Полярные коды

Кирилл Андреев

k.andreev@skoltech.ru

Сколковский институт науки и технологий (Сколтех)

Современные методы теории информации, оптимизации и управления

Сочи, Россия

2-23 августа, 2020

🕕 Введение

Поляризация канала

Построение полярных кодов

4 Алгоритмы декодирования полярных кодов

Б Коды Рида-Маллера

- Существование помехоустойчивых кодов, достигающих пропускной способности канала, доказано Шенноном в 1948 году
- Однако, алгоритм построения таких кодов не был описан.
- Полярные коды первая явная кодовая конструкция, достигающая пропускной способности симметричного канала

📐 E. Arikan

Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels // IEEE Trans. on Inf. Theory, vol. 55, no. 7, 2009.

🕕 Введение

② Поляризация канала

4 Алгоритмы декодирования полярных кодов

5 Коды Рида-Маллера

Полярное преобразование

Рассмотрим две копии одного и того же двоичного канала $W : \mathbb{F}_2 \to \mathcal{Y}$

▶ Зададим
$$X_1 = U_1 \oplus U_2, \quad X_2 = U_2$$

$$\blacktriangleright (U_1, U_2) \sim U(\mathbb{F}_2) \Rightarrow X_1, X_2 \sim U(\mathbb{F}_2)$$

1 Полярное преобразование сохраняет взаимную информацию

$$2I(W) = I(X_1X_2; Y_1Y_2) = I(U_1U_2; Y_1Y_2) = I(U_1; X_1X_2) + I(U_2, X_1X_2|U_1) = I(U_1; X_1X_2) + I(U_2, X_1X_2|U_1) = I(W^-) + I(W^+)$$

Происходит «поляризация» канала

$$I(W^-) \leq I(W) \leq I(W^+)$$

Декодирование при полярном преобразовании

 \blacktriangleright $W^-: U_1
ightarrow Y_1Y_2$: декодирование U_1 по известным декодеру выходам Y_1 и Y_2

▶
$$W^+: U_2 o Y_1 Y_2 U_1$$
: значение U_1
недоступно декодеру

Рассмотрим два варианта декодера:

 $\begin{array}{rcl} \tilde{U}_1 &=& \varphi_1(Y_1, Y_2) & & \\ \tilde{U}_2 &=& \varphi_2(Y_1, Y_2, U_1) & & \\ \end{array} \\ \begin{array}{rcl} \hat{U}_1 &=& \varphi_1(Y_1, Y_2) \\ \hat{U}_2 &=& \varphi_2(Y_1, Y_2, \hat{U}_1) \end{array}$

 \blacktriangleright Возможно ли при дальнейшем анализе декодера заменить U_1 на $\hat{U}_1?$

Рассмотрим ошибку декодирования блока $U^2 = (U_1, U_2)$

$$ilde{U}^2
e U^2 \iff \hat{U}^2
e U^2$$

Двоичный канал со стиранием – ВЕС

$$W^{-}: U_{1} \to Y_{1}Y_{2} - \text{это } \mathsf{BEC}\left(2p - p^{2}\right)$$
$$(Y_{1}, Y_{2}) = \begin{cases} (U_{1} \oplus U_{2} \ , U_{2} \), & (1 - p)^{2}, \\ (? \ , U_{2} \), & p(1 - p), \\ (U_{1} \oplus U_{2} \ , ? \), & (1 - p)p, \\ (? \ , ? \), & p^{2}, \end{cases}$$

Двоичный канал со стиранием – ВЕС

$$W^{+}: U_{2} \to Y_{1}Y_{2}U_{1} - \text{ это } \mathsf{BEC}\left(\mathbf{p}^{2}\right)$$
$$(Y_{1}, Y_{2}, U_{1}) = \begin{cases} (U_{1} \oplus U_{2} \ , U_{2} \ , U_{1} \ , U_{2} \ , U_{1} \), & p(1-p), \\ (U_{1} \oplus U_{2} \ , ? \ , U_{1} \), & p(1-p), \\ (? \ , ? \ , U_{1} \), & p^{2}, \end{cases}$$

 Результат полярного преобразования – «расщепление» двух идентичных каналов BEC(p) на BEC(p⁺) и BEC(p⁻)

$$p^+ = p^2, \quad p^- = 2p - p^2, p^+ \le p \le p^-$$

Можно ли повторить процедуру поляризации канала?

Поляризация двоичного канала со стиранием ($p=0.2),\ N=2^n$

К. Андреев

Поляризация двоичного канала со стиранием (p=0.2), $N=2^n$

К. Андреев

Поляризация двоичного канала со стиранием (p = 0.2), $N = 2^n$

- Для части каналов вероятность ошибок близка к нулю, для части каналов к единице
- Доля каналов с $p \in (0,1)$ уменьшается с ростом n
- Пропускная способность канала со стираниями: C = 1 p
- Преобразование всех виртуальных каналов или в «идеальные» (p = 0), или в «бесполезные» (p = 1)

Поляризация двоичного канала со стиранием (p = 0.2), $N = 2^n$

- Для части каналов вероятность ошибок близка к нулю, для части каналов к единице
- Доля каналов с $p \in (0,1)$ уменьшается с ростом n
- Пропускная способность канала со стираниями: C = 1 p

Преобразование всех виртуальных каналов или в «идеальные» (p = 0), или в «бесполезные» (p = 1)

Теорема (О поляризации канала. Arikan, 2009)

При п $\to \infty$ происходит поляризация канала: вероятность ошибки стремится или к нулю, или к единице, причем доля каналов с нулевой ошибкой стремится к пропускной способности канала

🕕 Введение

2 Поляризация канала

🕨 Алгоритмы декодирования полярных кодов

5 Коды Рида-Маллера

Произведение и степень Кронекера

$$A \otimes B = \begin{bmatrix} a_{1,1}B & a_{1,2}B & \cdots \\ a_{2,1}B & a_{2,2}B & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Произведение и степень Кронекера

$$A \otimes B = \begin{bmatrix} a_{1,1}B & a_{1,2}B & \cdots \\ a_{2,1}B & a_{2,2}B & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
$$A^{\otimes n} = A \otimes A^{\otimes (n-1)} = A^{\otimes (n-1)} \otimes A$$

$$G_2 = \left[egin{array}{cc} 1 & 0 \ 1 & 1 \end{array}
ight]$$

Произведение и степень Кронекера

$$A \otimes B = \begin{bmatrix} a_{1,1}B & a_{1,2}B & \cdots \\ a_{2,1}B & a_{2,2}B & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
$$A^{\otimes n} = A \otimes A^{\otimes (n-1)} = A^{\otimes (n-1)} \otimes A$$

$$G_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad G_2^{\otimes 2} = \begin{bmatrix} G_2 & 0 \\ G_2 & G_2 \end{bmatrix}$$

- Передача информации осуществляется только по «хорошим» подканалам, для плохих каналов значение передаваемых бит фиксируется, или замораживается
- Выбор замороженных бит строится для различных каналов
 - Непосредстенным вычислением вероятностей ошибок (BEC, BSC)
 - С помощью моделирования
- ▶ Полярный код является линейным кодом ⇒ для построения необходимо получить порождающую матрицу кода

Порождающая матрица полярного кода

▶ Строки матрицы G, соответствующие замороженным битам, удаляются

Порождающая матрица полярного кода W = BEC(0.5), N = 8, R = 1/2

Порождающая матрица полярного кода W = BEC(0.5), N = 8, R = 1/2

 $I(W_i)$ 0.0039 0.3164 0.1914 0.8789 0.1211 0.8086 0.6836 0.9961

Порождающая матрица полярного кода W = BEC(0.5), N = 8, R = 1/2

 $I(W_i)$

0.0039 frozen 0.3164 frozen 0.1914 frozen 0.8789 data 0.1211 frozen 0.8086 data 0.6836 data 0.9961 data

- Длина блока полярного кода N = 2ⁿ
- Сложность алгоритма кодирования O (N log N)¹

¹Умножение на порождающую матрицу полярного кода дает большую сложность!

Кодироание полярных кодов

- Длина блока полярного кода N = 2ⁿ
- Сложность алгоритма кодирования O (N log N)¹
 - Полярное преобразование можно представить в виде графа с N (1 + log N) вершин
 - Процесс кодирования начинается с первого «слоя» с последовательным применением операции

$$(\boldsymbol{\mathsf{U}}_1,\boldsymbol{\mathsf{U}}_2) \to (\boldsymbol{\mathsf{U}}_1 \oplus \boldsymbol{\mathsf{U}}_2,\boldsymbol{\mathsf{U}}_2)$$

¹Умножение на порождающую матрицу полярного кода дает большую сложность!

Кодироание полярных кодов

- Длина блока полярного кода N = 2ⁿ
- Сложность алгоритма кодирования O (N log N)¹
 - Полярное преобразование можно представить в виде графа с $N(1 + \log N)$ вершин
 - Процесс кодирования начинается с первого «слоя» с последовательным применением операции

$$(\boldsymbol{\mathsf{U}}_1,\boldsymbol{\mathsf{U}}_2) \to (\boldsymbol{\mathsf{U}}_1 \oplus \boldsymbol{\mathsf{U}}_2,\boldsymbol{\mathsf{U}}_2)$$

- Объем необходимой памяти: O(N)
- Время выполнения: $O(N \log N)$

¹Умножение на порождающую матрицу полярного кода дает большую сложность!

Skolte

- 0.0039 frozen 0
- 0.3164 frozen 0
- 0.1914 frozen 0
- 0.8789 data 1
- 0.1211 frozen 0
- 0.8086 <mark>data</mark> 1
- 0.6836 <mark>data</mark> 0
- 0.9961 <mark>data</mark> 1

Кодирование полярных кодов


```
function x = polar_transform(u)
if (size(u, 2) == 1)
    x = u;
else
    u1u2 = mod(u(:, 1:2:end) + u(:, 2:2:end), 2);
    u2 = u(:, 2:2:end);
    x = [polar_transform(u1u2), polar_transform(u2)];
end
end
```


🕕 Введение

Поляризация канала

🗿 Алгоритмы декодирования полярных кодов

Б Коды Рида-Маллера

👩 Заключение

Декодирование методом последовательных исключений, случай 2 imes 2

$$U_1 \longrightarrow X_1 \longrightarrow W \longrightarrow Y_1$$
$$U_2 \longrightarrow X_2 \longrightarrow W \longrightarrow Y_2$$

• Выход канала: $p_1 = P(X_1 = 1|Y_1), \quad p_2 = P(X_2 = 1|Y_2)$

Декодируем символ U₁

1

$$P(U_1 = 1 | U_2, Y_1, Y_2) = P(U_1 = 1 | U_2 = 0, Y_1, Y_2) + P(U_1 = 1 | U_2 = 0, Y_1, Y_2)$$

= $P(X_1 = 0, X_2 = 1 | Y_1, Y_2) + P(X_2 = 0, X_1 = 1 | Y_1, Y_2)$
= $p_1(1 - p_2) + p_2(1 - p_1)$

- Декодируем символ U_2 в предположении, что $U_1=0$

$$P(U_2 = 1 | U_1 = 0, Y_1, Y_2) = \frac{p_1 p_2}{p_1 p_2 + (1 - p_1)(1 - p_2)}$$

 $LLR = \log \frac{1-p}{p}$ function $l = cnop_{llr}(l1, l2)$ $1 = 2 * \operatorname{atanh}(\operatorname{tanh}(11 / 2) .* \operatorname{tanh}(12 / 2));$ end W U1 function $l = vnop_{llr}(l1, l2, b1)$ l = ((-1), b1), * l1 + l2;

end

Skoltech

К. Андреев

Полярные коды

X	X	X	L_1
X	×	X	L ₂
X	×	X	L ₃
X	×	X	L ₄
X	×	X	L_5
X	×	X	L ₆
X	×	X	L ₇
X	X	X	L ₈

- В каждый момент времени может быть декодирован как минимум один бит алгоритм называют методом последовательных исключений (Successive cancellation decoding)
- Алгоритм декодирования задает обход графа полярного преобразования и распространения сообщений на этом графе
- Эффективный способ обхода этого графа представлен рекурсивной реализацией декодера


```
function cwd_hat = polar_sc_recursive_llr(llr_in, f)
N = size(llr_in, 2);
if (N == 1)
    cwd hat = (f == 0) * (llr in < 0);
else
    llr_u = cnop(llr_in(1:2:end), llr_in(2:2:end));
    cwd_u = polar_sc_recursive_llr(llr_u, f(1:(N / 2)));
    llr_l = vnop(llr_in(1:2:end), llr_in(2:2:end), cwd_u);
    cwd_l = polar_sc_recursive_llr(llr_l, f((N / 2 + 1):end));
    cwd_hat = reshape([mod(cwd_u + cwd_1, 2); cwd_1], 1, []);
end
```

end

Skolteck

- Доказано, что с помощью полярного преобразования можно построить коды, достигающие пропускной способности симметричного канала
- Метод последовательных исключений простой алгоритм декодирования
 - Время декодирования $O(N \log N)$
 - Параллельное выполнение невозможно проблема для длинных кодов

Насколько хорош метод последовательных исключений?

- Доказано, что с помощью полярного преобразования можно построить коды, достигающие пропускной способности симметричного канала
- Метод последовательных исключений простой алгоритм декодирования
 - Время декодирования $O(N \log N)$
 - Параллельное выполнение невозможно проблема для длинных кодов

Насколько хорош метод последовательных исключений?

Метод последовательных исключений со списком

- ▶ Метод последовательных исключений единственное жесткое решение ⇒ для каждого декодируемого бита можно создать две гипотезы
- на шаге k количество гипотез будет $2^k \Rightarrow$ ограничим размер этого списка, сохраняя только L наиболее вероятных
- Для выбора из списка информационное слово содержит дополнительные проверочные биты (CRC)

Декодирование полярных кодов с помощью глубоких нейронных сетей

- Проверочная матрица полярного кода имеет высокую плотность проверок
- Использование графа полярного преобразования позволяет получить низкоплотностную матрицу, по которой строится нейросетевой декодер
- Заменить части графа Таннера на полносвязные слои, используя метод последовательных исключений и свойство

 $(\mathsf{U}_1,\mathsf{U}_1\oplus\mathsf{U}_2)$

🕕 Введение

🕗 Поляризация канала

Построение полярных кодов

4 Алгоритмы декодирования полярных кодов

(5) Коды Рида-Маллера

x_1	<i>x</i> ₂	<i>x</i> 3	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

▶ Совершенная дизъюнктивная нормальная форма

$$\bigvee_{\sigma:f(\sigma)=1} x_1^{\sigma_1} \dots x_m^{\sigma_m}$$

Совершенная конъюктивная нормальная форма

$$\bigwedge_{\sigma:f(\sigma)=0} x_1^{\overline{\sigma}_1} \vee \ldots \vee x_m^{\overline{\sigma}_m}$$

Полином Жегалкина

Теорема

Теорема Жегалкина: Всякая булева функция представима полиномом, и при том единственным образом.

 $f = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus a_{23} x_2 x_3 \oplus a_{123} x_1 x_2 x_3$

Найдем коэффициенты многочлена следующим образом

Skoltech

x_1	<i>x</i> ₂	<i>x</i> 3	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

 $f = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus a_{23} x_2 x_3 \oplus a_{123} x_1 x_2 x_3$

x_1	X_2	X3	f
0	0	0	1
0	0	1	T
0	0	T	0
0	1	0	1
0	1	1	1
1	0	0	0
-	0	1	1
T	0	T	T
1	1	0	0
1	1	1	1

 $f = 1 \oplus x_1 \oplus x_3 \oplus x_2 x_3 \oplus x_1 x_2 x_3$

Определение

Множество векторов значений всевозможных булевых функций от т переменных x_1, \ldots, x_m степени не больше r называется (двоичным) кодом Рида – Маллера или просто РМ – кодом.

$$RM(m,r) = \{f : \{0,1\}^m \to \{0,1\} \,|\, \deg f \le r\}$$

▶ код RM(m, r) — линейное векторное пространство над полем \mathbb{F}_2 : т.к. $\deg(f \oplus g) \leq \max(\deg f, \deg g)$, то

$$\forall \alpha, \beta \in \mathbb{F}_2 \forall f, g \in RM(m, r) : \alpha f \oplus \beta g \in RM(m, r)$$

► длина кода *n* = 2^{*m*}

размерность кода
$$k = C_0^m + C_1^m + \ldots + C_r^m$$

▶ расстояние: $f \in RM(m,r), f \neq 0 \Rightarrow \|f\| \geq 2^{m-r}$

Обозначения

- U линейный [n, k_U, d_U] код
- V линейный [n, k_V, d_V] код

Конструкция Плоткина

$$\mathcal{C} = U \triangle V = (U, U + V) = \{(u, u + v) : u \in U, v \in V\}$$

$$\blacktriangleright$$
 линейный $\mathit{n}(\mathcal{C})=2\mathit{n},\ \mathit{k}(\mathcal{C})=\mathit{k}_U+\mathit{k}_V$ код

$$\blacktriangleright$$
 кодовое расстояние $d(\mathcal{C}) = \min\{d_V, 2d_U\}$

$$\mathsf{RM}(m,r) = \mathsf{RM}(m-1,r) \triangle \mathsf{RM}(m-1,r-1)$$

Порождающая матрица кода Рида-Маллера

Строки матрицы G_j – это вектора значений всех приведённых одночленов степени = j, одночлены лексикографически упорядочены по нижним индексам

$$RM(3,2) = \{1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3\}$$

	11111111	1 -
	00001111	<i>x</i> ₁
	00110011	<i>x</i> ₂
G =	01010101	<i>x</i> 3
	00000011	<i>x</i> ₁ <i>x</i> ₂
	00000101	$x_1 x_3$
	00010001	$x_{2}x_{3}$

Декодирование кода Рида-Маллера

- Перебором: в ближайшее кодовое слово
- По синдрому или таблице стандартного расположения
- Мажоритарный алгоритм Рида (основан на свойствах полиномов Жегалкина)

Задача декодирования RM(2,3)

Дан полином

 $f = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus a_{23} x_2 x_3$

Найти коэффициенты *a*₁, *a*₂, *a*₃, *a*₁₂, *a*₁₃, *a*₂₃

Декодирование кода Рида-Маллера

- Перебором: в ближайшее кодовое слово
- По синдрому или таблице стандартного расположения
- Мажоритарный алгоритм Рида (основан на свойствах полиномов Жегалкина)

Задача декодирования RM(2,3)

🕨 Дан полином

 $f = a_0 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_{12}x_1x_2 \oplus a_{13}x_1x_3 \oplus a_{23}x_2x_3$

Найти коэффициенты *a*₁, *a*₂, *a*₃, *a*₁₂, *a*₁₃, *a*₂₃

Идея решения

Оценить каждый из коэффициентов a₁, a₂, a₃, a₁₂, a₁₃, a₂₃ несколькими независимыми способами, принять решение по мажоритарному принципу

Декодирование РМ-кода: характеристические суммы

Определение

Пусть $A \subseteq \{0,1\}^m$ – некоторое множество, $f = f(x_1, \dots, x_m)$ – булева функция. Тогда характеристическая сумма:

$$\phi_A(f) = \bigoplus_{\sigma \in A} f(\sigma)$$

Вес функции ||f|| – это вес её вектора значений
 Пусть f_A – сужение функции f на множество A и ||f||_A = ||f_A||, тогда

$$\phi_A(f) = \left\{ egin{array}{ccc} 0, & \textit{если} \ \|f\|_A \ \textit{четно} \ 1, & \textit{если} \ \|f\|_A \ \textit{нечетно} \end{array}
ight.$$

 $\phi_{A\cup B}(f) = \phi_A(f) \oplus \phi_B(f) \oplus \phi_{A\cap B}(f)$ $\phi_A(f \oplus g) = \phi_A(f) \oplus \phi_A(g)$
Декодирование РМ-кода: ассоциированные грани и наборы

Определение

Пусть $A \subseteq \mathbb{F}_m^2$ — грань размерности r. Набор $\sigma(A) \in \mathbb{F}_m^2$ веса r, равный нулю в разрядах, соответствующих фиксированным разрядам грани A, и равный единице в остальных разрядах, будем называть ассоциированным с гранью A.

$$\mathsf{A}\left(au
ight)=\left\{ \mathsf{A}- extsf{r}$$
рань : $\sigma(\mathsf{A})= au
ight\}, |\mathsf{A}\left(au
ight)|=2^{m-\| au\|}$

Примеры $\Pi_{yc\tau b} \left\{ \begin{array}{l} A = 1*0**10 \\ B = 0*1**01 \end{array} \Rightarrow \sigma(A) = \sigma(B) = 0101100, \quad \Pi_{yc\tau b} \tau = 10110 \Rightarrow \mathbf{A}(\tau) = \begin{array}{l} *0**0* \\ *0**1* \\ *1**0* \\ *1**1* \end{array} \right.$

К. Андреев

Декодирование РМ-кода: ассоциированные конъюнкции

Определение

Ассоциированная с гранью А конъюнкция К:

$$K(A) = \mathbf{x}^{\sigma(A)}$$

Ассоциированные с конъюнкцией К грани:

$$\mathbf{A}(K) = \{A : K(A) = A\}, \quad K = \mathbf{x}^{\sigma} \Rightarrow \mathbf{A}(K) = \mathbf{A}(\sigma)$$

 \blacktriangleright Нулевая грань $A_0 \in \mathbf{A}(K)$: $\mathbf{0} \in A_0(K)$

Примеры

Пусть
$$\begin{cases} A = 1*0**10 \\ B = 0*1**01 \end{cases} \Rightarrow K(A) = K(B) = x_1^0 x_2^1 x_3^0 x_4^1 x_5^1 x_6^0 x_7^0 = x_2 x_4 x_5 \end{cases}$$

$$K = x_2 x_4 x_5 \rightarrow A_0(K) = 0 * 0 * * 00$$

К. Андреев

Полярные коды

ch

Декодирование РМ-кода на примере RM(3,2)

 $f = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus a_{12} x_2 x_3$

▶ Конъюнкция x₁x₂ имеет две грани **1, **0 с характеристическим свойством:

$$a_{12} = \phi_{**1}(f) = \phi_{**0}(f), \quad \deg f \leq 2$$

Грани **1, **0 не пересекаются, суммы $\phi_{**1}(f)$, $\phi_{**0}(f)$ вычисляются независимо

Eсли инвертировать один разряд в векторе значений полинома $f, \deg f \leq 2$, то

$$\phi_{**1}(f) \neq \phi_{**0}(f)$$

Код RM(3,2) обнаруживает одну ошибку²

Больше подобных проверок – больше ошибок можно обнаружить и исправить

Skaltad

²следует из свойств кодового расстояния РМ-кода

y = 1010 1001 1101 0110

 $f = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_4 x_4 \oplus a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus a_{14} x_1 x_4 \oplus a_{23} x_2 x_3 \oplus a_{24} x_2 x_4 \oplus a_{34} x_3 x_4$

A	$\phi_{\mathcal{A}}(\mathbf{y})$	A	$\phi_{\mathcal{A}}(\mathbf{y})$	A	$\phi_{\mathcal{A}}(\mathbf{y})$	A	$\phi_{A}(\mathbf{y})$	A	$\phi_{A}(\mathbf{y})$	A	$\phi_{\mathcal{A}}(\mathbf{y})$
00	1	*0*0	1	*00*	1	00	1	0*0*	0	00**	0
01	0	*0*1	0	*01*	0	01	1	0*1*	0	01**	0
10	0	*1*0	0	*10*	0	10	0	1*0*	1	10**	1
11	0	*1*1	0	*11*	0	11	1	1*1*	0	11**	0
a_{12}	0	a ₁₃	0	a ₁₄	0	a ₂₃	1	a ₂₄	0	a ₁₄	0

 $f = f_1 \oplus x_2 x_3, \deg f_1 \leq 1, \quad f_1 = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_4 x_4$

Skoltech

	x_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	<i>x</i> ₂	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	<i>x</i> 3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	<i>x</i> 4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
y =	f + e	1	0	1	0	1	0	0	1	1	1	0	1	0	1	1	0
	$x_{2}x_{3}$	0 0 0		0	0	0	0	1	1	0	0	0	0	0	0	1	1
$y_1 = x$	$f_1 \oplus e$	1	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1
	Α	$\phi_{A}(\mathbf{y})$			A	$\phi_{A}(\mathbf{y})$			A	$\phi_A(\mathbf{y})$		A		$\phi_{A}(\mathbf{y})$			
	*000	0		_	0*00	0			00*0	0		000*		1		-	
	*001	1			0*01	0			00*1	0		001*		1			
	*010	1			0*10	0			01*0	0		010*		1			
	*011	1			0*11	0			$01{*}1$	0		011*		1			
	*100	1			1*00	1			10*0	1		100*		0			
	*101	1			1*01	0			10*1	0		101*		1			
	*110	1			1*10	0			11*0	0		110*		1			
	*111	1			1*11	0			11*1	0		111*		1			
	a ₁	1 a ₂		a ₂	0				0		a ₄		1		-		

Skoltech

x_1	0	0	0	0	0	0	0	0	1	L	1	1	1	1	1	1	1
<i>x</i> ₂	0	0	0	0	1	1	1	1	()	0	0	0	1	1	1	1
<i>x</i> 3	0	0	1	1	0	0	1	1	()	0	1	1	0	0	1	1
<i>x</i> 4	0	1	0	1	0	1	0	1	()	1	0	1	0	1	0	1
$\mathbf{y} = \mathbf{f} + \mathbf{e}$	1	0	1	0	1	0	0	1	1	L	1	0	1	0	1	1	0
x ₂ x ₃	0	0	0	0	0	0	1	1	()	0	0	0	0	0	1	1
$y_1 = f_1 \oplus e$	1	0	1	0	1	0	1	0]	L	1	0	1	0	1	0	1
$x_1 \oplus x_4$	0	1	0	1	0	1	0	1	1	L	0	1	0	1	0	1	0
$y_0 = f_0 + e$	1	1	1	1	1	1	1	1	()	1	1	1	1	1	1	1

▶ *a*₀ = 1

ightarrow e = 0000 0000 1000 0000

- 1 Получено слово y = x + e, $x \in RM(m, r)$
- 2 Для каждого из C_r^m одночленов x^σ степени $r \ge 0$ вычислить проверочные суммы $\phi_A(y)$ по всем 2m r ассоциированным с ним граням $A = A(x^\sigma)$
- Если нулей и единиц в множестве { \(\phi_A(y)\)}\)_A поровну, то сообщить об отказе от декодирования
- Принять коэффициент a_σ при одночлене x^σ в кодовом слове x равным наиболее часто встречающемуся числу среди сумм {φ_A(y)}
- Б Просуммировать найденные старшие члены слова x и вычесть их из слова y, будет получено слово y' = x' + e, $x' \in RM(m, r 1)$
- 6 Повторить действия пп. 2–5 для r = r 1, y = y'

🕕 Введение

🕗 Поляризация канала

Построение полярных кодов

4 Алгоритмы декодирования полярных кодов

Б Коды Рида-Маллера

Полярные коды: выводы

- Конструкция предложена в 2009 году и является продолжением идеи РМ-кодов
 - В коде Рида-Маллера из проверочной матрицы удаляются строки максимального веса
 - В полярных кодах удаляются строки, соответствующие наменее надежным виртуальным каналам
- Метод последовательных исключений со списком позволил существенно улучшить эффективность декодирования
 - Наличие «оракула», подсказывающего наличие слова в списке, существенно улучшает эффективность декодера
 - Выбор одного слова из списка осуществляется с помощью CRC
 - Список длины $L = 2^k MAP$ декодер
- Полярные коды нашли применение в стандартах сотовой связи пятого поколения

