
Random Fourier Features based SLAM

Yermek Kapushev∗,†,‡, Anastasia Kishkun∗, Gonzalo Ferrer∗, Evgeny Burnaev∗
∗Skolkovo Institute of Science and Technology, Moscow, Russia
†Artificial Intelligence Research Institute, Moscow, Russia

‡Sber AI Lab, Moscow, Russia
Email: ekapushev@sberbank.ru, {a.kishkun, g.ferrer, e.burnaev}@skoltech.ru

Abstract— This work is dedicated to simultaneous
continuous-time trajectory estimation and mapping based
on Gaussian Processes (GP). State-of-the-art GP-based
models for Simultaneous Localization and Mapping (SLAM)
are computationally efficient but can only be used with a
restricted class of kernel functions. This paper provides
the algorithm based on GP with Random Fourier Features
(RFF) approximation for SLAM without any constraints. The
advantages of RFF for continuous-time SLAM are that we
can consider a broader class of kernels and, at the same time,
maintain computational complexity at reasonably low level by
operating in the Fourier space of features. The accuracy-speed
trade-off can be controlled by the number of features. Our
experimental results on synthetic and real-world benchmarks
demonstrate the cases in which our approach provides better
results compared to the current state-of-the-art.

I. INTRODUCTION

Since the last century, probabilistic state estimation has
been a core topic in mobile robotics, often as part of the
problem of simultaneous localization and mapping [1], [2].
Recovery of a robot’s position and a map of its environment
from sensor data is a complicated problem due to both map
and trajectory are unknown as well as the correspondences
between observations and landmarks [3].

The field of discrete time trajectory estimation and map-
ping methods is well developed [4], [5], [6], [7], [8], [9], [10],
[11]. However, discrete-time representations are constrained
because they are not easily adapted to irregularly distributed
poses or asynchronous measurements over trajectories. In
the time-continuous problem statement, the robot trajectory
is a function x(t) which corresponds to a robot state at
every time t. Simultaneous trajectory estimation and mapping
(STEAM) presents the problem of estimating this function
along with landmark positions [12], [13]. In the work [14]
they formally derive a continuous-time SLAM problem and
demonstrate the use of a parametric solution for atypical
SLAM calibration problems. The use of cubic splines to
parameterize the robot trajectory can also be seen in the
estimation schemes in [15], [16], [17]. In the work [18] the
parametric state representation was proposed due to practi-
cality and effectiveness. The advantages of this method are
that they can precisely model and interpolate asynchronous
data to recover a trajectory and estimate landmark positions.
The disadvantages of that algorithm are that it requires batch

Evgeny Burnaev was supported by the Russian Foundation for Basic
Research grant 21-51-12005 NNIO a

updates and considerable computational problems. In the
work [19], the critical update to increase the efficiency of
existing GP approach to solve the STEAM problem was
introduced. It combines benefits of graph-based SLAM [6]
and GP-based solution [20] to provide a computationally
efficient solution to the STEAM problem even for large
datasets. However, the computational efficiency comes at
the cost of constrained class of kernel functions. They use
state-space formulation of GP model. Fast inference in this
case is possible if we impose Markovian structure on the
trajectory: it is supposed that two points on the trajectory
are conditionally independent given all other points if these
two points are not neighboring. However, in some cases
the accuracy of the trajectory estimate can be increased by
adjusting the estimate at the current point using all previous
points in the trajectory, especially when the observations
contain a considerable amount of noise.

In recent years a lot of effort has been put to develop
large-scale GP models without any constraints on the kernel
function [21], [22], [23]. There are two main approaches to
scale up the GP model. The first one is based on Nyström
approximation [24]. The idea is to approximate the kernel
function using a finite set of basis functions that are based
on eigenvectors of the kernel matrix. This approach is data-
dependent and needs updating the basis function when new
observations arrive. Another set of methods is based on
Random Fourier Features (RFF) [25]. In these approaches
the basis functions depend solely on the kernel function and
independent of the data set. It provides additional computa-
tional benefits and is more attractive for SLAM problems.

The contributions of this paper are as follows. We develop
random features-based SLAM approach. It uses a low-rank
approximation of the kernel matrix which is dense and,
therefore, does not assume the conditional independence of
the points on the trajectory. We show that in certain situations
removing the independence constraint allows to improve
the quality of trajectory estimation. Also, low-rank structure
of the approximation allows to maintain the computational
complexity at reasonably low level.

The paper is organized as follows. Section II provides
background on Gaussian Processes and random features-
based approximation. In Section III-A we describe the pro-
posed RFF-based SLAM. Section IV contains experimental
results demonstrating how the method works in practice in
comparison with the competing approach. Finally, Section V

concludes the paper.

II. GAUSSIAN PROCESSES
One of the most efficient tools for approximating smooth

functions is the Gaussian Process (GP) Regression [26],
[27]. GP regression is a Bayesian approach where a prior
distribution over functions is assumed to be a Gaussian
Process, i.e. y = f(x) + ε with f ∼ GP(µ(x), k(x,x′))
and white noise ε ∼ N (0, σ2

noise), so that

y |X ∼ N (µ, Kf + σ2
noiseI),

where y = (y1, y2, . . . , yN) is a vector of outputs, X =
(x>1 ,x

>
2 , . . . ,x

>
N)> is a matrix of inputs, xi ∈ Rd, σ2

noise

is a noise variance, µ = (µ(x1), µ(x2), . . . , µ(xN)) is
a mean vector modeled by some function µ(x), Kf =
{k(xi,xj)}Ni,j=1 is a covariance matrix for some a priori
selected covariance function k and I is an identity matrix.
An example of such a function is a Radial Basis Function
(RBF) kernel

k(x,x′) = exp

(
−1

2

d∑
i=1

(
x(i) − x′(i)

σi

)2
)
,

where σi, i = 1, . . . , d are parameters of the kernel (hyper-
parameters of the GP model) and x(i) is an i-th element of
vector x. The hyperparameters should be chosen according
to the given data set.

For a new unseen data point x∗ the conditional distribution
of f(x) given (y,X) is equal to

f̂(x∗) ∼ N
(
µ̂(x∗), σ̂

2(x∗)
)
,

µ̂(x∗) = µ(x∗) + k(x∗)
>K−1 (y − µ) ,

σ̂2(x∗) = k(x∗,x∗)− k(x∗)
>K−1k(x∗),

(1)

where k(x∗) = (k(x∗,x1), . . . , k(x∗,xN))T and K =
Kf + σ2

noiseI.
The runtime complexity of the construction of the GP

regression model is O(N3) as we need to calculate the
inverse of K.

A. Random Fourier Features
To approach the computational complexity of building a

GP model we use Random Fourier Features (RFF). The
idea behind RFF is in Bochner’s theorem [28] stating that
any shift-invariant kernel k(x,y) = k′(x− y) is a Fourier
transform of a non-negative measure p(w), i.e.

k′(x− y) =

∫
p(w)ejw

>(x−y)dw.

Then the integral and, therefore, the kernel can be approxi-
mated as follows

k′(x− y) ≈ φ(x)>φ(y), (2)

where

φ(x) =

√
2

D


cos(w>1 x)
sin(w>1 x)
· · ·

cos(w>D/2x)

sin(w>D/2x)

 , wj ∼ p(w). (3)

In this case the kernel matrix has a low-rank representation,
Kf ≈ ΨΨ>, Ψ = ‖φ(xi)

>‖Ni=1 ∈ RN×D. Therefore, K−1x
can be efficiently calculated in O(ND2) using Sherman-
Morrison-Woodbury matrix identity, i.e. linearly in the num-
ber of observations. Constant D — the number of features
— is a hyperparameter of the algorithm, that controls the
accuracy of the kernel matrix approximation. Alternatively,
after we find finite-dimensional feature map that is used to
approximate the kernel function as in (2), we can work
in weight space view using φ(x) (see [26]). There are
several approaches (e.g., [29], [23]) that both improves the
quality of RFF and reduces the complexity of generating
RFF to O(d log d), where d is the dimensionality of x. Such
computational complexity makes RFF a good candidate to
be used for SLAM.

III. SLAM

In this paper we consider the following SLAM problem.
Let l be a map consisting of L landmarks. Let z =[
z(t1) · · · z(tN)

]
and u =

[
u(t1) · · · u(tN)

]
be vec-

tors of measurements and controls at time steps t1, . . . , tN .
Our goal is to estimate the posterior probability of the robot
poses x =

[
(x)(t0) · · · (x)(tN)

]
and landmarks given

the measurements and controls:

p (x, l|z,u) . (4)

A. RFF-SLAM

We use GP regression with RFF to estimate the state
variables corresponding to trajectory and map (landmarks).
Our model is as follows

x(t) ∼ GP(µx(t),k(t, t′)),

l ∼ N (µl,L),

zi = h

([
x(ti)
l

])
+ ni,

(5)

where x(t) is a state of the robot at timestamp t, l is a
vector of M landmarks, h(·) is a non-linear measurement
model, ni ∼ N (0,Ri) is measurement noise, t1, . . . , tN is
a sequence of measurement times and (µl,L) are prior mean
and the covariance of the landmarks positions.

The paper [18] uses GP for SLAM and provides the main
equations to solve the problem. We follow their approach
with the difference that we utilize RFF approximation of
the RBF kernel. For the RBF kernel its Fourier transform is
defined by p(w) being a Gaussian distribution N

(
0, 1

σ2
l
I
)

.
Explicit mapping (3) allows working in weight-space view

x(t) = µx(t) +

φ1(t)>b
(1)
x

· · ·
φd(t)

>b
(d)
x

+ ε,

where b(m)
x ∼ N (µ

(m)
b ,Km),m = 1, . . . , d, d is the state

size, b(m)
x ∈ RD, φm(x) is a feature map for the m-th state

variable, Km ∈ RD×D is the prior covariance matrix of the
random variable b(m)

x and ∼ N (0, σ2I) is a Gaussian noise
with variance σ2. In principle, the same feature map can

be used for all variables, however, it can be reasonable to
use different features (corresponding to different kernels) to
model different types of variables (for example, coordinates
on the map and angles).

Let us denote

b =
[
b

(1)
x · · · b

(d)
x l

]>
,

µ =
[
µ

(1)
b · · · µ

(d)
b µl

]>
,

K = diag (K1, . . . ,Kd) ,P = diag (K,L) ,

Φi = diag
(
φ1(ti)

>, . . . , φd(ti)
>, I2M

)
R = diag (R1, . . . ,RN) .

(6)

Now to obtain both the robot states and landmarks position
b we employ maximum a posteriori (MAP) estimate

p(b|z) ∝ −1

2

(
N∑
i=1

‖zi − h(Φib)‖2Ri
+ ‖b− µ‖2P

)
→ max

b
. (7)

To solve the problem we do the following. Suppose, that we
have an initial guess b̄. We update the estimate iteratively by
finding the optimal perturbation vector δb∗ for the linearized
measurement model. Namely, we apply the first order Taylor
expansion to the measurements model

h(Φib) ≈ h(Φib̄) + Hiδb, Hi =
∂h(y)

∂y

∣∣∣∣
y=Φib̄

.

Plugging linearized measurement into (7) we obtain the
following optimization problem

δb∗ = arg min
δb

1

2

(
N∑
i=1

‖zi − h(Φb̄)−HiΦiδb‖2Ri

+‖b̄+ δb− µ‖2P

)
.

The solution is given by

δb∗ = A−1g,

A =

N∑
i=1

Φ>i H>i R−1
i HiΦi + P−1,

g =

N∑
i=1

Φ>i H>i R−1
i

(
zi − h(Φib̄)

)
+ P−1

(
b̄− µb

)
.

(8)

We update the model parameters b̄← b̄+δb∗, then update
all the matrices and vectors in (6) and repeat the procedure
predefined number of iterations or until convergence. The
described approach is known as Gauss-Newton method for
non-linear least squares problems, and it is used in [18], [12].
It does not guarantee convergence, so in this work we apply
Levenberg-Marquardt approach. It modifies the system

δb∗ = (A + λdiag (A))
−1
g (9)

where λ is a dampening parameter. The overall update
procedure is summarized in Algorithm 1.

The size of the system matrix A is (Dd+ 2M)× (Dd+
2M) for two-dimensional landmarks. The top-left block of
size Dd×Dd of the matrix corresponds to the weights b and
is typically dense. The bottom-right block of size 2M ×2M
corresponds to landmarks and it is usually diagonal (because
we assume that landmarks are independent). Therefore, the
cost of solving (8) is O(D3d3 + MDd) using Schur com-
plement. However, we use iterative solver and in practice
it converges much faster. The cost of construction of the
matrices in (8) is O(N(D2d2 + M)). The total complexity
is O(ND2d2 +NM +D3d3 +MDd).

When we use the iterative solver that utilizes only matrix-
vector products, we do not need to calculate the matrix A
explicitly. Instead we multiply each term of the sum in (8)
by a vector and then take the sum. Taking into account that
matrices Ri are (usually) diagonal, the part of the Jacobi
matrix Hi that corresponds to derivatives of w.r.t landmarks
is block-diagonal, the complexity of matrix-vector product
for one term in the sum is O((M + D)d). The overall
complexity of solving the system is O(N(M+D)dk), where
k is the number of iterations.

B. State prior

Having good prior µ(t) is essential when modeling trajec-
tory with GP, because usually shift-invariant kernel functions
are used. The GP with such kernel is most suited to model
stationary functions. This does not always apply to trajec-
tories. Non-stationarity can be accounted by non-zero mean
function µ(t). Here we use one of two prior mean functions.

1) Motion model: µx(ti) = F(ti)x̂(ti−1) + B(ti)u(ti),
where F(t),B(t) are time-dependent system matrices.
We use this model if we have odometry measurements.

2) Smoothing splines applied to the estimated trajec-
tory with smoothing parameter 0.98 (we used De
Boor’s formulation, see [30]). We also use weights
that are inverse proportional to the data fit error ‖zi−
h(Φib)‖Ri

. The motivation behind this prior mean
model is the following: in case of non-stationarity the
GP model can oscillate (or it can have other artifacts).
Smoothing the trajectory reduces such effects.

With a non-zero prior mean for the trajectory we can set all
mean vectors µ(i)

b to zero, thus, the GP will only correct the
errors of the mean µ(t). The whole trajectory estimate is
updated with every new measurement, so we also update the
prior µx(ti) for all i = 1, . . . , N for each new observation.

IV. EXPERIMENTS

In this section, we evaluate our approach on several
synthetic 2D trajectories as well as real-world benchmarks.
In all our experiments, we consider the state vector to be
a 2D pose, i.e. x(t) =

[
x(t) y(t) α(t)

]>
. We use the

range/bearing observation model given by

h

([
x(ti)
lj

])
=

[√
(xj − x(ti))2 + (yj − y(ti))2

atan2(yj − y(ti), xj − x(ti))− α(ti)

]
,

(10)

Algorithm 1 Update state at measurement times

1: Initial values b̄, measurement times t1, . . . , tN , measure-
ments z, tolerance ε, max number of iterations K

2: n← 0
3: repeat
4: Using b̄ update vectors and matrices in (6)
5: Calculate update δb∗ by applying (9) to solve (8)
6: b̄← b̄+ δb∗

7: n← n+ 1
8: until relative error is less than ε or n = K

where lj =
[
xj yj

]>
is a vector of coordinates of j-

th landmark. The covariance matrices Rj are given and
typically determined by the precision of the sensor. We
conducted experiment with range measurements only (first
output of h), bearing measurements only (second output of
h) and both types of measurements. The proposed approach
is compared against model based on linear time-variant
stochastic differential equation (LTV SDE) [12]1. LTV SDE
is also based on GP with a special covariance matrix which
has a band-diagonal inverse matrix, therefore, its complexity
O(NM2 +M3).

The estimated trajectories are evaluated using two metrics.

• Absolute Pose Error (APE). This metric estimates
global consistency of the trajectory. It is based on the
relative pose on the estimated trajectory and ground
truth trajectory:

eabsi = P̂i 	Pi = (Pi)
−1

P̂i, Pi, P̂i ∈ SE(3),

where Pi, P̂i are ground truth and estimated poses at
time step ti represented by elements from SE(3) group
of rigid body transformations. We represent 2D points
as 3D point by adding zero z-coordinate, roll and pitch
angles. Then we compute the translational and rotational
errors

APEtrans =

√
1

N
‖trans(eabsi)‖22,

APErot =

√
1

N
‖rot(eabsi)‖22,

where trans(e) is a translational part of e and rot(e)
is a rotational part of e.

• Relative Pose Error (RPE). This metric estimates the
local consistency of the trajectory. It is invariant to
drifts, i.e., if we translate and rotate the whole trajectory
the RPE will remain the same. RPE is based on the
relative difference of the poses on the estimated and
ground truth trajectories:

ereli = δ̂i 	 δi =
(

(Pi−1)
−1

Pi

)−1
((

P̂i−1

)−1

P̂i

)
,

1The implementation was taken from https://github.com/
gtrll/gpslam

where Pi, P̂i ∈ SE(3) are as in APE. Similarly to
APE, we calculate translational and rotational errors

RPEtrans =

√
1

N
‖trans(ereli)‖22,

RPErot =

√
1

N
‖rot(ereli)‖22.

We stress that our work is a proof of concept, the approach
was implemented purely in Python without any optimization.
Therefore, we do not provide any evaluation of the running
time of the algorithm. We also note, that the computational
complexity is reasonably low (see Section III-A). It depends
on the number of features which sets a speed/accuracy trade-
off. Finding optimal number of features is a model selection
problem and it is out of the scope of the paper.

1) Synthetic trajectories: We generated 10 different ran-
dom trajectories, for each trajectory we conducted several ex-
periments with different noise level in observations, different
number of landmarks (from 5 to 100) and different measure-
ment types (range, bearing, range/bearing). The noise was
generated from Gaussian distribution with standard deviation
varying in [1, 5] interval for range measurements and bearing
varying in [1◦, 10◦] interval.

Number of features D: For the synthetic dataset we
conducted experiments with different number of features D.
We observed that for a small D (D ∼ 10) the trajectory
starts diverging when its length increases (at about 100
observations). Increasing the number of features increases
the length of the trajectory for which the estimate does not
diverge. For the trajectories that we used in our experiments
D = 100 was enough to obtain good state estimates.

Kernel parameters: The main kernel parameter is its
lengthscale σl. Typically, it affects the GP regression model
the most. It controls the smoothness of the obtained ap-
proximation. Larger lengthscale should be used for smooth
trajectories and smaller values for less smooth trajectories.
In our experiments a rather wide kernel worked well, we set
σl = 3.0. The qualitative results can be found in Table I.
We can see that in the case of range and range-bearing
measurements the proposed approach looks more accurate.

We also study the dependency of the estimation error on
the noise level and the number of landmarks. In Figure 1 you
can see the APE translation errors for different noise levels,
the number of landmarks and measurement types. We make
several observations based on these results.
• Our approach does not estimate bearing in the range-

only measurements because there is no information
about bearing in the data. In this case we calculate
heading by calculating the movement direction of the
estimated trajectory. Barfoot’s method handles this sit-
uation due to their mean prior based on the differential
equation.

• The proposed approach provides better rotation errors
in all cases.

• The translation errors in range only setting and rotation
errors of RFF approach in bearing only measurements
increase slower with noise level compared to LTV SDE

https://github.com/gtrll/gpslam
https://github.com/gtrll/gpslam

Fig. 1: Average APE errors for synthetic trajectories at
different noise levels and number of landmarks

TABLE I: Relative Errors for synthetic trajectories

Pos. Rot. Landmarks

RangeBearing RFF 0.022 0.154 6e-4
LTV SDE 0.025 5.602 0.110

Range RFF 0.016 0.320 1e-6
LTV SDE 0.025 5.580 0.003

Bearing RFF 0.035 0.152 8e-6
LTV SDE 0.025 1.200 0.016

errors. For range-bearing case the difference is less
significant.

2) Autonomous Lawn-Mower: In this experiment we eval-
uate our approach on a Plaza data set collected from an
autonomous lawn-mower [31]. The data set contains range
measurements recorded using time-of-flight and odometry
measurements. Odometry measurements come more fre-
quently than range measurements. The ground truth data was
collected from GPS measurements and according to [31] its
accuracy is 2cm. The resulting trajectory is given in Figure 2.
In this experiment we did batch updates with batch size 5,
i.e. we updated the trajectory after each new 5 measurements.
The motion model based prior was used as we have odometry
measurements. We can see slight oscillations of the estimated
trajectory. They can be explained by the nature of the Fourier
features. However, the errors are comparable, see Table II.
The estimated trajectories are depicted in Figure 2.

A. KITTI-projected dataset

To evaluate our approach, we proceed with the famous
dataset KITTI odometry[32]. We used the dataset part with
a sequence of stereo images taken while moving along a
specific trajectory. The dataset also contains ground truth

Fig. 2: Distribution of APE errors along the trajecotry for
Autonomous Lawn-Mower benchmark

trajectory and camera information. To apply our approach,
we extracted bearing observations by using visual SLAM
from ORB-SLAM2 [33]. From each stereo image we find
keypoints with their coordinates in the local frame [34] which
we use to calculate bearing observations. The keypoints in
this case play the role of landmarks. The pipeline to project
KITTI into a 2D dataset is following:
• Input: KITTI-odometry datasett(e.g. sequence 08);
• Run ORB-SLAM2 to get observations (keypoints,

timestamps);
• Correct camera pose and keypoints by a transformation

term that aligns with the vertical axis to make them
independent of their original camera pose

Rt ·Rcorrection = Exp([0, 0, α]>); (11)

• Calculate weights for each observations based on how
much time this point was observed/visited;

• Filter observations;
• Do orthonormal projection for each observation;
• Calculate bearing.
The number of landmarks (keypoints) is 80771. With such

a big number of landmarks, the experiments are very slow, so
we reduced the number of landmarks to 3975. We selected
the landmarks randomly with probabilities proportional to
their weights, but for each keyframe we left not less than 10
landmarks. Also, to speed up the calculations we split the
trajectory into 10 consecutive slices, do estimation on each
slice independently and then average the estimation errors.

The extracted data we then use in our approach to estimate
the trajectory. To check our assumption that kernels with
dense precision matrices should work better in case of noisy
observations, we also generated a noisy version of the KITTI-
projected dataset. To do so, we added Gaussian noise with
standard deviation σ.

The results are given in Table II. We can see that with-
out additional noise the results are comparable (with RFF
based approach being slightly better). When we increase the
amount of noise, absolute errors of our approach grow much
slower compared to LTV SDE errors.

V. CONCLUSION

In this paper, we show how to apply GP for time-
continuous SLAM with a less restricted class of kernel func-

TABLE II: Real-world benchmark errors.

Autonomous Lawn-Mower

APE (trans) APE (rot) RPE (trans) RPE (rot)
LTV SDE 0.48 1.44 0.021 0.10

RFF 0.42 2.25 0.026 0.54

KITTI-projected

LTV SDE 5.130 1.059 0.068 0.113
RFF 5.070 0.489 0.040 0.048

KITTI-projected + noise, σ = 1◦

LTV SDE 5.126 1.086 0.068 0.133
RFF 5.070 0.544 0.0454 0.052

KITTI-projected + noise, σ = 3◦

LTV SDE 5.491 3.136 0.139 0.259
RFF 5.075 1.027 0.073 0.115

KITTI-projected + noise, σ = 5◦

LTV SDE 12.915 5.114 0.242 0.358
RFF 5.077 1.304 0.084 0.119

tions. We accomplish it by using RFF approximation of the
kernel. The proposed approach has linear complexity in num-
ber of observations N , which is much faster compared to the
traditional GP model. The method provides a lot of flexibility
for tuning various aspects of the state estimate (smoothness,
periodicity, etc.) by choosing an appropriate kernel function.
However, such flexibility requires more careful tuning of
the prior parameters (mainly, we need good prior mean for
the trajectory and careful balance between measurements
covariance, weights and landmarks prior covariances). We
demonstrated the potential of the approach on synthetic and
real world datasets. The experiments justify our assumption
that in the case of noisy observations having dense inverse
covariance matrix helps to improve the accuracy compared
to sparse matrices.

REFERENCES

[1] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and
mapping (slam): Part ii,” IEEE robotics & automation magazine,
vol. 13, no. 3, pp. 108–117, 2006.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: part i,” IEEE robotics & automation magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[3] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[4] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing,” The Interna-
tional Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203,
2006.

[5] X. Wang, R. Marcotte, G. Ferrer, and E. Olson, “Apriisam: real-time
smoothing and mapping,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 2486–2493.

[6] A. Cunningham, V. Indelman, and F. Dellaert, “Ddf-sam 2.0: Consis-
tent distributed smoothing and mapping,” in 2013 IEEE international
conference on robotics and automation. IEEE, 2013, pp. 5220–5227.

[7] E. Strömberg, “Smoothing and mapping of an unmanned aerial vehicle
using ultra-wideband sensors,” 2017.

[8] J. Dong and Z. Lv, “minisam: A flexible factor graph non-linear least
squares optimization framework,” arXiv preprint arXiv:1909.00903,
2019.

[9] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[10] ——, “isam: Fast incremental smoothing and mapping with efficient
data association,” in Proceedings 2007 IEEE International Conference
on Robotics and Automation. IEEE, 2007, pp. 1670–1677.

[11] M. Kaess, V. Ila, R. Roberts, and F. Dellaert, “The bayes tree: An al-
gorithmic foundation for probabilistic robot mapping,” in Algorithmic
Foundations of Robotics IX. Springer, 2010, pp. 157–173.

[12] T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch continuous-time
trajectory estimation as exactly sparse gaussian process regression.”
in Robotics: Science and Systems, vol. 10. Citeseer, 2014.

[13] T. D. Barfoot, State Estimation for Robotics. Cambridge University
Press, 2017.

[14] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch
estimation using temporal basis functions,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 2088–2095.

[15] C. Bibby and I. Reid, “A hybrid slam representation for dynamic
marine environments,” in 2010 IEEE International Conference on
Robotics and Automation. IEEE, 2010, pp. 257–264.

[16] M. Fleps, E. Mair, O. Ruepp, M. Suppa, and D. Burschka, “Optimiza-
tion based imu camera calibration,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2011, pp. 3297–
3304.

[17] D. Droeschel and S. Behnke, “Efficient continuous-time slam for 3d
lidar-based online mapping,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 1–9.

[18] C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process gauss-
newton for non-parametric simultaneous localization and mapping,”
The International Journal of Robotics Research, vol. 32, no. 5, pp.
507–525, 2013.

[19] X. Yan, V. Indelman, and B. Boots, “Incremental sparse gp regression
for continuous-time trajectory estimation and mapping,” Robotics and
Autonomous Systems, vol. 87, pp. 120–132, 2017.

[20] T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch continuous-time
trajectory estimation as exactly sparse gaussian process regression.”
in Robotics: Science and Systems, vol. 10. Citeseer, 2014.

[21] A. Rudi, L. Carratino, and L. Rosasco, “Falkon: An optimal large
scale kernel method,” in Advances in Neural Information Processing
Systems, 2017, pp. 3888–3898.

[22] K. Wang, G. Pleiss, J. Gardner, S. Tyree, K. Q. Weinberger, and
A. G. Wilson, “Exact gaussian processes on a million data points,”
in Advances in Neural Information Processing Systems, 2019, pp.
14 622–14 632.

[23] M. Munkhoeva, Y. Kapushev, E. Burnaev, and I. Oseledets,
“Quadrature-based features for kernel approximation,” in Advances in
Neural Information Processing Systems, 2018, pp. 9147–9156.

[24] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of
sparse approximate gaussian process regression,” Journal of Machine
Learning Research, vol. 6, no. Dec, pp. 1939–1959, 2005.

[25] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in neural information processing systems,
2008, pp. 1177–1184.

[26] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Advanced lectures on machine learning. Springer, 2004, pp. 63–71.

[27] E. Burnaev, M. Panov, and A. Zaytsev, “Regression on the basis
of nonstationary gaussian processes with bayesian regularization,”
Journal of communications technology and electronics, vol. 61, no. 6,
pp. 661–671, 2016.

[28] W. Rudin, Fourier analysis on groups. Courier Dover Publications,
2017.

[29] K. M. Choromanski, M. Rowland, and A. Weller, “The unreasonable
effectiveness of structured random orthogonal embeddings,” in Ad-
vances in Neural Information Processing Systems, 2017, pp. 219–228.

[30] C. De Boor, “A practical guide to splines, revised edition,” 2001.
[31] J. A. Djugash, “Geolocation with range: Robustness, efficiency and

scalability,” 2010.
[32] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:

The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[33] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[34] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

	INTRODUCTION
	GAUSSIAN PROCESSES
	Random Fourier Features

	SLAM
	RFF-SLAM
	State prior

	EXPERIMENTS
	Synthetic trajectories
	Autonomous Lawn-Mower

	KITTI-projected dataset

	CONCLUSION
	References

