Лекция 2: Пропускная способность канала. Блочные коды.

Алексей Фролов

al.frolov@skoltech.ru

Сколковский институт науки и технологий (Сколтех)

Современные методы теории информации, оптимизации и управления Сочи, Россия 2–23 августа, 2020

Содержание

- 1 Дискретные каналы без памяти
- 2 Теорема кодирования
- ③ Гауссовский канал
- 4 Многопользовательские каналы
- Блочные коды
- б Границы на параметры кодов
- Пинейные коды

Outline

- ① Дискретные каналы без памяти
- 2 Теорема кодирования
- ③ Гауссовский канал
- 4 Многопользовательские каналы
- 5 Блочные коды
- б Границы на параметры кодов
- 7 Линейные коды

Дискретные каналы без памяти

Определение

Дискретный канал без памяти определяется так:

- ▶ X входной алфавит (конечный);
- У выходной алфавит (конечный);
- ightharpoonup матрица переходных вероятностей P(y|x).

Определение

Канал без памяти, если

$$P(y^n|x^n) = \prod_{i=1}^n P(y_i|x_i).$$

ch

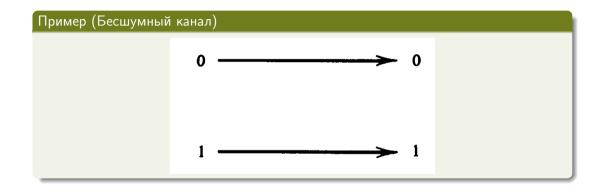
Пропускная способность ДК6П

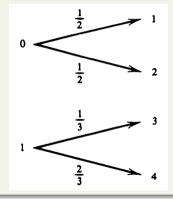
Определение

$$C = \max_{P_X} \left\{ I(X;Y) \right\},\,$$

где максимум берется по всем входным распределениям P_X .

Пропускная способность – это наибольшая скорость (в битах за одно использование канала), при которой информация может быть передана со сколь угодно малой вероятностью ошибки.

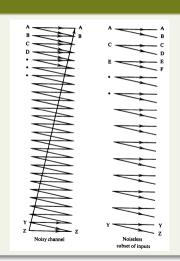




Пример (Шумная печатная машинка)

$$I(X; Y) = H(Y) - H(Y|X)$$

= $H(Y) - 1$
= $\log 26 - 1 = \log 13$



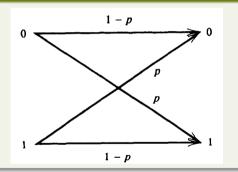
Пример (Двоичный симметричный канал)

$$I(X;Y) = H(Y) - H(Y|X)$$

$$= H(Y) - \sum_{x \in \mathcal{X}} P(x)H(Y|X = x)$$

$$= H(Y) - \sum_{x \in \mathcal{X}} P(x)h(p)$$

$$\leq 1 - h(p).$$



Пример (Двоичный стирающий канал)

$$I(X;Y) = H(Y) - H(Y|X)$$

$$= H(Y) - \sum_{x \in \mathcal{X}} P(x)H(Y|X=x)$$

$$= H(Y) - h(\alpha)$$

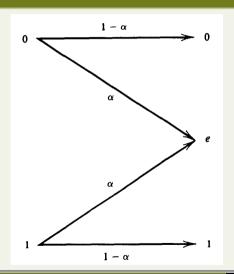
Пусть E – это индикатор $I_{\{Y=e\}}$ и $\pi=\Pr(X=1).$

$$H(Y) = H(Y,E) = H(E) + H(Y|E)$$

= $h(\alpha) + (1 - \alpha)h(\pi)$.

Таким образом,

$$I(X;Y) = (1-\alpha)h(\pi).$$



Пример

$$P(y|x) = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \\ 0.2 & 0.5 & 0.3 \end{bmatrix}$$

Предположим, что все строки в матрице переходных вероятностей являются перестановками друг друга, тогда (через ${\bf r}$ обозначим произвольную строку)

$$I(X; Y) = H(Y) - H(Y|X)$$

= $H(Y) - H(\mathbf{r})$
\leq \log |\mathcal{Y}| - $H(\mathbf{r})$.

Предположим, что суммы по столбцам одинаковы и равны c, тогда $P(x) = 1/|\mathcal{X}|$ приводит к равномерному распределени/ на Y, т.е.

$$P(y) = \sum_{x \in \mathcal{X}} P(y|x)p(x) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} P(y|x) = \frac{c}{|\mathcal{X}|}.$$

Определение

Канал называется симметричным, если строки матрицы переходных вероятностей являются перестановками друг друга и столбцы также являются перестановками друг друга.

Канал называется слабо симметричным, если строки матрицы переходных вероятностей являются перестановками друг друга, и суммы по столбцам одинаковы.

Пример (Слабо симметричный канал)

$$P(y|x) = \left[\begin{array}{ccc} 1/3 & 1/6 & 1/2 \\ 1/3 & 1/2 & 1/6 \end{array} \right]$$

Теорема

Для слабо симметричного канала,

$$C = \log |\mathcal{Y}| - H(\mathbf{r})$$

достигается на равномерном входном распределении.

Свойства пропускной способности

- $ightharpoonup C \geq 0$;
- $ightharpoonup C \leq \log |\mathcal{X}|;$
- $ightharpoonup C \leq \log |\mathcal{Y}|;$
- ightharpoonup I(X;Y) непрерывная функция P(x);
- ightharpoonup I(X;Y) выпукла по P(x);

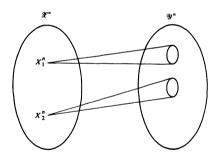
Локальный минимум является глобальным и максимум существует и конечен.

Outline

- 1 Дискретные каналы без памяти
- 2 Теорема кодирования
- ③ Гауссовский канал
- 4 Многопользовательские каналы
- 5 Блочные коды
- 🜀 Границы на параметры кодов
- 7 Линейные коды

Идея

Основная идея: канал имеет подмножество входов, которые производят непересекающиеся последовательности на выходе.



Определение

- ► {1,2,..., M} множество сообщений;
- $▶ W ∈ {1, 2, ..., M} сообщение;$
- $ilde{\ \ \, } X^n(W) = enc(W)$ кодовое слово;
- $ightharpoonup Y^n \sim P(y^n|x^n)$ принятая последовательность;
- $\hat{W} = dec(Y^n)$ правило декодирования.

Определение

Определение (Код)

(M,n) код для канала $(\mathcal{X},P(y|x),\mathcal{Y})$ состоит из:

- множества сообщений {1,2,..., M};
- ightharpoonup функции кодирования enc: $\{1, 2, \ldots, M\} o \mathcal{X}^n$;
- ightharpoonup функции декодирования $dec\colon \mathcal{Y}^n o \{1,2,\ldots,M\}$.

Определение (Вероятность ошибки)

$$\lambda_i = \Pr(dec(Y^n) \neq i | X^n = X^n(i)).$$

$$\lambda^{(n)} = \max_{i \in \{1, 2, ..., M\}} \lambda_i$$

$$P_e^{(n)} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i$$

Определение

Определение

Скорость R (M, n) кода определяется след образом

$$R = \frac{\log M}{n}.$$

Определение

Скорость R достижима, если существует последовательность кодов $(2^{Rn}, n)$, таких что $\lambda^{(n)} \to 0$ as $n \to \infty$.

Определение

Пропускная способность канала – супремум по всем достижимым скоростям.

<u>Skoltech</u>

Совместно типичные последовательрности

$$A_{\varepsilon}^{(n)} = \left\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \left| -\frac{1}{n} \log P(x^n) - H(X) \right| < \varepsilon \right.$$

$$\left| -\frac{1}{n} \log P(y^n) - H(Y) \right| < \varepsilon$$

$$\left| -\frac{1}{n} \log P(x^n, y^n) - H(X, Y) \right| < \varepsilon \right\},$$

где
$$P(x^n, y^n) = \prod_{i=1}^n P(x_i, y_i).$$

Совместно типичные последовательрности

Теорема

Пусть (X^n, Y^n) – это последовательности длины n, выбранные независимо и из $P(x^n, y^n)$, тогда

- \blacksquare $\mathsf{Pr}((x^n,y^n)\in A_{arepsilon}^{(n)}) o 1$ при $n o\infty$;
- $|A_{\varepsilon}^{(n)}| \leq 2^{n(H(X,Y)+\varepsilon)};$
- $\hat{\mathbf{S}}$ Если \hat{X}^n и \hat{Y}^n независимые с распределениями, совпадающими с маргинальными распределениями $P(\mathbf{x}^n, \mathbf{y}^n)$, тогда

$$\Pr((\hat{x}^n, \hat{y}^n) \in A_{\varepsilon}^{(n)}) \le 2^{-n(I(X;Y)-3\varepsilon)}$$

and

$$\Pr((\hat{x}^n, \hat{y}^n) \in A_{\varepsilon}^{(n)}) \ge (1 - \varepsilon)2^{-n(I(X;Y) + 3\varepsilon)}$$

Skoltech

Теорема кодирования

Теорема

- Все скорости меньше C достижимы. В частности для любой скорости R < C, существует последовательность $(2^{Rn}, n)$ кодов с $\lambda^{(n)} \to 0$.
- ightharpoonup Обратно, любая последовательность (2 Rn , n) кодов с $\lambda^{(n)} o 0$ удовлетворяет R < C.

Достижимость

Определение (Ансамбль кодов)

$$\mathcal{C} = \left[egin{array}{cccc} x_1(1) & x_2(1) & \dots & x_n(1) \ x_1(2) & x_2(2) & \dots & x_n(2) \ dots & dots & \ddots & dots \ x_1(2^{Rn}) & x_2(2^{Rn}) & \dots & x_n(2^{Rn}) \end{array}
ight]$$

Каждый элемент выбирается независимо из P(x).

Декодирование методом типичных множеств

Получатель заявляет, что был передан индекс \hat{W} , если выполняются следующие условия:

- ightharpoons пара $(X^n(\hat{W}), Y^n)$ является совместно типичной;
- ightharpoonup нет другого i, такого что пара $(X^n(i), Y^n)$ является совместно типичной.

Достижимость

Пусть $\Pr(\mathcal{E})$ – это средняя (по выбору кодовой книги) вероятность ошибки.

$$\begin{array}{ll} \Pr(\mathcal{E}) & = & \sum_{\mathcal{C}} P(\mathcal{C}) P_{\mathrm{e}}^{(n)}(\mathcal{C}) \\ \\ & = & \sum_{\mathcal{C}} P(\mathcal{C}) \frac{1}{2^{Rn}} \sum_{w=1}^{2^{Rn}} \lambda_w(\mathcal{C}) \\ \\ & = & \frac{1}{2^{Rn}} \sum_{w=1}^{2^{Rn}} \sum_{\mathcal{C}} P(\mathcal{C}) \lambda_w(\mathcal{C}) \\ \\ & = & \sum_{\mathcal{C}} P(\mathcal{C}) \lambda_1(\mathcal{C}) \; \text{(симметрия)} \\ \\ & = & \Pr(\mathcal{E}|W=1). \end{array}$$

Достижимость

Определим

$$E_i = \{(X^n(i), Y^n) \in A_{\varepsilon}^n\}.$$

$$\Pr(\mathcal{E}|W=1) \le \Pr(E_1^c) + \sum_{i=2}^{2^{m}} \Pr(E_i)$$

 $\le \varepsilon + \left(2^{Rn} - 1\right) 2^{-n[I(X;Y) - 3\varepsilon]}$

Таким образом, если R < I(X;Y), то можно выбрать ε и n, такие что $\Pr(\mathcal{E})$ меньше, чем ε' .

Обратная теорема

Цепь Маркова:

$$W \to X^n(W) \to Y^n \to \hat{W}$$
.

Converse.

Неравенство Фано

$$H(W|Y^n) \leq 1 + P_e^{(n)} nR$$

и $I(X^n; Y^n) \leq nC$

$$nR = H(W) = H(W|Y^{n}) + I(W; Y^{n})$$

$$\leq H(W|Y^{n}) + I(X^{n}(W); Y^{n})$$

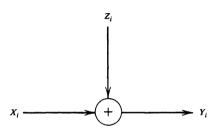
$$\leq 1 + P_{e}^{(n)} nR + I(X^{n}(W); Y^{n})$$

$$\leq 1 + P_{e}^{(n)} nR + nC.$$

Outline

- Дискретные каналы без памяти
- Теорема кодирования
- ③ Гауссовский канал
- 4 Многопользовательские каналы
- 5 Блочные кодь
- б Границы на параметры кодов
- 7 Линейные коды

Гауссовский канал



$$Y_i = X_i + Z_i, \ Z_i \sim N(0, N).$$

Ограничение на мощность

$$\frac{1}{n}\sum_{i=1}^{n}x_i^2 \le P$$

Signal-to-noise ratio

$$SNR = \frac{P}{N}$$
 (линейный) $SNR = 10 \log_{10} \frac{P}{N}$ (dB)

Пропускная споссобность

Определение

Пропускная способность гауссовского канала при ограничении Р определяется как

$$C = \max_{p(x): \mathbb{E}[X^2] \le P} I(X; Y).$$

Теорема

$$C = \frac{1}{2}\log(1 + SNR).$$

Пропускная споссобность

Доказательство.

$$I(X;Y) = h(Y) - h(Y|X)$$

$$= h(Y) - h(X + Z|X)$$

$$= h(Y) - h(Z|X)$$

$$= h(Y) - h(Z)$$

$$= h(Y) - \frac{1}{2} \log 2\pi eN$$

$$\mathbb{E}[Y^2] = \mathbb{E}[(X+Z)^2] = \mathbb{E}[X^2] + \mathbb{E}[Z^2] + 2\mathbb{E}[X]\mathbb{E}[Z] = P + N$$

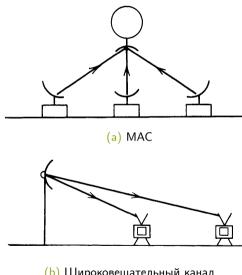
Таким образом,

$$h(Y) = \frac{1}{2} \log 2\pi e(P + N).$$

Outline

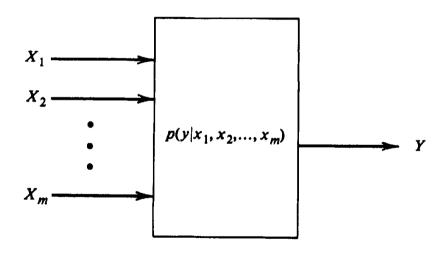
- Дискретные каналы без памяти
- 2 Теорема кодирования
- ③ Гауссовский канал
- 4 Многопользовательские каналы
- 5 Блочные коды
- б Границы на параметры кодов
- 7 Линейные коды

Многопользовательские каналы



(b) Широковещательный канал

МАС с *т* пользователями



Skoltech

MAC с *т* пользователями

Пусть
$$S \subseteq \{1, 2, ..., m\}$$
, $R(S) = \sum_{i \in S} R_i$ и $X(S) = \{X(i), i \in S\}$.

Теорема

Область пропускной способности многопользовательского канала — это выпуклая оболочка

$$R(S) \leq I(X(S); Y|X(S^c)) \quad \forall S \subseteq \{1, 2, \dots, m\}.$$

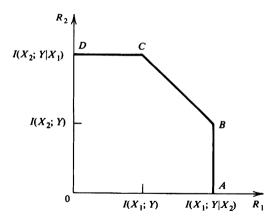
для
$$P_1(x_1)P_2(x_2)\dots P_m(x_m)$$
.

МАС с двумя пользователями

$$R_1 \le I(X_1; Y|X_2)$$

 $R_2 \le I(X_2; Y|X_1)$
 $R_1 + R_2 \le I(X_1, X_2; Y)$

МАС с двумя пользователями



Гауссовский МАС с двумя пользователями

$$Y = X_1 + X_2 + Z.$$
 $C(x) = \frac{1}{2} \log(1 + x).$
 $R_1 \leq C\left(\frac{P_1}{N}\right)$
 $R_2 \leq C\left(\frac{P_2}{N}\right)$
 $R_1 + R_2 \leq C\left(\frac{P_1 + P_2}{N}\right)$

Проекты

- Подсчет пропускной способности для ДНК-каналов
- Граница случайного кодирования для канала массового некоординированного множественного доступа (случай конечной длины)

Outline

- Дискретные каналы без памяти
- 2 Теорема кодирования
- Пауссовский канал
- 4 Многопользовательские каналы
- Блочные коды
- б Границы на параметры кодов
- 7 Линейные кодь

Двоичный симметричный канал



Скорость кода

- ► {1,2,..., M} множество сообщений;
- \triangleright $Q = \{0, \ldots, q-1\};$
- **▶** $\mathbf{x} = \Psi(i) \in Q^n$ кодовое слово;
- $ightharpoonup \mathcal{C} = \{ \mathbf{x} = \Psi(i), i = 1, \dots, M \}$ код;
- кодовая книга:
- ▶ $\mathbf{y} \sim P(y^n|x^n)$ принятая последовательность;
- $\hat{i} = \Psi^{-1}(y)$ правило декодирования.
- $R = \frac{\log_q M}{n} = \frac{k}{n}.$

Как декодировать?

$$\Psi: \left\{ \begin{array}{l} 00 \to 00001 \\ 01 \to 01010 \\ 10 \to 10111 \\ 11 \to 11100 \end{array} \right.$$

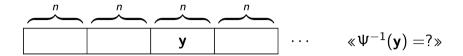
$$\mathbf{y} = 10101$$

x	$P(\mathbf{y} \mathbf{x})$
00001	$p^2(1-p)^3$
01010	$ ho^5$
10111	$ ho(1- ho)^4$
11100	$p^2(1-p)^3$

$$ho^5 <
ho^2 (1-
ho)^3 <
ho (1-
ho)^4$$

$$\Rightarrow \mathbf{x} = 10111, \, \mathbf{i} = 10$$

Декодирование по максимуму правдоподобия



Декодирование по максимуму правдоподобия:

- $i = \Psi^{-1}(x)$.

Лемма

Пусть
$$\mathcal{C}=\{x_i\}$$
, $p<0.5$ и $P(\mathbf{y}|\mathbf{x})=\max_i P(\mathbf{y}|\mathbf{x}_i)$, тогда

$$d(\mathbf{y},\mathbf{x})=\min_i d(\mathbf{y},\mathbf{x}_i),$$

где d(y, x) обозначает число позиций, в которых y и x отличаются.

<u>ch</u>

Расстояние Хэмминга

Определение

Пусть $\alpha, \beta \in Q^n$.

$$d(\alpha,\beta) = |\{i : \alpha(i) \neq \beta(i)\}|.$$

Пример

$$\alpha = 01101$$

$$\beta = 00111$$

$$d(\alpha,\beta)=2.$$

Skoltech

Вес и номер набора

Определение

- $|\alpha| = d(\alpha, \mathbf{0}) \sec \alpha;$
- $ightharpoonup |lpha| = \sum_{i=1}^n lpha_i q^{n-i}$ номер (лексикографический порядок) lpha;

Шар и сфера

Определение

$$B_r(\alpha) = \{ \beta \in Q^n : d(\alpha, \beta) \le r \}$$

and

$$S_r(\alpha) = \{ \beta \in Q^n : d(\alpha, \beta) = r \}$$

Шар и сфера

$$|S_r(\alpha)| = \binom{n}{r}(q-1)^r$$

И

$$|B_r(\alpha)| = \sum_{i=0}^r |S_r(\alpha)| = \sum_{i=0}^r \binom{n}{i} (q-1)^i$$

Код

Определение

- ► Код $\mathcal{C} \subseteq Q^n$;
- ▶ Минимальное расстояние

$$d(\mathcal{C}) = \min_{a,b \in \mathcal{C}; a \neq b} d(a,b).$$

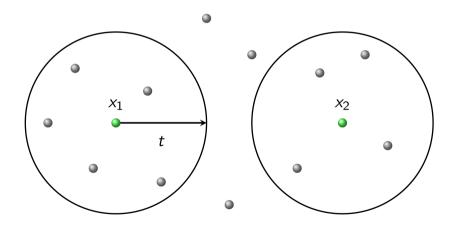
Обнаружение и исправление ошибок

Теорема

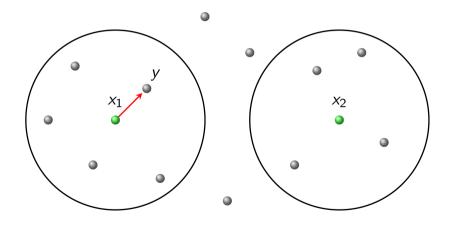
Пусть код ${\mathcal C}$ может исправить любые t ошибок, тогда

$$d(C) \geq 2t + 1$$
.

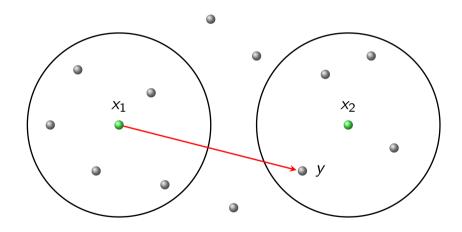
Геометрическая интерпретация



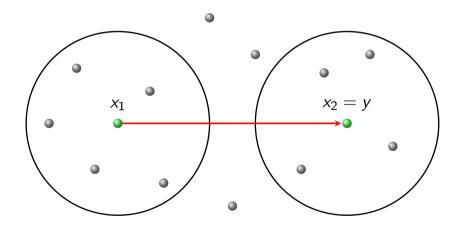
Ошибка исправлена



Ошибка обнаружена



Ошибка не обнаружена



Обнаружение и исправление ошибок

Теорема

Пусть
$$d(\mathcal{C})=d$$
, тогда

$$t = \left\lfloor \frac{d-1}{2} \right\rfloor$$

И

$$s = d - 1$$
.

Outline

- 1 Дискретные каналы без памяти
- 2 Теорема кодирования
- Пауссовский канал
- 4 Многопользовательские каналы
- Блочные кодь
- б Границы на параметры кодов
- 7 Линейные кодь

Определение $A_q(n,d)$

Определение

$$A_q(n,d) = \max_{\mathcal{C} \subseteq Q^n, d(\mathcal{C}) = d} |\mathcal{C}|.$$

Отметим, что максимизация мощности и скорости при фиксированном n — одинаковые задачи.

Далее будем опускать индекс q при q=2.

Граница Хэмминга

Пусть $\alpha \in Q^n$. Введем обозначение

$$V_t = V_q(t) = |B_t(\alpha)| = \sum_{i=0}^t \binom{n}{i} (q-1)^i.$$

Теорема (Граница Хэмминга)

$$A_q(n,d) \leq \frac{q^n}{V_t}.$$

Определение

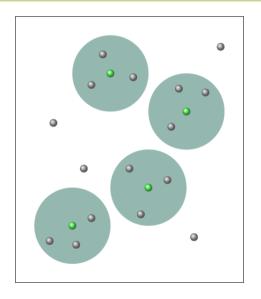
Код называется совершенным, если $|\mathcal{C}|=rac{q^n}{V_t}.$

Пример

Код $C = \{000, 111\} \subset \{0, 1\}^3$ является совершенным.

<u>ch</u>

Доказательство границы Хэмминга



Шары радиуса t не пересекаются!

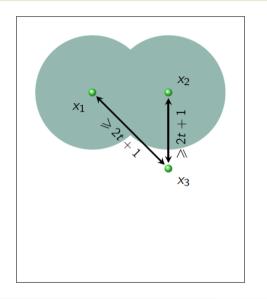
$$A_q(n,d)V_q(t) \leq q^n$$
.

Граница Гилберта

Теорема (Граница Гилберта)

$$A_q(n,d) \geq \frac{q^n}{V_{2t}}.$$

Proof



$$\mathsf{x}_3 \not\in B_{2t}(\mathsf{x}_1) \cup B_{2t}(\mathsf{x}_2)$$

 $\mathcal{C}_3 = \{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \}$ исправляет t ошибок.

Пусть мы построили m кодовых слов и не можем добавить новое слово

$$q^n = |\bigcup_{i=1}^m B_{2t}(\mathbf{x}_i)| \leq mV_{2t}.$$

Skoltech

Асимптотический режим, $n \to \infty$

$$\frac{d}{n} \to \delta$$
, $\frac{\log_q M}{n} = \frac{k}{n} \to R$

Определение

Семейство $\{C_n\}$ называется асимптотически хорошим, если $R, \delta > 0$:

Асимптотический режим, $n \to \infty$, q=2

Граница Хэмминга

$$R \leq 1 - h(\delta/2)$$
.

Граница Гилберта

$$R \geq 1 - h(\delta)$$
.

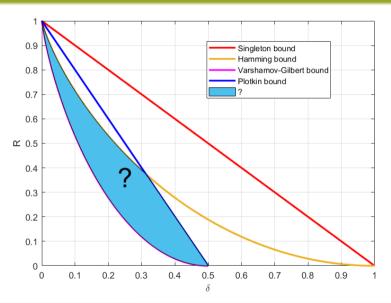
Граница Синглтона

$$R \leq 1 - \delta$$
.

Граница Плоткина

$$R \leq 1 - 2\delta$$
.

Асимптотический режим, $n \to \infty$



Outline

- 1 Дискретные каналы без памяти
- 2 Теорема кодирования
- Пауссовский канал
- 4 Многопользовательские каналы
- 5 Блочные кодь
- б Границы на параметры кодов
- Пинейные коды

Линейные коды

Определение

Подгруппа Абелевой группы \mathbb{F}_a^n называется групповым кодом.

Определение

Подпространство $\mathcal C$ линейного пристранства $\mathbb F_q^n$ называется линейным (n,k) кодом, где $k=\dim\mathcal C$.

Определение

G – порождающая матрица \mathcal{C} , если ее строки образуют базис \mathcal{C} .

Минимальное расстояние

Лемма

Пусть \mathcal{C} – это линейный код, тогда

$$d(\mathcal{C}) = \min_{a \in \mathcal{C}, a \neq 0} ||a||.$$

Дуальный код и проверочная матрица

Определение (Дуальный код)

$$C^{\perp} = \{ v \in \mathbb{F}_q^n : v \perp \mathcal{C} \}.$$

Определение (Проверочная матрица)

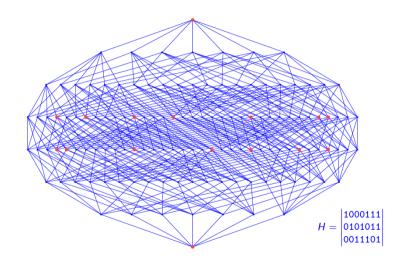
H – это базис C^{\perp} .

Код Хэмминга

Параметры:

$$n = 2^m - 1, k = 2^m - m - 1, d = 3.$$

Код Хэмминга



Код Хэмминга

Проекты

- Применение нейронных сетей для декодирования линейных кодов. Подход на основе синдрома
- Применение нейронных сетей для декодирования линейных кодов. Подход на основе графа Таннера
- Построение помехоустойчивых кодов с помощью машинного обучения
- Постквантовая (кодовая) криптография
- ▶ Кодовые распределенные вычисления для задач машинного обучения.

Спасибо за внимание!

