

0 ≤ lsh ≤ Dξ (19f)

The computational tests were performed in the language

Julia 1.6.0., with the optimization package JuMP v0.21.6 and

the solver Gurobi v9.1.1. The test machine features an Intel(R)

Xeon(R) Gold 6148 CPU @ 2.40GHz, 2394 Mhz, 20 Core(s),

40 Logical Processor(s), Total Physical Memory 256 GB.

A. Case 1: 15 scenarios

Figure 2 presents the scenarios’ partitioning by the K-

means method and the SRTs based on the forward selection

algorithm. The stars indicate the representative scenarios and

centroids, while their sizes depict their associated probability.

The numerical results of employing the scenario reduction and

clustering techniques for the uncertainty set with 15 points

is presented in Table I. Given the low number of scenarios,

the GAPM with dual value partitioning (GAPM–DP) was

employed. The processing and solution times are not reported

due to being lower than 1 second. To present a fair comparison,

the number of representatives scenarios and clusters for the

SRTs and K-means methods is set to 5 since the GAPM–DP

obtained an optimal partition set of cardinality 5. The number

of chosen blocks was set to 6 to maintain an even division of

the uncertainty space.

It is notable how, for this small problem with a reduced

number of scenarios in the uncertainty space, the SRTs based

on the forward selection algorithm result in the most signifi-

cant gaps from both the optimal investment decision and objec-

tive value. The reason for this behavior is that the uncertainty is

not only presented in the right-hand side parameters but also

in a parameter multiplying the wind investment decision in

the second-stage power balance. Thus, the SRTs based on the

forward selection algorithm could be failing to recognize the

scenarios’ effect on the first-stage decision by either looking
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Figure 3. Iterative partitioning by the generalized adaptive partition method (GAPM)

only at the uncertainty data (Dupačová et al.), the aggregated

deterministic-equivalent problem (Morales et al.), or the dis-

joint scenario analysis (Bruninx et al.). As seen in Fig. 2, each

of the SRTs gives completely different representative scenarios

based on which aspect of the stochastic optimization problem

is considered. Interestingly enough, due to the data nature and

the problem structure, the simpler scenarios’ block division

results in a lower optimality gap than the above mentioned

SRTs. The K-means method, which divides the scenarios into

clusters based on how they are grouped in the uncertain bi-

dimensional space, results in lower optimality gaps than the

SRTs, except the GAPM–DP, but only when considering the

mean of the ten experiments for this approach. Due to its

heuristic nature, the K–means clustering technique has been

reported to yield widely different results every time it is ran,

rendering it unreliable unless a large number of experiments

are averaged [14].

The optimal reduced set obtained by the GAPM–DP is

composed of 5 partitions and its evolution through its 4

iterations is shown in Fig. 3. The optimal GAPM-DP partitions

TABLE I
RESULTS SUMMARY FOR SCENARIO PARTITION METHODS BASED ON 15

DATA POINTS

Method |P∗|
x
∗ Gap Objective Gap

[kW] [%] [kEUR] [%]
All scenarios 15 78.26 – 699.13 –
Blocks [13] 6 77.69 -0.73 673.60 3.65
K-meansa 5 79.75 1.90 665.75 -0.59

Dupačová et al. [6] 5 74.23 -5.15 674.69 3.50
Morales et al. [9] 5 81.73 4.43 654.99 -6.31

Bruninx et al. [10] 5 74.23 -5.15 686.52 -1.80
GAPM–DP 5 78.26 0.00 699.13 0.00

a 10 experiments were run. We present the results’ mean value.

are obtained by creating hyperplane cuts in the bi-dimensional

uncertainty space based on the value of the dual variables for

the scenarios. For the wind investment problem (19), let the

system’s net load N ξ=Dξ − x·W ξ, then the possible values

of the dual variable λ can be classified as:

λ =











−Csp, if N ξ < 0,

Cg, if 0 ≤ N ξ < G,

Csh, if G ≤ N ξ.

(20)

In each iteration k of the GAPM-DP once the value of the wind

investment has been obtained for the representative partition

P(k), the value of the net load N ξ can be used to define

the hyperplanes that will divide the bi-dimensional uncertainty

space and the scenarios that fall under the same subspace, i.e.,

the scenarios with the same value for the dual variable λ will

be assigned to the same partition. The iterative partitioning of

the uncertainty space based on the values of the dual variable

λ can be clearly seen in Fig. 3, where G=20. On each iteration

the first-stage decision x (wind capacity) is updated, yielding

new cuts based on the updated net load regions. Note that

newly introduced cuts are combined with the existing ones to

create a more detailed sectioning of the uncertainty space.

B. Case 2: 10 000 scenarios

The investment problem (19) is solved with different sce-

nario reduction approaches assuming that vector ξ follows a

bivariate normal distribution from which a random sample of

10 000 scenarios is taken; the results are presented in Table

II. As in the case with 15 scenarios, the SRTs presented by

Dupačová et al. and Morales et al. present gaps on the first-

stage variable larger than 5%. The SRT proposed by Bruninx

et al. recovers the optimal value for the first-stage variable with

negligible gap (0.053%). Unfortunately, the obtained accuracy



from the Bruninx SRT cannot be guaranteed for all applica-

tions and uncertainty sets, as seen in the previous test case

with just 15 scenarios in the original set. Additionally, even

though the STRs based on the forward selection algorithm

could be efficiently solved once the representative scenarios

are obtained, the (overhead) time necessary to obtain these

scenarios is considerably larger than the time employed by

the other analyzed methods. The larger scenario processing

time corresponds to the the forward selection algorithm’s

complexity increases quadratically with both the number of

representative scenarios and scenarios in the original uncer-

tainty set [8].

The use of load- and wind-duration-based scenario blocks

and the K–means method remain close to the optimal solutions

with an error comparable to those of the sample average

approximation (SAA) tests performed with larger sample bases

of 100 and 1 000 scenarios while providing considerably faster

solutions.

The GAPM with partitioning based on sensitivity analysis

and the GAPM based on dual-value comparison converge to

an optimal partition of cardinality several orders of magnitude

smaller than the original sampling set. However, the GAPM–

DP finds an optimal reduced set three times smaller than

that found by the GAPM–SP. This corresponds to the fact

that in the sensitivity analysis of the GAPM–SP, the cuts are

performed within each partition and not in a transverse manner

that influences several existing partitions at the same time.

Thus, the cuts derived from the sensitivity analysis cannot

recover information from scenarios in different partitions.

V. CONCLUSIONS

The presented generalized adaptive partition-based method

(GAPM) allows for the optimal partitioning of an uncertainty

set in two-stage stochastic optimization problems with fixed

recourse. In order to find the optimal partition, two easily

verifiable conditions must be met. Even though this is an

iterative scenario reduction approach, when compared with

techniques based on the forward selection algorithm and their

scenario processing time, this method converges quickly to a

representative partition with an optimality certificate. However,

depending on the problem structure, such partitions can be

obtained in multiple ways.
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TABLE II
RESULTS SUMMARY FOR PARTITION METHODS BASED ON A TEST SAMPLE OF 10 000 SCENARIOS

Method |P∗|
x
∗ Gap Objective Gap Solution Overhead Out-of-sample

[kW] [%] [kEUR] [%] [s] [s] cost [kEUR]
SAA–10 000 10 000 96.66 – 669.676 – 1.255 – 670.596

SAA–1 000b 1 000
98.301

1.698
667.537

0.319 47.614
– 669.189

[94.703, 101.392] [657.78, 695.634] [669.008, 669.638]

SAA–100b 100
99.093

2.517
659.377

1.538 40.375
– 670.209

[90.358, 108.864] [609.974, 720.689] [669.02, 673.268]
Scenario blocks [13] 18 94.012 -2.740 662.739 1.036 0.012 1.711 670.732

K-meansb 18
97.920

1.304
665.747

0.587 0.014 0.219
670.909

[92.275, 104.051] [664.978, 666.876] [670.521, 672.077]
Dupačová et al. [6] 17 103.458 7.033 670.796 0.167 0.016 160.040 669.748
Morales et al. [9] 17 110.149 13.955 725.498 8.336 0.015 161.543 673.528

Bruninx et al. [10] 17 96.609 0.053 669.672 1.369 0.022 160.008 668.531
GAPM – sensitivity partition 49 96.609 0.053 669.672 0.001 2.812 – 670.518
GAPM – dual value partition 17 96.680 0.021 669.672 0.001 2.211 – 670.517

b 10 experiments were run. We present the results’ mean value and their range.


