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Code-based
cryptography



● Main idea: let attacker solve NP-hard problem (arbitrary code decoding)
○ Let’s hide structure of code with well-known decoding algorithm with some linear 

operations (like permutations) and get G’
○ Use G’ to encode word with some error vector
○ If we know how to decode codeword and which operations we did with G, we can easily 

extract this word back
○ For attacker this code seems arbitrary 

● McEliece and Niederreiter cryptosystems are most popular in 
code-based cryptography

○ Their equivalence is proved
○ For such cryptosystem we can use any linear code with effective decoding algorithm
○ This cryptosystems are persistent under quantum computer
○ Main flaw: large key sizes (e.g. 13 Mb)

Code-based cryptography fundamentals
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McEliece cryptosystem: keys
● Suppose G is a generation (k, n)-matrix for a (n, k)-linear code 

correction t errors with well-known decoding algorithm
● Pick random non-singular (k, k)-matrix S 
● Pick random permutation (n, n)-matrix P
● Public key is a pair (SGP, t)
● Private key is a tuple (S, G, P)
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McEliece cryptosystem: encryption
● Encrypt message m (with t and SGP=G’)

○ Pick random error vector e with length n and weight w <= t 
○ Encode message like c = mG’ + e

● Decrypt ciphertext c (with S, G and P):
○ Compute c’ = cP-1

○ Decode c’ with known decoding algorithm -> get m’
○ Compute m = m’S-1
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LDPC-based McEliece cryptosystem
LDPC code can be a good base for a McEliece cryptosystem because of:

1. LDPC structure is easy to hide
2. Some fast decoding algorithms exist
3. Compact QC-LDPC can reduce key size (can be 1760 times smaller!)

Disadvantages are:

1. Error correction availability of randomly generated LDPC is unknown
a. Density evolution is used for long-length codes
b. Finite-length analysis is used for short-length codes

2. LDPC code suffers from a dual code and density reduction attacks
3. Need to adopt very large code to reach sufficient security level
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LDPC codes error correction 
availability comparison



Simulation modeling details
● Decoding algorithm: bit-flipping

○ Hard-decision decoding
○ 200 maximum iterations
○ Сonfidence interval: 97%

● LDPC generation algorithm:
○ Gallagher’s algorithm for regular codes
○ MacKey’s algorithm for irregular codes

● Naming nuances:
○ Codes with w <= 10 called LDPC
○ All heavier codes are MDPC (w ~                    )
○ Codes based on circulants are QC-MDPC/QC-LDPC
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LDPC/MDPC row weight estimation

● n = 512, wc = 6
● wr goes by 2i

● Conclusion: sparse LDPC 
matrix allows to fix more 
code errors
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QC-LDPC row weight estimation

● n = 302, p = 151
● Conclusion: QC-LDPC codes 

are worse in error correction 
and need more code weight 
than LDPC
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Regular LDPC column weight estimation

● n = 256, wr = 8
● Conclusion: bigger column 

weight allows to correct more 
errors, but decreases code rate 

● Dependency close to linear
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Regular LDPC code length estimation

● wr = n-⅓, wc = wr - 1
● Conclusion: evidently, bigger 

length allows to fix more errors
● Dependency close to linear
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Regular LDPC t parameter distribution

● n = 300, wr = 6, wc = 4
● 100 iterations
● E(X) = mean(X) = 11, std(X) = 2
● Conclusion: error amount 

looks like log-normal 
distributed (not proven)
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QC-LDPC t parameter distribution

● n = 302, p = 151, w = 13
● 100 iterations
● E(X) = 6.65, std(X) = 1.9
● Conclusion: QC-LDPC can 

correct less errors than LDPC 
with the same parameters
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Regular/irregular MDPC comparison

● n = 266, w = 14
● 50 iterations for each
● E(Xreg) = 10, E(Xirreg) = 7.44
● Conclusion: regular code is 

better with small n parameter, 
irregular codes can be better 
on a big very sparse matrix
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Common attacks on 
McEliece cryptosystem



Common attacks on LDPC-based McEliece
● Attacks on arbitrary linear code

○ Bruteforce attack
○ Stern attack
○ ISD attack

● Attacks on LDPC algebraic structure
○ Density reduction attack
○ Dual code attack
○ Attack on circulants (for QC-LDPC case)

● Side-channel attacks
○ Attack based on decoding time
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That’s why MDPC 
code is preferable!



Level of security
Definition: n-bit security level means that the attacker would have to perform 
2n operations to break cryptosystem with such parameters.

MDPC generated with parameters n = 9602 and w = 90 can obtain the security 
level of 80 bits.

For comparison: classical McEliece cryptosystem with (1024, 524, 101)-Goppa 
code can guarantee 50 bits security level.
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Bruteforce Attack
If Alice add exactly t errors to her n-codeword after encoding, Eva has two 
possible ways:

1. Try all 2k words (maximum likelihood decoding).

2. Perform       operations (upper bound) to find exact error vector and then 
attack arbitrary linear code with Information Set Decoding (would be very 
fast, because Eva now handle codeword without any errors).
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Multiple Encryption Attack
Improper cryptosystem usage can cause Bruteforce Attack acceleration.

For example, encrypting the same message with the same key is danger. It 
can reduce possible brute area up to        codes (two messages, best case, 
upper bound).

Interesting remark: so far encryption of blocks with small entropy (like images) might 
be insecure: hacker could extract some information about plaintext in this case. Also 
proven that multiple encryption decreases block entropy and make ISD attack easier.
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         c = 0100110101011011101001000110110101 
c + e1  = 0100110001011011101101000110100101
c + e2  = 0110110111011111101000000110110101
      diff = 01?0110?01011?11101?0?0001101?0101 

Eva knows exact error positions. 
Now she need to guess t bits on 

that positions while the syndrome 
is not equal to zero.



Man In The Middle Attack
Suppose that Bob can discard messages from Alice if he can’t decode them 
(that happens sometimes). Then Alice send exact the same message encrypted 
with the same key (clarification: G’ stays the same, e is always different).

If Eva perform MITM attack (Alice think that Eva is Bob) and get n messages 
from Alice (saying “Hey, I can’t decode it, send me once more”), she can recover 
the cleartext unambiguously with                 and some probabilistic 
assumptions. 
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A E B

n times

         c = 0100110101011011101001000110110101 
c + e1  = 0100110001011011101101000110100101
c + e2  = 0110110111011111101000000110110101
c + e3  = 0100110111011011101101001110110100
……………………………………………………………
guess  = 0100110101011011101001000110110101



MITM Attack simulation results
● Arbitrary linear code
● n = 800, t = 30
● Accuracy formula: 

(n-eguessed)/n
● Conclusions: 

○ error positions could be 
uniquely determined in 6 
iterations (in average)

○ convergence is guaranteed by 
a law of large numbers

24



Reaction Attack
Described on previous slides attack on message (aka reaction attack) can be 
improved and be able to recover private key to decrypt any ciphertext.

After 356 million different ciphertext observations entire code distance 
spectrum could be determined and private key recovered for MDPC with 
n=9602, w=90, t=84. 

This attack could be performed in a few minutes.

Security level falls from 80 to 28 bits.
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Information Set Decoding Attack
Information Set Decoding (ISD) is one of the best tools to crack code-based 
cryptosystems.

Following algorithm can extract message m with           iterations (in average):

1. Pick random information set I from {1, 2, …, n}
2. If xI

 does not contain errors, xI = mIGI + eI (explanation: GI, mI and eI 
contains indices only from I)

3. If wt(x + xIGI
-1G) = t, thus xI

 does not contain errors and wt(eI) = 0. In this 
case m = xIGI. In other way go to step 1.
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ISD Attack simulation results

● LDPC code rate: 1/3
● Security level: 19 bits
● Conclusions: 

○ attack complexity grows 
exponentially with number of 
errors in linear code

○ Time ~ number of steps
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Information set probability in arbitrary G
● Parameters:

○ LDPC w = 10
○ MDPC w = 
○ LDPC code rate ~ ⅕
○ QC-LDPC code rate = ½ 

● Conclusions:
○ Every 4th MDPC subset is 

information set (in average)
○ Every 25th LDPC subset is 

information set (for large n)
○ Information sets amount might 

be correlated with w
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Information sets/code weight correlation

● QC-LDPC, n = 502, p = 251
● Conclusions:

○ Hard to extract information set 
from a very sparse matrix

○ After some threshold w’, valid 
information set could be 
extracted with p ~ 0.28

○ Some stochastic formula 
connecting n, k, w and amount of 
informations sets could exist
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Breaking point searching: math approach 

We suggest simple formula to find “breaking point” with good probability:

● Let’s determine random event X like “subset matrix is not full-rank 
because of 2 or more rows containing only zeros”

●
● Hence,                                              , where 
●
● If for some w’ P(X) < 0.99, “breaking point” found successfully
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Summary
1. LDPC codes are much better in error correction, but worse in security 

level than MDPC codes. For cryptography picking bigger MDPC is 
preferable than picking smaller LDPC instead.

2. Probability of picking an information set in arbitrary linear code with 
known parameter w can be estimated. There could be a probabilistic 
formula to approximate it. We suggested good formula to find “breaking 
point” in that unknown function.

3. Code-based cryptosystems could be completely destroyed under MITM 
Attack in conjunction with Reaction Attack.
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