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Abstract—In this paper, the potential of reducing the electricity
cost with the help of energy storage and controllable loads
on the Russian retail electricity market is studied. The retail
electricity market in Russia features different price categories,
allowing consumers to reduce expenses with proper planning.
Approximately 2/3 of the cost in flexible price categories is for
the power consumption in specific hours, with the remaining
1/3 for the energy consumption itself. Because of the continued
cost decrease of energy storage devices, they have become an
increasingly more attractive investment, opening opportunities
for economic savings combined with load shifting, which can
occur either in a standalone manner or with the use of energy
storage. In this paper, demand shifting is implemented in the
Russian retail market, combined with the payback calculation
for energy storage.

Index Terms—Russian Power System, Demand Response, En-
ergy Storage

I. INTRODUCTION

The price of electricity in Russia depends on the price zone
the consumer is located, whether it is wholesale or retail,
and what price category the consumer has. When end-users
do not satisfy the wholesale market’s minimum consumption
requirements (which is 20 MVA of cumulative power load),
they need to purchase energy in the retail market. Consumers
are classified as small industrial, commercial, and residential.
Unless a consumer has a single-rate electricity tariff or does
not have the resources to manage their consumption, it is
always possible to optimize the electricity consumption profile
to reduce the electricity bill. In this paper, we consider the
possibility of reducing the electricity bill in two ways:

1) Redistribution of power consumption over time with the
help of a controllable load, i.e., which can be rescheduled.

2) Storage charge and discharged in different hours.

Both methods are identical in terms of their effect on the
power system since they reduce power consumption on expen-
sive hours and shift it towards cheaper ones. The differences
arise in the amount of energy managed and in the cost of such
management. For the energy storage case, the management
cost of interest is its payback time related to the electricity
bill reduction. The manageable load does not usually have a
marginal cost of utilization and little or null investment cost
but is not always available.

II. LITERATURE REVIEW

A. Energy Storage

There has been an abundance of studies on the price-
dependent electricity consumption with energy storage for
different national and regional markets, including a diverse
array of storage technologies and regulation schemes. The
trend increases its popularity since the energy storage prices
continue to decline [1] and its use for load shifting and
arbitrage becomes more attractive.

The use of load shifting for the China Southern Power Grid
was studied in [2]. This work proposed an energy storage
control strategy based on dynamic programming, where the
number of charge-discharge cycles and depth of discharge
were considered. The price forecasting was done via linear
regression analysis.

Another load shifting case was studied in [3], where com-
munity energy storage was used. In particular, in this work,
there was a comparison between different technologies, like
lead-acid (PbA) and lithium-ion (Li-ion), and storage sizes
for the UK NETA electricity market. It was claimed that
despite PbA batteries seemed to be more attractive based on
the optimal capacity to manage, in projection to 2020, the PbA
and Li-ion will have comparable profitability since Li-ion will
significantly decrease its capital cost per unit.

In [4], the electrical energy price arbitrage with the help
of pumped hydroelectric storage (PHES) was studied for 13
markets of 11 countries. The study’s main result was the
optimal dispatching strategy, which allowed to profit from
the use of energy storage. However, as the authors claim, it
is only possible under the assumption that either the actual
future prices are available or the dispatching operator has
exact forecasts. In other cases, the profits can be significantly
decreased or even turn into losses.

The use of compressed air energy storage (CAES) in
Turkey’s market was analyzed in [5]. This work implemented a
mixed-integer linear programming (MILP) model and derived
the price predictions based on a discrete-time Markov chain
(DTMC). The study shows that energy storage could be
implemented under the current energy price levels, but the
payback period would be relatively high (11 years).

The Pennsylvania-New Jersey-Maryland interconnection
(PJM) arbitrage study with the help of storage was conducted
in [6]. The study was done for the day-ahead market (DAM)
and real-time market (RTM) for 7 395 different locations978-1-6654-3597-0/21/$31.00 c©2021 IEEE



throughout the PJM with the help of local marginal price
(LMP) data of 2008-2014. The break-even cost for energy
storage was determined, below which storage becomes un-
profitable.

The storage study on the Iberian market, implemented in [7],
reveals that with the current pace of technological progress in
round-trip efficiency, the number of life cycles, and cost, will
lead to energy arbitrage viability from 2024. But for now,
as the economic analysis concludes, the arbitrage business
profitability is negative. The model includes the deterioration
of the storage capacity, assumed proportional to the number
of cycles. The battery’s useful life is taken as the number of
cycles until the capacity reaches the 20% of its initial value.

The modeling of electric energy storage units has been
approached by multiple studies. In this study, we model the
energy storage as generic and ideal, i.e., its performance is
considered constant through time and operating conditions
[8]. However, more detailed battery models that considers
efficiencies and charging and discharging dependence with
state-of-charge [9], [10] could be applied without loss of
generality.

B. Manageable Loads for Demand Response

Shifting power consumption patterns can help reduce elec-
tricity charges; this can be done by relocating electricity
usage from hours with high energy prices to those with lower
ones. One possible tool to manage consumption is to use the
equipment that must consume a given amount of energy with
flexible usage time. Such type of load has been extensively
studied; its definition and classifications can be found in [11].
The most promising examples of such load are heating, ven-
tilation & air conditioning (HVAC) systems. Thermostatically
controlled loads (TCL) can be turned on before starting the
working day to cool the rooms for its subsequent shutdown
during peak price hours while maintaining a comfortable
temperature regime. Such principle can be used, for example,
with underfloor heating, as in [12]. In this study, thermal
inertia made it possible to switch off the heating for the
peak load duration and turn it back on after the peak while
maintaining the temperature within a comfort boundary.

In [12], the energy cut off during the peak has not been
recovered during off-peak hours. Still, the approach related
to load redistribution can be extended to those types of
managed loads that strictly require a specific amount of energy
consumed per day. An example of such a case may be a
refrigeration system. A normal shutdown during peak hours
without later energy compensation gives a noticeable deterio-
ration in temperature conditions. The optimal HVAC dispatch
modeling was done in [13], where the comfort temperature was
maintained at an adequate level while the cost of dispatch was
minimized.

III. RUSSIAN ELECTRICITY MARKET

A. Market Reforms

The electricity sector of Russia has been actively reformed
since the ’90s. The first separation on the wholesale and

retail markets was done in 1995; then it was followed by
two main reforms in 2003 and 2006. The industry itself had
been almost entirely state-owned. With the dissolution of the
monopolist “RAO UES” company in 2008, Russia’s electrical
energy industry privatization came to an end. The industry was
divided into many companies, differing based on the types of
activities and geographical location. In 2011 the most critical
part of the pricing policy liberalization occurred when all
the consumers (except for residential) were allowed to buy
the electricity at unregulated prices; such reforms allowed to
attract significant investment to the Russian electrical energy
sector and increased its effectiveness. In 2012, a government
decree introduced a new pricing policy for the retail market,
which consisted of several price categories [14]. This policy
made the electricity tariffs more time-depended, especially for
large consumers.

B. Retail Market and Price Categories

In total, there are six price categories on the Russian electric
energy retail market [15]. They range from the first category, a
single tariff on electricity, to the sixth category, where the price
consists of three time-dependent components: energy, capacity,
and transmission. There is also a cost for not matching the
hourly plan of the load profile in the sixth category. The total
cost of electricity can be written as:

C = CE + CC + CT (1)

where CE , CC , and CT are respectively the costs related
to the energy, capacity and transmission price components.
The example of the price distribution over the month is
presented on the Fig. 1. For the flexible price categories the
payment for power consumption in certain hours (capacity
and transmission) represents nearly 2/3 of the electricity bill.
As it will be shown in this work, load shifting is the main
mechanism for cost reduction under the current structure of
the Russian retail market.

Figure 1: Typical hourly prices over a month [16].



C. Demand Response Program

The demand response (DR) program appeared in the Rus-
sian electricity sector in 2017 as a pilot project. Since then,
it has attracted significant attention from the industry sec-
tor and other electricity consumers. Smaller consumers who
cannot participate in the wholesale market participate in the
program via aggregators representing them. In this program,
consumers are paid based on the amount and number of
hours of power reductions. The program’s operation consists
of the following actions: the system operator (SO) notifies
the consumers about the load reduction requirements, the
consumer confirms availability, and the next day it satisfies
the undertaken responsibilities. To confirm the fulfillment, the
SO builds a baseline, a load profile that the consumer would
have if there were no DR event, and compares it with the
actual load.

IV. MATHEMATICAL MODEL

A. Objective Function

To represent the benefits of demand response usage in the
Russian electricity market, we consider consumers belonging
to the 4th pricing category with hourly energy tariff, capacity
tariff (based on peak hour consumption), and a two-rate trans-
mission tariff [15]. The hourly energy payment is calculated as
the sum of the products of cost and consumed kilowatt-hours.
The capacity fee is defined as the product of the capacity rate
for the average monthly consumption during peak hours of a
guaranteed supplier (GS). The two-rate transmission tariff is
the direct payment for the transmission of a certain amount of
power, calculated hourly and paid based on hourly costs. The
transmission tariff also includes the power grid maintenance
fee, defined as the defined charge multiplied by the average
monthly value of the maximum daily consumption during
planned peak load hours (PPLHs). PPLHs are monthly defined
by the System Operator (SO). These rules allow to write each
component of (1) as (eqs. (2) to (4)) [16]:

CE =

24∑
t=1

m∑
d=1

WtdcEtd (2)

CC =

24∑
t=1

m∑
d=1

Ptdτ
P
tdcC (3)

CT =

24∑
t=1

m∑
d=1

Ptdτ
T
tdcT (4)

where m is the number of days in a month, Wtd and cEtd are
energy consumption and its price per MWh at hour t and day
d respectively, Ptd is power consumption at t and d, τPtd is a
binary parameter representing the peak hours of GS, similarly
τTtd represents the have maximum daily consumption within
the range of PPLH (once per day) and 0 for all other hours.
cC and cT are the capacity and transmission prices per MW,
divided by the number of days. The power consumption per
hour is given by:

Ptd = P 0
td + xtd, ∀t ∈ (1, 24), ∀d ∈ (1,m) (5)

where Ptd is the actual power consumption at the hour t of a
day d, P 0

td is the scheduled power consumption, and xtd is a
corrective value, which results either from manageable loads
or energy storage.

B. Constraints

There are also several constraints for the value of xtd, for
the integrated manageable load they are the following:

24∑
t=1

xtd = 0, ∀d (6)

P l ≤ xtd ≤ P l, ∀t, d (7)

where P l and P l are the manageable load’s lower and upper
bounds. Constraint (6) represents the integrated nature of the
managed load: the reduced electricity consumption during
peak hours, must be compensated during other hours.

For the energy storage the constraints (6) and (7) become
[7]:

xtd≤ (K − L(t−1)d)/(1− r) ∀t, d (8)
xtd≥ −L(t−1)d(1− r) ∀t, d (9)

where K is the battery capacity, r is the loss of energy factor
due to the power electronics and the conversion process and
L(t−1)d is the battery charge level at the previous hour:

L(t−1)d =

t−1∑
i=1

xid +

24∑
i=1

d−1∑
j=1

xij (10)

The constraints reflects the capacity of the storage, that is
assumed to be constant along the time of modeling. Constraint
(8) implies, that it is not possible at the hour t to store more,
than the capacity left unused, assuming the conversion loss.
Constraint (9), instead, implies, that no more energy can be
withdrawn, than that stored, again, including the unit’s losses.

V. EXPERIMENTAL RESULTS

Model implementation was done Python language in the
Google Colab environment. Optimization was carried out
using the cvxpy library with ECOS (embedded conic solver).
To be able to represent both the capacity and transmission
expenses, the time frame of analysis was set for one month.

The consumer is an industrial building with 5 working days
and 2 weekend days. Its daily peak load reaches 40 MW. The
manageable load cap Pl was assumed to be the same for all
hours at 6 500 kW. This value was chosen based on the ratio
of underfloor heating shear load to full load at peak time in
[12]. The storage capacity was chosen as 1 MW power and 4
MWh capacity at a cost of 63 million rubles.

The result of solving the optimization problem with objec-
tive (1) and constraints (6)–(7) for the case with manageable
load is shown in Fig. 2.

Electricity consumption was reduced during the day and
increased during the night, according to the behavior of the
electricity price. It can be seen that consumption during PPLHs
and HP peak hours was reduced, but was compensated in the



Figure 2: Real and optimized profiles for the manageable load.

TABLE I: RESULTS FOR THE MANAGEABLE LOAD.

Energy, Capacity, Transmission, Total,
mln. rub. mln. rub. mln. rub. mln. rub.

Real profile 21.650 32.306 36.655 90.613
Optimal profile 20.981 26.190 30.905 78.077

Difference 0.668 6.115 5.750 12.535

rest of the time by increased consumption in other hours.
Electricity fees and their components before and after the
operation optimization are presented in Table I. As seen in the
table, savings can be significant, but this method is suitable
only for those cases where the consumer has a load with
properties allowing to distribute its consumption over time.

Payment for different cases were compared in the Fig. 3.
We can see, that the most part of savings comes exactly
from avoiding capacity and transmission payments. This is
explained by the reduction of power consumption during peak
hours, since the consumed energy does not change between
scheduling modes.

Load shifting with the storage is more universal in terms
of technical execution, but this method, as will be seen later,
has problems with payback. In addition, the storage has an
efficiency that is associated with inverter and power electronics
losses, assumed at 10%. In addition to the usual shifting,
the current demand response mechanism was used during
optimization. In the considered month of May in 2020 there
were only two such cases, on May 15 and 29, the median cost
of 1 MW of responsive load capacity is approximately 300
thousand rubles, this value will also be included in calculation
of profit and payback time for the storage unit.

The energy storage charges during the night (second to fifth
hours) at maximum capacity, when there are no PPLHs and
GS hours. Then it discharges during the tenth hour as it is the
most expensive: it is both GS hour and maximum PPLH hour.
After this, the storage charges to the maximum to maintain
the DR event, since it will last for 4 hours. The remainder of
the time, the storage performs price arbitrage.

Savings from profile redistribution are expected to be lower

Figure 3: Bar chart with cost shares for different cases.

Figure 4: Real and optimized profiles for the storage.

due to the limited storage capacity, Table. To assess the
profitability of energy storage installation, we assume the
storage price to be 325$/MWh (26 815 rubles/MWh)1 [1].
Thus the overall capital cost for a 4-hour battery system is
107.26 million rubles. The total monthly profit from using a
storage unit would be about 2 million rubles. Thus, purchasing
the pay-back time for a storage unit is about 53 months or 4.4
years.

VI. CONCLUSIONS

We have presented an economic analysis of the potential
benefits of employing demand response in the Russian retail
markets and tested two possible cases: controllable loads and
energy storage usage.

Controllable loads that can be shifted at peak hours are an
effective tool to decrease electricity payments. As reported, the
consumption shift to hours with less expensive energy tariffs
does not bring significant benefit (approximately 5% out of
overall savings), which means that most of the benefit comes

1The exchange rate on 25 October 2020 is 1 US dollar = 76.18 Russian
rubles



TABLE II: RESULTS FOR THE ENERGY STORAGE.

Energy, Capacity, Transmission, Total,
mln. rub. mln. rub. mln. rub. mln. rub.

Real profile 21.650 32.306 36.655 90.613
Optimal profile 21.589 31.370 35.906 88.866 - 0.27

Difference 0.061 0.935 0.749 1.746 + 0.27

from avoiding consumption at capacity-penalized hours. In the
studied case, this period coincided with the building’s load
peak and with the maximum consumption within the PPLH
interval.

The analysis showed that a storage unit is a profitable
investment for a large consumer with a presence of highly
sharp peaks. We also have demonstrated that such benefits
can be enhanced by the participation in the mechanism of
demand response proposed by the system operator. As with
the controllable load, the benefit from the hourly energy price
difference was minor, and it is not profitable to use energy
storage for this particular term of the cost function.
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