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Abstract—Substation reconfiguration may reduce congestion
and therefore reduce the cost of economic dispatch. In this
paper we propose a novel method that can be applied to any
substation configuration using a mixed-integer linear model. Our
methodology generalizes substation reconfiguration to include
both more traditional transmission switching and bus splitting.
The problem is NP-hard but we show that using state-of-the-
art tools we can reduce the computation time significantly. The
method has been evaluated on several test cases, the IEEE 118-
bus case being the largest. Optimal solutions were found within
much smaller time frames than have been previously reported.

Index Terms—Optimal bus splitting problem (OBS), Optimal
Transmission Switching Problem (OTS), Mixed-Integer Program-
ming (MIP), Topology control

NOMENCLATURE

Dual variables
αe Dual value of line e’s maximal capacity.
αe Dual value of line e’s minimal capacity.
Parameters
θv Maximal voltage angle at bus v.
F e Maximal transmission capacity of line e.
P g Maximal generation capacity of generator g.
θv Minimal voltage angle at bus v.
P g Minimal generation capacity of generator g.
Be Susceptance of line e.
cg Generation costs of generator g.
dv Load at bus v.
vse Starting bus of line e ∈ E ∪ Ē .
vte Terminal bus of line e ∈ E ∪ Ē .
Sets
Ē Auxiliary transmission lines.
W̄ Auxiliary buses without busbars.
W̄v Auxiliary buses in SR of bus v without busbars.
E Original Transmission lines.
Esv Outgoing transmission lines at bus v.
Etv Incoming transmission lines at bus v.
Ev Transmission lines connected to bus v.
G Generators.
V Original Buses.

This work was partially funded by the Skolkovo Institute of Science and
Technology as a part of the Skoltech NGP Program (Skoltech-MIT joint
project).

W Auxiliary buses.
WBv Auxiliary busbars in SR of bus v.
WEv Auxiliary feeder buses in SR of bus v.
WGv Auxiliary generator buses in SR of bus v.
Wd

v Auxiliary load buses in SR of bus v.
Wv Auxiliary buses in SR of bus v.
Variables
θv Phase angle at bus v.
fe Power flow on transmission line e.
pg Power generation of generator g.
xg Operational status of line e.

I. INTRODUCTION

SOLVING optimal power flow (OPF) models is one of
the most fundamental steady-state power system operation

performed by utilities. These are typically minimizing a cost
function that is subject to a certain set of constraints. Previous
work has shown, that changing a network’s topology can
have desirable effects on a system’s state, by redirecting
power flows to remove congestion, reducing voltages, or
improving operational security [1], [2], [3]. Main challenge
when employing switching in actual systems, is that discrete
changes to a system’s topology cause non-continuous changes
in the system’s operating point, which can cause instability.
Concerns regarding the reliability of systems are raised [4].
Fisher et. al. [1] proposed a mixed-integer programming
model to decrease congestion in transmission systems by
solving the optimal transmissions switching (OTS) problem.
Binary variables are used to model the operational status of
transmission lines (operational/non-operational). This model
was extended by accounting for multiple periods, investments,
security-constrained unit commitment, and uncertainty [5], [6],
[7]. Problems containing integer (binary) variables can be
difficult to solve as they are non-convex. Switching problems
particularly were shown to be NP-hard [8].
The optimal bus splitting (OBS) problem is another switching
problem that describes how an original bus in a substation
can be split into one or more sections [9], each maintain-
ing connections to different lines. Switching operations in
substations provide independent control over a variety of
components in a transmission grid (e.g., generators, loads,
and transmission lines) and were employed to relieve voltage
violations and overloads [10]. In [10], the authors model978-1-6654-3597-0/21/$31.00 ©2021 IEEE



bus splitting such that an original bus is replaced by new
buses for every connected line, load and shunt element.
Small impedance lines are introduced to connect the newly
generated buses, dividing these elements into two groups. This
methodology was extended using a substation model in [11],
[12], which controls the assignment of generators, lines, and
loads to individual busbars. Following their methodology, an
original bus is replaced by a substation representation with
two busbars and the respective elements. These are connected
by switchable zero-impedance lines (ZILs). A binary variable
denotes to which of the two busbars an element (e.g. generator)
is connected. Thus, more or less busbars cannot be considered.
To our best knowledge, mathematical formulations able to
model arbitrary real-world substation designs have not been
proposed. In the literature on this topic, not more than two
busbars are considered in optimization models. Hence, a bus
can at most be split into 2 new buses. High-voltage substations
that have to meet high standards with regards to operational
security can have 4 or even 5 busbars [13].

Paper Contributions: We propose a generalized bus
splitting methodology that can accommodate any real-world
substation configuration (also referred to as OBS). Based on
our approach, we show that OTS is a special case of OBS
for 1-busbar substations and provide insights by conducting
several case studies. Our generalization comes at the cost
of computational complexity however. More binary variables
must be introduced modelling a certain system than using
any other approach. We show that OTS and OBS are closely
related, which can be exploited to accelerate the solution
process.

II. PRELIMINARY OPTIMAL POWER FLOW MODELS

The foundation of the model developed in this paper is the
direct current optimal power flow approximation (DCOPF)
presented as Model 1. In this model, equation (1a) denotes
the objective, which is minimizing costs of power generation.
Equation (1b) denotes the Kirchhoff’s current law and equation

Model 1. DCOPF [LP]

z∗1 = min
∑
G
cg(pg), s.t.: (1a)∑

EA,s
v

fe −
∑
EA,t
v

fe =
∑
Gv

pg − dv, ∀ v ∈ V (1b)

Be(θvs
e
− θvt

e
) = fe, ∀ e ∈ E (1c)

−F e ≤ fe, ∀ e ∈ E [α] (1d)
fe ≤ F e, ∀ e ∈ E [α] (1e)

θv ≤ θv ≤ θv, ∀ v ∈ V (1f)
P g ≤ pg ≤ P g, ∀ g ∈ G (1g)

(1c) the Kirchhoff’s voltage law. The power flow on transmis-
sion lines and the production by generators are constrained by
(1d), (1e) and (1g) respectively. To incorporate the operational
status of transmission lines, this basic model was extended by

[1]. Equations (1c), (1d) and (1d) are replaced by constraints
(2c), (2d) and (2e), as shown in Model 2.

Model 2. OTS (Fisher et. al. [1]) [MILP]

z∗2 = min
∑
G
cg(pg), s.t.: (2a)

(1b), (1f) & (1g) (2b)
Be(θvs

e
− θvt

e
) + (1− xe)Me ≥ fe, ∀ e ∈ E (2c)

Be(θvs
e
− θvt

e
) ≤ fe + (1− xe)Me, ∀ e ∈ E (2d)

−F exe ≤ fe ≤ F exe, ∀ e ∈ E (2e)
x ∈ {0, 1}, ∀ e ∈ E (2f)

Additionally, integer constraint (2f) is added. A variable xe
denotes the operational status of a line e. Line e is operational
if xe = 1 and non-operational if xe = 0. Constraints (2c)
and (2d) only apply, if xe = 1. If xe = 0, (2c) and (2d) are
non-binding due to a sufficiently large Me.

III. OPTIMAL BUS SPLITTING MODELING FRAMEWORK

A transmission network can be represented by the graph
N (E ,V), where E denotes the set of edges, also referred to
as (transmission) lines, and V denotes the set of vertices, also
referred to as buses. The model proposed in this paper requires
a prior operation on the initial transmission network to derive
a so-called augmented network model (ANM). Solving the
proposed model on this ANM yields an optimal topology -
considering substation designs. Having obtained a solution,
reducing the resulting graph stores the information eliminating
redundancies. Additionally, DCOPF can then be solved on the
reduced graph to derive dual values. The method proposed,
given an arbitrary power grid, consists of three major steps to
consider full substation reconfiguration:

1) Augmenting the network model,
2) Solving the OBS to optimize switching states and
3) Reducing the network model.

In the following, each component of the procedure will be
described individually, starting with expanding an arbitrary
initial network to an ANM.

A. Augmenting the network model

Given the network of a power system, we want to be able
generate a graph representing a substation, which will be
referred to as substation representation (SR), for an arbitrary
bus v. By performing switching operations in SRs, we want
to account for all possible reconfigurations that would be
possible considering an arbitrary substation’s design. This
requires, that the SRs are constructed such that arbitrary real-
world substation designs can be accommodated. Furthermore,
they must be constructed systematically, so that an arbitrary
network’s topology can be optimized.



1) A general substation representation: Any bus v ∈ V can
have the following components/properties assigned to it; a load
dv , a set of incoming and outgoing transmission lines Ev and
a set of generators Gv . Information on these components and
properties can typically be obtained from an original data set.
To generate a substation representation (SR), the set of busbars
(or busbar segments) Bv , with |Bv| denoting the number of
elements, is also required. This is not widely available. In test
cases (if not stated otherwise), we chose 2 busbars for the
experiments in this paper. If information would be available,
any number of busbars could be set when constructing a SR for
a specific bus v, as long as |Bv| ≥ 1. As in [14], we generate a
new (auxiliary) bus wv ∈ Wv for each of those aforementioned
properties or elements. We omit small impedances however
and connect these buses using auxiliary zero-impedance lines
(ZILs), which are switchable. The auxiliary buses in a SR are
assigned to one of the following sets:WBv ,WEv ,WGv ,Wd

v and
Ēv , which will be discussed in the following.
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Figure 1. Sets of auxiliary buses

Figure 1 displays the auxiliary buses and lines. It can also
be seen how auxiliary buses are constructed and assigned to
sets - which is required for modelling. An auxiliary bus w
is created for every busbar. These newly created buses are
contained in WBv . The same applies for for every line that is
connected to original bus v. Parameter δ(v) denotes the degree
of bus v. It is equal to the number of auxiliary buses in WEv .
All auxiliary buses created for each distinct generator g ∈ Gv
are contained in WGv , whereas the auxiliary bus for load dv
is contained in Wd

v . The set of all auxiliary buses is denoted
by W , with W = W1 ∪ · · · ∪ W|V|, whereas the set of all
auxiliary lines is denoted by Ē . Define W̄v =WEv ∪Wd

v ∪WGv
and W̄ = W̄1 ∪ W̄2 . . . W̄|V|. When constructing the SR of
bus v, auxiliary buses in WBv are created first. Whenever
an auxiliary bus w ∈ W̄v is created while constructing the
SR of bus v, auxiliary lines are created connecting w to each
w′ ∈ WBv . Hence, we create (|WEv |+|WGv |+|Wd

v |)∗|WBv | ZILs
for an individual substation representation, which requires
an equal number of binary variables. The resulting problem
can be very complex. Concerns regarding the computational
tractability of this approach are addressed in section IV. Using
this augmented network model, arbitrary technical aspects of
substations can be considered. Some substations are merely
used as switching stations [15]. Substations connecting equal
components can differ by the amount of circuit breakers
and busbars. The layout of a substation influences its costs,
reliability, maintainability and security [16]. Even though most

designs are derived from one of a few fundamental types
(breaker-and-a-half; ring bus; double bar, single breaker; single
bus, double breaker), substation designs are quite diverse. A
generalized modelling method must be able to represent any
fundamental case and variation thereof. This is achieved by
the construction outlined above.

B. A mixed-integer formulation

The MIP presented in this section is solved after an ANM
was constructed, which means that selected buses were trans-
formed into a substation representation. As new lines and
buses are constructed, introducing necessary parameters for
a new line e must be addressed. Susceptance Be and capacity
limit F e must be chosen appropriately. F e can be set to
a large enough value such that the power flow within a
substation is not constrained. Regarding the susceptance, two
approaches were already applied in previous works for Be. An
additional line was assumed to have a small impedance [14]
or to be 0 [11]. In our experiments both approaches showed
to be feasible. Assuming 0-impedance has advantages. First,
small parameters can lead to numerical instabilities. Secondly,
adding new lines with impedance causes numerical differences
when applying our method versus solving the fundamental
models. Even though minor, this becomes an issue when
solutions are to be exchanged between models.

Model 3. OBS [MILP]

z∗3 = min
∑
G

cg(pg), s.t.: (3a)∑
EA,s

v

fe −
∑
EA,t

v

f ′e =
∑
Gv

pg − dv, ∀ v ∈ W (3b)

(1f) & (1g) (3c)
Be(θvs

e
− θvt

e
) = fe, ∀ e ∈ E (3d)

θvs
e
≤ (1− xe)Me + θvt

e
, ∀ e ∈ Ē (3e)

θvs
e

+ (1− xe)Me ≥ θvt
e
, ∀ e ∈ Ē (3f)

−F exe ≤ fe ≤ F exe, ∀ e ∈ Ē (3g)
−F e ≤ fe ≤ F e, ∀ e ∈ E (3h)

xe ∈ {0, 1}, ∀ e ∈ Ē (3i)
{xe : e ∈ Ē ∧ qqq(e, w)} ∈ SOS1, ∀ w ∈ W̄ (3j)

The required constraints for ZILs can be inferred from
constraints (1d) and (1e) in Model 2. The full OBS formulation
is shown in Model 3. For non-switchable lines (3d) applies,
like in Model 1. Compared to Model 2, Model 3 requires
adjustments. Constraints (3e) and (3f) are used to model the
switching of ZILs. The phase angles for all buses are required
to be equal if an active ZIL connects two auxiliary buses.
Due to the modeling symmetry at the substation level, degen-
erated solutions (e.g., different splitting solutions with equal
optimal cost) are expected, burdening the solution process’s
tractability. This can be prevented if any w ∈ W̄v can be
at most connected to one busbar. This additionally excludes,



otherwise, possible solutions that do not have to be explored.
Consider elements in WEv . Given the SR for a bus v, any
element in WEv can at most be connected to one busbar. This
can be be expressed as a special ordered set of type 1 (SOS1).
Defining qqq(e, w) = ((vse = w) ∨ (vte = w)), yields constraints
(3j). Condition qqq(e, w) can be verbalized as follows: ”Line e
starts or ends at bus w.” We need to iterate over all lines that
start or terminate at a specific auxiliary bus. Constraints (3b)
must now apply for auxiliary buses. Note that constraints (3d)
and (3h) are equal to Model 1 whereas constraints (3e) - (3g)
& (3i) apply in Model 2 (in adjusted form). This is due to
the different types of lines that must be considered. Switching
can only be performed on ZILs e ∈ Ē . Lines e ∈ E must be
considered with their original properties. This ensures that for
a given topology the results of Model 1 - 3 are equal.

C. A generalization of DCOPF and OTS

Model 3 is a generalization of Model 1 and 2. Thus, Model 3
provides at least as much topology network flexibility than 1 or
2. In this section we show how this can be verified and discuss
implications. Figure 2 shows the adjustments necessary in
every SR (Figure 1) in a ANM so that Model 3 is equivalent to
DCOPF (Model 1) or OTS (Model 2) respectively. Hereinafter,
an original bus or line refers to an element that was present
before the SR was constructed.
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Figure 2. Representation of DCOPF and OTS

We briefly outline in the following under which conditions
the Model 3 is equal to Model 1 and Model 2 respectively.

1) DCOPF: Model 3 is equal to Model 1 if the following
is applied to a respective ANM and Model 3: First, a single
busbar w ∈ WBv must be selected. All auxiliary buses must
be connected to w. This can be formalized as xe = 1 ↔
(qqq(e, w)∧ e ∈ Ēv). As shown in Figure 2a, all auxiliary buses
are then connected to a single busbar by non-switchable lines.

2) OTSP: Similar conditions are necessary to reproduce
Model 2. In this case, given a single busbar w ∈ WBv (wb1v in
Figure 2 (right)), it must hold that xe = 1 ↔ (qqq(e, w) ∧ e ∈
Ēv∧(vse ∈ WGv ∨vte ∈ Wd

v )). This reads as follows: ”Auxiliary
lines are determined to be operational, if and only if they
connect generators or loads to busbar w. Auxiliary lines
connecting w and in- and outgoing feeders remain switchable
(Figure 2b).

Remark. Since any solution of Model 1 can be reconstructed
using Model 2 and any solution of Model 2 can be obtained
using Model 3, we observe that z∗3 ≤ z∗2 ≤ z∗1 .

3) Generating solutions: Specifically, relationship III-C2
can be used to construct solutions for Model 3 given solutions
of Model 2. If multiple busbars exist, a busbar w ∈ WBv
is chosen (e.g., lowest index). Then, operational statuses of
respective ZILs must be set as described and visualized in
Figure 2. As Model 2 is computationally less costly, we
show in section IV that it can be used to obtain good-quality
solutions for OBSP much faster.

D. ANM reduction

Once the switching statuses have been obtained using Model
3, the networks structure can be reduced. This step has two
advantages: First, information is compressed. Second, when
solving Model 1 on the reduced network, dual values ᾱ and α
can be computed efficiently as it is an LP. During the reduction
step, switching statuses are recovered. For every original bus
v disconnected components are identified in the SRs. Here,
a variation of depth-first-search (DFS) is used, which has a
linear run time of O(|V| + |E|). DFS is restarted after every
node in a graph’s disconnected component has been visited,
until all nodes in the SRs’ graphs have been visited. The result
of this operation for the IEEE 5-bus case is shown in Figure
3.
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Figure 3. Comparison of OTS and OBS solutions

It can be seen clearly, that our methodology not only allows
for switching lines but splitting buses.

IV. NUMERICAL ANALYSIS

Our method has been applied to the small IEEE 5-bus case
for illustrative purposes, and then validated on larger networks.
Our computer had 16 GB of RAM and an i7-7820X (hyper-
threading enabled), clocked at 4.0 GHz. The software used
was Gurobi 9.0.1, Julia 1.4.1, JuMP.jl 0.21.2, and Gurobi.jl
0.8.0. Experiments were performed on multiple test cases. For
every test case, results of Model 1 - 3 were compared. Any
feasible solution within 0.01% of a problem’s lower bound
is classified optimal. Before the results for all test cases are
presented, the IEEE 5-bus case is described in detail. In the
following, all SRs were constructed with 2 busbars.

A. The IEEE 5-bus case

This test case consists of 5 buses, 6 lines, and 5 generators.
As a baseline, DCOPF and OTS were solved. The objective
values z∗ for all three models are summarized in Table I, first
row. This table also summarizes computation times (ct). We
provide a gap whenever an optimal solution is not obtained
within 600s. It shows how close an incumbent solution is
compared to a problem’s lower bound. The number of binary
variables is provided as a measure of complexity, whereas
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Figure 4. IEEE 5-bus case. Solution of the substations’ reconfiguration.

TABLE I. Comparing results of selected test cases showing the number of switchable lines

DCOPF OTS OBS

Name γ z∗1 [ $
h
] z∗2 [ $

h
] # bin. vars. ct [s] z∗3 [ $

h
] # bin. vars. ct [s] (gap [%]) 100(1− z∗3\z∗2 )

5 ieee 1.0 17479 14991 6 0.12 14810 40 0.06 1.2

14 ieee 0.55 2733 2558 20 0.12 2051 112 0.04 19.8

24 ieee rts 0.5 57872 46087 38 0.18 44677 252 1.72 3.1

30 as 0.6 558 528 41 0.4 506 218 22.21 9.3

30 ieee 0.9 8065 7252 41 0.3 6412 218 0.37 11.6

57 ieee 0.3 38394 38161 80 0.99 38050 418 8.13 0.3

73 ieee 0.48 165550 135872 120 1.86 128866 780 600.0 (0.13) 5.2

118 ieee 0.74 96607 93139 186 67.07 93030 1050 490.37 0.1

the table’s last column depicts the improvements (in [%])
OBS achieves over OTS. To solve Model 3, the procedure
outlined in this paper was applied. First, we expand the
original network model to derive an ANM. A visualization of
the generated graph is displayed in Figure 4. Solving Model
3 yields optimal operational statuses for all ZILs. Active ZILs
are marked green. Reducing the network, as outlined in section
III-D yields Figure 3 (right). In substation 1, two disconnected
components can be identified. The vertices and edges of these
components are V1 = {6, 10, 11, 12} and E1 = {10, 15, 16} as
well as V1′ = {8, 9, 7} and E1 = {8, 9}. Comparing substation
1 in Figure 4 to buses 1 and 1’ in Figure 3, illustrates how
much redundant information can be compressed for the 5-bus
network. Having derived the reduced network model, DCOPF
can be solved to provide dual information.

In this specific case, the OBS is able to remove all conges-
tion in the system. This cannot be achieved by transmission
switching alone. Improvements produced by a more general
model might be possible if at least one dual value in α or
α is greater than 0. Reducing the ANM, dual information is
available for the OBS solution. A similar technique is applied
after solving Model 2. Here, we solve Model 1, only including
active lines. The dual values for DCOPF are α6 = 6232.2
and for the OTS α1 = 1500. For the OBS solution, the dual
values are equal to 0. These results confirm that congestion
regarding transmission lines was removed completely utilizing
our approach.

As indicated by the previously stated dual values, the only
congested line when solving the DCOPF is line 6. This can
be confirmed in Table II. Line 6 is the only line used at

TABLE II. Line utilization [%] for the IEEE 5-bus case

Line e DCOPF OTS OBS

1 64.4 100.0 52.5

2 44.46 37.4 93.9

3 55.63 84.37 93.9

4 9.86 23.47 21.13

5 8.08 0.0 46.95

6 100.0 98.0 81.63

Objective value [ $
h
] 17479 14991 14810

full capacity. For the OTS, the same applies. The capacity
limit of lines 1 shows a dual value greater than 0. We can
observe that this line’s capacity is fully utilized as well.
Having solved OTS on the system, the dual values of all line
capacity constraints are 0. Moreover, no line is utilized fully.
This means, that the objective cannot be improved by further
topological optimization. Note, that the direction of the power
flows might change, dependent on the topology. This can be
observed for line 4 in the OTS solution. This last statement
is confirmed by the results displayed in Table III. This table
summarizes information on the individual generators. It shows
that all required power is produced by the generators with
lowest variable costs. This is not the case after solving the
DCOPF or OTS: Generator 5 cannot be utilized fully.

The 5-bus case is comparatively small. A large concern are
cases with more transmission lines, as every transmission line
(OTS) or ZIL (OBS) corresponds to a binary variable.



TABLE III. Generation p [p.u.] for the IEEE 5-bus case

g cg P g DCOPF OTS OBS

1 14.0 0.4 0.4 0.4 0.4

2 15.0 1.7 1.7 1.662 1.7

3 30.0 5.2 3.235 2.0 1.9

4 40.0 2.0 0.0 0.0 0.0

5 10.0 6.0 4.665 5.938 6.0

B. Tests on larger networks

Due to the computational complexity of the problem, eval-
uating the method on an array of larger problems is required
to reason its feasibility. Improvements can only be expected
if a system is congested. In particular, any of the constraints
(1d) and (1e) must be binding. We utilized parameter γ, with
0 ≤ γ ≤ 1, to stress the systems. It is used to scale down
lines’ capacity ratings. Parameter γ used in the numerical
experiments is reported in Table I for every test case. First of
all, earlier findings are confirmed. Our method improves on
the OTS in all cases. Here must be mentioned that we ensured
using γ that the systems are congested sufficiently. The OTS,
on the other hand, improves on the DCOPF solution in every
instance. Table I shows the complexity of OBS when compared
to OTS - the number of binary variables (or switchable lines).
Our methodology and model leads to higher binary variable
counts. Due to the SR, 40 instead of 6 lines are required for the
5-bus case. As the problem instances get larger, this difference
increases as well. However, as the computation times show,
obtaining optimal OTS solutions can take longer. Providing
good warm-start solutions helped the process. The largest case
considered is the 118-bus case. The resolution process for
Model 3 on that problem instance is displayed in Figure 5.

Figure 5. Solution search evolution of the 118-bus case

As a baseline, we solved the OBS without any initial
solutions (blue). Constructing a mipstart as outlined in section
III-C using the DCOPF topology (all lines active) improves
the process (green). As described, any OTS problem solution
can be converted into a OBS problem solution as well. We
obtained better results solving OTS problem (red) until opti-
mality to then construct a solution for Model 3 and continue
solving OBS (orange) until reaching an optimal solution. Here,
constructing good quality solutions using computationally less
expensive models reduces the computation times by more than
70%. We can also confirm that solving Model 2 yields good

quality solutions much faster. Whereas the 118-bus case only
shows an improvement of 0.1%, we reach up to 19% in others.

V. CONCLUSION

In this paper we outlined a method to decrease optimal
dispatch costs by reconfiguring the network’s topology, i.e.
by transmission switching and bus splitting. This method and
model, as opposed to prior research in this field, can account
arbitrary substation configurations. We additionally outlined a
technique to improve the solution process (due to the models
computational complexity). Using modern software, we are
able to provide optimal solutions for this highly complex
problem. Our results show that significant improvements can
be achieved in a competitive computational time frame. The
improvements for the 118 bus case in Figure 4 are marginal,
but Table I illustrates, that improvements of up to approx.
20% can be achieved for selected test cases. Considering N-1
security, modelling real-world substations or more elaborate
computational methods will be directions of further work on
the topic.
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