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Abstract— This paper relates to time-continuous trajectory
representation using direct linear interpolation on SE(3). Our
approach focuses on a novel analytical Jacobian approximation
of a sequence of linearly interpolated poses on SE(3). This paper
shows a derivation of the proposed analytical Jacobian using
retraction mapping and an approximation to the commutativity
property of infinitesimal group elements. We provide plenty of
evaluations for 3 different optimization problems. For the syn-
thetic point cloud alignment problem, our proposed Jacobian is
compared with a numerical one. For the synthetic pose graph
optimization problem, the proposed Jacobian approximation
allows us to reduce by x7 factor the state dimensions while
keeping a similar magnitude of resulting error compared to
the full discrete-time trajectory. Finally, we show the validity
of our approach in a time-continuous approach for real-world
LIDAR odometry problem.

I. INTRODUCTION

Pose estimation problems are often formulated using a
discrete-time representation of a sequence of 3D poses over
time – a trajectory. It is the default representation due to
a consolidated theory on state estimation and clear inter-
pretability of the results [1], [2]. In addition, many trajectory
estimation approaches for robot-sensor systems successfully
use a discrete-time formulation since it allows keeping the
state size tractable [3], [4]. However, this is unattainable for
setups that include different high-rate or asynchronous sen-
sors [5], [6], making discrete-time formulation non-suitable
for those scenarios without additional assumptions.

The straightforward solution is to use a time-continuous
trajectory representation that enables the addition of informa-
tion from a high-rate sensor output, preventing to estimate
a discrete state for each observation which would produce
a high number of state variables to be estimated. Time-
continuous trajectories are also capable of fusing multiple
asynchronous sensors of different high rates in a natural
way. In addition, a time-continuous trajectory representation
should allow for a direct calculation of the Jacobian since
most modern state estimation techniques are built around
optimization.

Time-continuity of the trajectory can be ensured using
different methods, the most convenient being the Gaussian
process used in [7], [8], B-splines interpolation used for
split rotation and translation interpolation as in [5], [6] or
for direct interpolation on Special Euclidean Group SE(3)
as in [9], [10], and finally, linear interpolation of split pose
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representation as in [11], [12] or for direct interpolation on
SE(3) as in [13], [14], [15].

A comprehensive comparison of different motion interpo-
lation methods is provided in [16]. Despite the Cd continuity
of the B-spline interpolated trajectory, it has a higher com-
putational cost than the linear form and may over-smooth
the trajectory by vanishing its high-frequency components.
Alternatively, the linear interpolation keeps the raw high-
frequency trajectory components and has a much lower
computational cost. It is continuous but, at the same time,
non smooth on the boundary of the control poses, which is
its main disadvantage.

Concerning the optimization, it is a valid question to
wonder about the efficiency and correctness of the Jaco-
bian calculation for the corresponding time-continuous rep-
resentations. Unfortunately, many of the above-mentioned
methods keep this issue out of scope by using Jacobians
obtained with auto-differentiation functionality of popular
non-linear least square problem solvers. Nevertheless, having
the analytical form is essential for real-time applications with
limited computational resources.

The Jacobians for linear interpolation of split pose repre-
sentation are introduced in [12]. It presents a Jacobian form
related to spherical linear interpolation for rotation and linear
interpolation for translation and solves the continuous-time
LiDAR-Inertial Odometry problem with Sweep Reconstruc-
tion. The analytical Jacobian with respect to control poses of
direct B-splines interpolation on SE(3) is derived in [9]. Au-
thors approximate it by applying Baker–Campbell–Hausdorff
(BCH) formula to 3D poses, which is previously derived in
Barfoot’s book [17] for the direct linear pose interpolation
on SE(3).

The contributions of this paper are as follows. We derive
an analytical form of the Jacobian for linearly interpolated
poses on SE(3) using an approximation by the commuta-
tivity property of infinitesimal group elements instead of the
BCH formula approximation. We evaluate empirically our
approach on several synthetic and real-world datasets and
problems, provide a comparison with the formulation pro-
posed in [17] and show its consistency in robustly achieving
accurate results in optimization-based state estimation of 3D
trajectories.

The paper is organized as follows. Section II introduces
background on Special Euclidean Group SE(3) and the
retraction operation. Section III describes interpolation in
the manifold and the derivation of our proposed Jacobian
approximation. Section IV presents the evaluation results for
two synthetic problems, the multi-registration of point clouds



and pose SLAM, and one real problem from [18] LiDAR
data. Finally, Section V concludes the paper.

II. BACKGROUND

We operate with poses or Rigid Body Transformations
(RBT) that are elements of Special Euclidean group SE(3):

SE(3) =

{
T =

[
R t
0 1

]
|R ∈ SO(3) , t ∈ R3

}
. (1)

Rigid body transformations are elements of the matrix
group SE(3) ⊂ R4×4, representing a manifold, a lower-
dimensional structure. As such, a connection exists between
elements of the SE(3) group with a vector space R6. We will
make use of the definition of a retraction RT (ξ), as defined
in [19], which is a smooth mapping from the tangent space
around the T ∈ SE(3) element to the manifold:

RT (ξ) : R6 → SE(3) (2)

Two conditions must be satisfied: i) RT (0T ) = T and ii)
T M local rigidity.

Accordingly, the derivative around the element T becomes
a well-defined operation now that the retraction allows us to
operate in a vector space, where a directional derivative can
be expressed as:

∂RT (ξ)

∂ξ

∣∣∣∣
ξ=0

. (3)

Note that this is not a derivative, but a mapping, defined at
the zero element.

There are multiple options for choosing a retraction. In
our case, the exponential map is the most natural retraction
choice: its definition is highly related to the concept of
perturbations over SE(3), which is the main topic of this
paper since we are interested in calculating the derivatives
of linear interpolated 3D poses.

The exponential map defines the retractions RT in the
following way:

RT (ξ) = Exp(ξ)T, (4)

where we have chosen a left-hand side emplacement of the
exponent map as our default convention. A right-hand side
convention would require re-doing all further derivations, but
the procedure would be identical to what is expanded in the
following sections.

III. INTERPOLATION IN THE MANIFOLD

Smooth manifolds allow us to import all the tools from
calculus and real analysis into manifolds by following simple
rules.

We follow [17] and define a linear interpolation of poses
as T (T1, T2, τ) : SE(3)×SE(3)×[0, 1] → SE(3)

T (T1, T2, τ) = (T2T
−1
1 )τT1. (5)

This form provides a direct interpolation in SE(3). How-
ever, in order for us to differentiate for each pose, we
require to define a new retraction as the Cartesian product of
two manifold elements. In particular, when substituting the

retraction (4), we obtain a map of the local coordinates of
each of the poses:

RT1T2
(ξ1, ξ2) = T

(
RT1

(ξ1), RT2
(ξ2), τ

)
=

(
Exp(ξ2)T2T

−1
1 Exp(−ξ1)

)τ
Exp(ξ1)T1, (6)

where we have used the property Exp(ξ)−1 = Exp(−ξ).
We want to compare the tangent space around both trans-

formations, such that they are equal find out the relation
of the tangent spaces ξ1, ξ2 and the new joint variable
ξ = [ξ1, ξ2] composed of the two poses as expressed in the
retraction (6).

We will expand each of the terms, evaluated at the null
element of the tangent vector ξ = 0:

RT1T2
(0, ξ2)

∣∣∣∣
ξ2=0

=
(
Exp(ξ2)T2T

−1
1

)τ
T1

∣∣∣∣
ξ2=0

= Exp(τξ2)
(
T2T

−1
1

)τ
T1

∣∣∣∣
ξ2=0

(7)

We have made use of the property Exp(ξ)α = Exp(αξ)
and the fact that this expression is evaluated at the zero
element ξ2 = 0. Thereby, the exponent Exp() equals the
identity in the limit, and the matrix multiplication becomes
commutative under this condition. Accordingly, Exp(ξ2) can
be moved away from the parenthesis if we consider that this
expression is multiplied τ times.

We will take this relaxation to expand the infinitesimal
exponent and obtain an analytical solution that is very close
to the real analytical gradient, as discussed in the evaluation
section. In general, the multiplication of matrix elements
infinitesimally close to the identity is a non-commutative
operation.

Similarly, the same derivation can be done for ξ1

RT1T2
(ξ1, 0) =

(
T2T

−1
1 Exp(−ξ1)

)τ
Exp(ξ1)T1

=
(
T2T

−1
1 )

)τ
Exp(−ξ1)

τ Exp(ξ1)T1

= ∆T Exp((1− τ)ξ1)T1

= Exp
(
(1− τ)Adj∆T ξ1

)
· T

∣∣∣∣
ξ1=0

, (8)

where ∆T = (T2T
−1
1 )τ .

Suppose we arrange (7) and (8) under the condition that
both expressions will be evaluated at zero. In that case, we
obtain the following compact linear relation that is only valid
for calculating derivatives:

ξ

∣∣∣∣
ξ=0

= (1− τ)Adj∆T ξ1 + τξ2

∣∣∣∣
ξ1=0, ξ2=0

. (9)

Now, suppose we have a cost function that depends on a
linearly interpolated pose on SE(3). In that case, we can
find its derivative with respect to reference poses T1 and T2

by using the retraction mapping in (6) and the chain rule
[19] as follows:

∂h(T )

∂T

∣∣∣∣
T

=
∂hT (ξ)

∂ξ

∣∣∣∣
ξ=0

(10)



∂hT (ξ(ξ1, ξ2))

∂ξ1,2

∣∣∣∣
ξ=0

=
∂hT (ξ)

∂ξ

∂ξ

∂ξ1,2

∣∣∣∣
ξ=0

=
∂hT (ξ)

∂ξ

∣∣∣∣
ξ=0

[
(1− τ)Adj∆T τI

]
(11)

Alternatively, we can state it as:

∂T (T1, T2, τ)

∂T1
= (1− τ)Adj∆T (12)

∂T (T1, T2, τ)

∂T2
= τI (13)

The results (11), (12) and (13) are our proposed analytical
Jacobian approximation that we imply to use for direct
optimization of trajectories of interpolated poses on SE(3).
Analyzing it more closely, we can see that the resulting
Jacobian form is in direct ratio with the interpolation time
τ in the way that gradually moving from T1 to the T2 is
coupled with the increase or decrease of the corresponding
parts of the resulting Jacobian. Besides that, one can see that
computation of this Jacobian is relatively lightweight since
it is just a single matrix-scalar multiplication.

In the following sections, we evaluate it in three problems
showing its consistency. For that, we first evaluate it along-
side another form that is introduced in [17] by approximation
with Baker–Campbell–Hausdorff (BCH) formula resulting
in:

δξ = (1−A (τ, ξ21)) δξ1 +A (τ, ξ21) δξ2

A(τ, ξ) = τJ (τξ)J (ξ)−1 (14)

where ξ21 defined as RT (ξ21) = Exp(ξ21)T2T
−1
1 , and J is

a left Jacobian of SE(3) (see [17]).

IV. EVALUATION
The main purpose of the experiments is to prove the

applicability of the proposed approximated gradient form to
be used in various problems that can apply time-continuous
trajectory representation and optimization.

For that, we first conduct an experiment on time-
continuous point-cloud alignment problem (multi-view regis-
tration) with synthetic randomly generated data. In this task
we compare results achieved using the proposed gradient
form (11), Barfoot’s [17] formulation (14) and the numeri-
cally estimated gradient obtained using the finite difference
method. We imply numerical gradient as the most accurate
one to compare and use its results as a baseline.

In the second experiment we investigate how the proposed
gradient formulation is suitable for solving time-continuous
Pose Simultaneous Localization and Mapping (SLAM) prob-
lem on a synthetic benchmark - Sphere dataset [20].

And finally, we qualitatively describe the applicability of
the proposed gradient form for real data implementing it
inside the Continuous-Time Iterative Closest Point (CT-ICP)
[11] algorithm and achieving trajectory consistency for short
subsamples of raw uncorrected KITTI dataset [18] scenes.
We obtain results for all three experiments using Intel i7-
9750H CPU.

A. Synthetic Time-Continuous Point Cloud Alignment
We start with testing the applicability of the proposed gra-

dient formulation (11) for a multi-view point cloud alignment
problem using randomly generated synthetic data.

1) Problem description: Point cloud alignment task im-
plies estimating a relative transform T1−→2 between two
poses {T1, T2} ∈ SE(3) from which we observe a shared
cloud of points.

In our case, we randomly generate point cloud
P{p1, p2, ..., pN |pi ∈ R3} of size N . After that, we generate
two random poses {T1, T2} ∈ SE(3). We treat these poses
as the interpolation interval’s initial and final ends. We
uniformly split this interval with K intermediate timestamps
τk ∈ [0, 1]. Using these timestamps, we interpolate initial
and final poses, getting corresponding intermediate poses
T {Tτ1 , Tτ2 , ..., TτK |Tτk = T (T1, T2, τk)}.

For each interpolated pose we generate corresponding
point cloud observations pτki by adding noise ατk

i randomly
sampled from normal distribution N (0,Στk

i ) to each point
obtaining K different sets of points Pk. Here Στk

i = I3α
τk
i

where ατk
i ∈ R3 sampled from one more distribution

N (0, σI3). By that, we can specify the noise magnitude of
the points observations by varying parameter σ and thus
investigate the performance of the gradient forms during
optimization with different challenging conditions.

Furthermore, the last important parameter related to our
synthetic data generation approach is a scale parameter s.
Changing this parameter, we can scale by s factor translation
components t ∈ R3 of all poses and points, keeping the
rotation parts R ∈ SO(3) unchanged. One can think about
this as stretching or shrinking the scene without changing its
internal structure.

Having all these data generated, we seek to find optimal
initial and final poses T1 and T2 to achieve a points obser-
vation consistency for all poses in T . For that we minimize
the following cost function h(T1, T2) with respect to initial
or final pose:

h(T1, T2) =
1

2

N−1∑
i=0

∑
τj

∑
τk

τj ̸=τk

∥∥∥Tτ (T1, T2, τj)p
τj
i −

− Tτ (T1, T2, τk)p
τk
i

∥∥∥2
Σ

τj
i +Σ

τk
i

(15)

This cost function implies pair-wise all-vs-all comparison
of i-th point observation for all poses in T .

Denoting the expression under the norm as a residual
ri(T1, T2, τj , τk) that describes an observation point relation
between some two interpolated poses and introducing Σi =
Σ

τj
i +Στk

i we rewrite (15) in a shorter form as:

h(T1, T2) =
1

2

N−1∑
i=0

∑
τj

∑
τk

τj ̸=τk

∥ri(T1, T2, τj , τk)∥2Σi
(16)

In order to separately testify parts of the gradient related
to the initial or final pose, we run two experiments. In the



first case, we optimize only initial pose T1, fixing final pose
T2 as an identity transform. In the second case, we do the
vice-verse and optimize T2 keeping T1 fixed. As a result, our
goal is to solve the following optimization problem:

min
T1,T2=I

or
T2,T1=I

h(T1, T2) (17)

Using the following gradient expression:

∇T1,2h =

N−1∑
i=0

∑
τj

∑
τk

τj ̸=τk

ri(T1,2)
⊤
Σ−1

i

∂ri
∂T1,2 (18)

where T1,2 ∈ {T1, T2} and:

∂ri
∂T1,2

=

[
∂ri
∂Tτj

∂Tτj

∂T1,2
− ∂ri

∂Tτk

∂Tτk

∂T1,2

]
(19)

is a gradient of the residual ri with respect to optimization
pose and ∂Tτ

∂T1,2
- is a gradient of the interpolation pose

computed using our proposed method or Barfoot’s form.
2) Experiment results: In our experiments for that task,

we test different setups of the problem by checking different
combinations of the parameters defined in the synthetic
data generation description above. To be more precise, we
solve this task using the Gauss-Newton method for all
combinations of the following parameters: point cloud size
N ∈ [20, 40, 80, 100], number of interpolation timestamps
K ∈ [5, 20, 40, 80, 100], scale factors s ∈ [1, 10, 100] and
noise magnitude σ = 0.01.

We optimize these tasks using the proposed gradient, Bar-
foot’s BCH approximation, and numerical form. We initialize
optimized T1,2 as identity transform and compare results with
a ground truth Tgt using a distance metric which we denote
as a norm of the Lie algebra coordinates vector:

d =
∥∥Ln(T1,2T

−1
gt )

∥∥ (20)

These experiments allow us to comprehensively test each
Jacobian formulation performance and limitations. We pro-
vide main insights on results in Fig. 1. The left column
graphs (a)-(e) - results for the initial pose T1 optimization
(first case), and the right column (f)-(j) - results for the final
pose T2 (second case). In (a) and (f), we show that with
an increase in the number of the interpolated states K used,
the accuracy of the final result also increases for both cases.
The same improvement also occurs with the increase of the
number of points in a point cloud N as shown in (b) and
(g). Direct comparison of Jacobian magnitudes presented in
(c) and (h) shows the close similarity of all three methods.

Summing the final results for all experiments, we see
that all three approaches show similar results and achieve
a feasible solution for both cases. Barfoot’s method exactly
reproduces the numerical form with the same results. Our
proposed method closely follows the others providing similar
or better final optimization results. Although our method
does not exactly follow the numerical one, it still results in

a similar number of optimization steps to converge as shown
in (d) and (i) and, more importantly, being computationally
lighter, it requires noticeably less time to obtain the result.
As shown in (e) and (j), our method reaches the solution ∼ 2
times faster than the BCH form and ∼ 3 times faster than
the numerical. More precisely, our method requires 0.02 ms
to compute ∂Tτ

∂T1,2
in (19), while Barfoot’s form - 0.16 ms.

This evaluation experiment shows that our gradient ap-
proximation for the linearly interpolated rigid body transform
(RBT) has no usage limitations and allows us to expect it to
be sufficient for other problems.

B. Synthetic Pose-SLAM
We proceed by testing the applicability of the proposed

Jacobian approximation for the Pose SLAM problem.
1) Problem description: The Pose SLAM is a nonlinear

pose graph optimization problem that estimates N robot
poses Ti ∈ SE(3) using M relative pose observations
T obs
ij ∈ SE(3). This problem can be seen as a directed graph:

robot poses Ti are graph nodes that we want to estimate,
while relative pose observations are graph edges Eij that
encodes a relative pose transformation measurement between
two poses Ti and Tj .

The classic Pose SLAM graph optimization estimates
robot poses by solving the following optimization problem:

min
{Ti}∈SE(3)

∑
{Eij}

g(Ti, Tj , T
obs
ij ) (21)

g(Ti, Tj , T
obs
ij ) = TiT

obs
ij T−1

j (22)

Function g(Ti, Tj , T
obs
ij ) measures how well our observation

matches pair (i, j) of input nodes.
We use this approach as a baseline for comparison. In

order to check the performance of our Jacobian of interpo-
lated RBT, we modify the classic Pose SLAM problem by
decimating the trajectory in the factor graph using linear in-
terpolation among them. The decimation factor is expressed
by the δ parameter. Regarding the graphical model, the
number of nodes is reduced δ times and the number of factors
(observations) remains unaltered.

With that, it is possible to achieve almost similar final
results with less computations per optimization step by
solving a smaller optimization task. We further refer to those
nodes we keep as base-nodes and those we replace with
interpolation as inter -nodes.

Accordingly, we can modify our Pose SLAM optimization
problem (21) and cost function (22) as:

min
{T̂i}∈SE(3)

∑
{Eij}

ĝ(Tτi , Tτj , T
obs
ij ) (23)

ĝ(Tτi , Tτj , T
obs
ij ) = TτiT

obs
ij T−1

τj (24)

Tτi(T̂a, T̂b, τi) = (T̂bT̂
−1
a )τi T̂a (25)

where ĝ is our new interpolated cost function, {T̂i} - our
novel sparse set of base-nodes to estimate, Tτi - pose of the
i-th inter -node, its corresponding previous T̂a and next T̂b

base-nodes used for interpolation with timestamp τi.



TABLE I
RPE BEFORE AND AFTER OPTIMIZATION OF POSE GRAPHS WITH DIFFERENT SPARSITY FACTORS

Sparsity factor Num factors Num nodes Time per
opt step, sec

Base nodes only Full trajectory

RPE Before RPE Interp. posegraph RPE Classic Interpolated posegraph Classic
RPE Before RPE After RPE Before RPE After

x1 (classic)

9788

2500 0.51 73.13 — 4.13 — —

73.13 4.13x4 625 0.19 73.09 10.71 4.13 84.94 11.46
x8 313 0.16 73.02 12.35 4.16 84.95 14.22
x16 157 0.11 72.96 63.71 4.20 84.96 73.64
x32 79 0.07 73.00 85.35 4.18 85.73 85.16

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Right column: T1 – fixed, T2 - optimizedLeft column: T1 – optimized, T2 - fixed Distance vs number of interpolated poses

Norm of Jacobian vector vs optimization iterations

Iterations to converge vs number of interpolated poses

Time to solve optimization vs point cloud size

Distance vs point cloud size

Fig. 1. Aggregated results for the synthetic time-continuous point cloud
registration problem. The left column shows the results of optimizing T1,
right column - T2. Plots (a) and (f) represent optimization results vs different
numbers of interpolated poses K. Graphs (b) and (g) show optimization
results vs different numbers N of points in point cloud. Magnitudes of
Jacobians are represented at (c) and (h). The number of iterations to converge
vs number of interpolated poses K is represented at (d) and (i), time to
converge vs number N of points in point cloud is at (e) and (j).

2) Experiment results: We use the sphere benchmark
[20] as a data source. It consists of 2500 poses and 9788
observations. We first solve the classic Pose SLAM problem
(21) and use it as a baseline for comparison. After that,
we solve Interpolated Pose SLAM (23) using our analytical
Jacobian form, comparing its results for different sparsity
factors with a baseline. We use the mrob C++ library as a
framework for optimization [21].

We provide visualization for the Interpolated Pose SLAM
for sparsity factor δ = 4 at Fig. 2 where (a) depicts an initial
state of base-nodes and (b) represents the same nodes after
optimization. One can see the visible improvement obtained
by keeping only 625 of the original 2500 poses of the original
dataset.

Tab I provides more comprehensive results and compari-
son with a classic approach for different sparsity factors. We
use Relative Pose Error (RPE) as a metric for comparison.
We define it as an average pair-wise all-vs-all distance (20)
between relative transforms of poses inside the estimated
trajectory and the ground truth one. Base nodes only compar-
ison performed using only nodes that we use as base-nodes
in our interpolated pose graph. Full trajectory comparison
implies that we compare whole trajectories of 2500 original
nodes. We obtain missing inter -nodes for interpolated pose
graph using linear interpolation with corresponding base-
nodes.

As we see from Tab I, our Jacobian form ensures a feasible
solution with sparsity factors of 4 and 8, decreasing the
number of optimization state variables to 625 and 313 nodes
out of the initial 2500. Further decimation with sparsity
factors of 16 and 32 leads to unusable results due to the far
distance between interpolation base nodes and the inability to
restore the trajectory’s circularity using linear interpolation
in such conditions.

C. Time-Continuous LIDAR Odometry

In the last experiment, we perform a qualitative perfor-
mance estimation of our Jacobian formulation for Lidar-only
odometry problem solving it using a modified version of the
Continuous-Time Iterative Closest Point (CT-ICP) algorithm
presented in [11] for short sequences of KITTI-raw dataset
[18].

1) Problem description: The main feature of method [11]
is a combination of continuity in the scan matching and
discontinuity between scans.

They use split rotation and translation representation and
achieve time continuity for the scan matching by using spher-



(a) Before optimization (b) Interpolated Pose SLAM results (c) Classic Pose SLAM results

Fig. 2. Visual representation of the full trajectory Interpolated Pose SLAM results with sparsity factor δ = 4 on Sphere data. Here (a) - depicts an initial
state of the graph, (b) - Interpolated Pose SLAM results, (c) - Classic Pose SLAM results

ical linear interpolation (slerp) for rotations and standard
linear interpolation for translations.

We can very shortly describe their time-continuous scan
matching procedure (for more details, please, refer to orig-
inal paper [11]) as minimizing the following point-to-plane
residual function with respect to starting and ending scan
poses T = (Tb, Te) ∈ SE(3)2 for each i-th combination of
sample point pLi , map point qWi and related neighborhood
normal ni:

ri[T] =
(
pWi [T]− qWi

)
· ni (26)

pWi [T] = T τi [T]pLi (27)

where T τi - interpolated pose for τi timestamp of scanning.
While the original work performs interpolation using split

spherical linear interpolation (slerp) for rotations and linear
interpolation for translations, we replace it by direct inter-
polation in manifold and evaluate the performance of our
proposed analytical Jacobian on short sequences of ∼ 100
frames from KITTI-raw [18] dataset.

2) Experiment results: We use a mrob C++ library [21]
as our optimization backbone providing it with analytical
Jacobian and replacing the parts of the original pipeline
that uses Ceres-solver [22] framework alongside Jacobians
obtained using its auto differentiation module.

We provide the qualitative visual results for short ∼ 100
frames long subsequences from KITTI-raw [18] dataset
scenes at Fig. 3. The green trajectory depicts the result
obtained with our Jacobian formulation, while the white
one describes the original CT-ICP result. The proposed
analytical Jacobian approximation results in a trajectory that
is generally very close to the original result (top image) but
does not replicate it exactly (bottom image).

Our analytical Jacobian approximation results in stable
trajectory and consistent maps for short sequences. Testing
it with longer trajectory subsamples or reaching a closer
match with the original CT-ICP results implies implementing
additional constraints described in the original paper that
ensure discontinuity consistency between sequential frames,
which is out of the scope of the current work.

Fig. 3. Lidar odometry results obtained using our proposed Jacobian ap-
proximation (green) and original CT-ICP method (white) on short sequences
of KITTI-raw dataset

V. CONCLUSIONS

We have presented an analytical Jacobian approximation
of interpolated poses on SE(3) that can be used for tasks
involving the direct optimization of trajectories in 3D. We
provide its derivation and report its performance on several
synthetic and real-world datasets and problems, showing its
consistency in achieving correct results.
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