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Abstract— In this paper we apply the low-rank Tensor Train
decomposition for compression and operations on 3D objects
and scenes represented by volumetric distance functions. Our
study shows that not only it allows for a very efficient com-
pression of the high-resolution TSDF maps (up to three orders
of magnitude of the original memory footprint at resolution
of 5123), but also allows to perform TSDF-Fusion directly in
the low-rank form. This can potentially enable much more
efficient 3D mapping on low-power mobile and consumer robot
platforms.

I. INTRODUCTION

Surface reconstruction from the depth sensor data is one
of the key problems in robotics. There are several ways to
represent an unstructured 3D map, including point clouds,
voxel occupancy grids, triangular meshes, and octrees. Those
representations propose different trade-offs in memory effi-
ciency, scene precision, and available algorithms that can
operate on them.

The majority of depth fusion algorithms rely on inter-
mediate volumetric implicit scene representations such as
Signed Distance Functions (sometimes called Signed Dis-
tance Fields), or their truncated (TSDF) versions as in the
original TSDF Fusion paper by B. Curless and M. Levoy
[1]. SDFs and TSDFs are functions existing in 3D space,
and, therefore, must be stored in an appropriate 3D basis. A
common approach is to use 3D piecewise-constant (voxel)
basis. Voxelized SDFs and TSDFs are non-parametric volu-
metric representations of a 3D mesh with a high amount of
redundancy, hence tensor decompositions might be a suitable
tool for compressing it.

In this paper, we use Tensor Train decomposition (TT) [2].
It allows us to conduct many non-trivial operations on the
volumetric map by manipulating directly with compressed
representation, and it is even possible to build complex
pipelines, such as KinectFusion [3].

Potentially it allows using commodity CPU-only em-
bedded computers for large TSDF scene fusion in robotic
3D vision applications. A scene stored in TT-TSDF has
100-2000 times better memory efficiency for utilizing the
compressed TSDF representation while having only 2-10
times computational overhead. In addition to that, GPU-
based algorithms can also benefit from TT compression.
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Fig. 1. Visualisation of 5123 TSDFs. Non-compressed TSDF and various
degrees of TT-compression

Contributions of this paper are the following:
1) We applied TT decomposition on TSDFs of synthetic

models. It has shown spectacular performance in the
lossy compression, allowing up to 5 ·10−4 of the orig-
inal memory footprint for high-resolution volumetric
data, while still providing very close reconstruction in
terms of both metrics (IoU, Hausdorf or Chamfer) and
visual appearance.

2) We have shown that it is possible to run TSDF-
Fusion directly on the compressed form of the global
volumetric map.

II. RELATED WORK

Surface reconstruction from depth data has been an active
research topic for the last decade. Previous works include
the original TSDF Fusion [1], KinectFusion [3] (introduced
real-time GPU processing), Kintinuous [4] (added iterative
re-meshing), ElasticFusion [5] (optimized loop closures),
BundleFusion [6] (sophisticated hierarchical algorithm that
uses both SIFT descriptors and dense data processing).

All of these methods rely on voxelized representation



of 3D data, that has cubic requirements in both memory
storage and complexity of operations. Those complications
are widely recognized, and lead to a variety of algorithms
trying to enhance data storage efficiency, such as Distance
Field Compression [7] (lossy wavelet transform, up to 15%
of original memory, or lossless transform, 25% percent),
OctreeFusion [8] (Octree structure, 10− 20% of the original
memory), Voxel Hashing [9] (hash tables instead of full ar-
rays), and Directional SDF [10] (added direction information
to the TSDF). Overall, the order of magnitude for compres-
sion in common learning-less methods is approximately 5-10
times, which roughly corresponds to the sparsity of TSDFs.

Another large branch of studies related to finding a low-
parametric representation of 3D objects relies on neural net-
works to learn a mapping from 3D voxelized data to a smaller
latent space, in the deterministic or probabilistic fashion
[11], [12], [13]. Such approaches are good when a low-
dimensional latent space is learned for a particular machine
learning problem, such as classification or completion, but
in general, they both require intensive computing capabilities
and cannot handle arbitrary 3D scenes.

There is also a branch of algorithms for compressing mesh
data, such as Google Draco [14], based on the Edgebreaker
algorithm [15]. These algorithms are very effective (10−1

to 10−2) for lossless compression of static meshed data.
However, meshes are not widely used for 3D perception and
3D geometric learning problems, those for the most part rely
on implicit volumetric data.

III. TENSOR TRAIN DECOMPOSITION

A. Introduction

Low-rank tensor decomposition can be seen as a linear-
algebraic way for lossy compression of a multi-dimensional
array (tensor). There are different types of low-rank decom-
positions [16], the most stable of which are Tucker and
Tensor Train [2]. Here we will use the second one.

Let us consider a 2D case first. Assume we have a function
on a square grid N ×N stored in a 2D array (a matrix A).
We would like to find a matrix Ã with deficient rank R < N
such that it has the smallest error in terms of Frobenius norm:

ε = ||A− Ã||F =

√∑
i,j

(aij − ãij)2. (1)

According to the Eckart–Young–Mirsky theorem, the ma-
trix Ã is given by a truncated SVD decomposition of ma-
trix A: A = USV ∗ =⇒ Ã = US̃V ∗. In addition, the square
of the Frobenius norm error of this approximation is ex-
actly equal to sum of squares of neglected singular values:

ε =
N∑

i=R+1

σ2
i . Frobenius norm of error in matrices ε is (up a

constant) equal to RMSE loss between the original function
and its approximant on the grid. Therefore with the SVD-
truncated approximation, we found the best (in terms of
RMSE) low-rank discrete functional approximation with a
controllable error. A similar logic can be applied for arbitrary
d-dimensional arrays, and this is the core idea behind Tensor
Train decomposition.

B. Definition and complexities

Let us consider a d-dimensional array F (i1, . . . , id) with
sizes of modes N1, . . . , Nd. The following representation of
this array is called a Tensor Train:

F (i1, i2, . . . , id) =

r1,r2,...,rd−1∑
m1,m2,...,md−1

G(1)(i1,m1)·

·G(2)(m1, i2,m2) · . . . ·G(d)(md−1, id),

(2)

where arrays G(k) are called TT-cores, and numbers rk are
called TT-ranks.

The standard way of obtaining cores G(k) from a given
array is to use the TT-SVD algorithm [2]. Its key idea is
sequential reshaping of the multidimensional array into rect-
angular matrices, with sequential factorizing of dimensions
using truncated SVD.

Fig. 2. TT-decomposition of a tensor of size N ×N ×N with rank R.

Along with the reduction in memory, Tensor Train
representation allows performing mathematical operations
such as +,−, ∗, Hadamard, Kronecker and dot products,
summation over any index, directly in the low-rank
form. Additionally one can perform error-controllable
compression and re-compression using TT-SVD [2],
application of linear operators with low-rank TT-matrices
and application of nonlinear operators to compressed
data without full decompression using TT-CROSS
or DMRG/ALS/AMEn algorithms [17], while still
allowing to perform deep learning-style backpropagation.
All this allows embedding compressed tensors in a
variety of algorithms from scientific computing and
data science. Also, it has excellent code availability
(TT-Toolbox, ttpy, tntorch, t3f, tensorly
libraries).

In the case of 3D data the total memory required by TT
is N1r1 + r1N2r2 + N3r2 = O(NR2) instead of O(N3).
Therefore results are the best for high grid resolutions as
compression ratio is O(R

2

N2 ). Here R = max(ri) and N =
max(Ni).

The complexity of compressing a d-dimensional array into
a rank-R TT-approximation using TT-SVD is O(NdR2). The
complexity of adding two TTs with TT-ranks R and re-
compressing the sum back into a rank-R tensor is O(dNR3).

IV. COMPRESSION OF SDF AND TSDF

In this paragraph, we analyze how low-rank tensor com-
pression affects Signed Distance Field and its truncated ver-
sion. Given that both are widely used in the 3D community
it is natural to compare their behaviour under compression.



Let us consider a closed 3D model Ω with surface ∂Ω. For
any 3D point p ∈ R3 Signed Distance Function (Field) is
defined as:

SDF (p) =

{
dist(p, ∂Ω), if outside of object Ω
−dist(p, ∂Ω), otherwise.

(3)
Truncated SDF is defined as:

TSDF (p) =

 µ, if µ ≤ SDF (p)
SDF (p), if − µ < SDF (p) < µ

−µ, if SDF (p) ≤ −µ.
(4)

It is well known in the tensor community that SVD-based
approximations struggle to find good approximations when
it comes to discontinuous or irregular data. However, the
main observation of this paper is that although low-rank
TSDF representation is erroneous (in terms of RMSE), the
zero-surface of the function is still of a sufficient quality to
produce good reconstructions of the mesh. On the contrary,
the low-rank SDF representation, although a priori looks
highly redundant and hence appropriate for TT compression,
yields poor results.

We illustrate this effect on Figure 3. We take a watertight
model of a plane and compute both true SDF (second
subfigure) and TSDF (fourth subfigure). Middle crossections
are shown. While both of those functions work well to
represent the surface of the model as zero isosurface, it is not
the case for their compressed forms. With TT-compression
with maximum ranks R = 7 SDF is unable to provide a
connected model, while TSDF still visually corresponds to
the correct shape of the crossection of the plane.

This is possibly because TT-SVD minimizes RMSE for the
whole volume thus wasting singular vectors on storing values
in voxels far from the zero-surface - the information that is
not useful for reconstructing 3D mesh from its voxelized
representation.

V. TSDF FUSION AND ITS COMPRESSED FORM

TSDF Fusion is a family of online algorithms [1], [3], [4],
[5], [6] to build a global volumetric map of a 3D scene using
a series of depth maps.

As the proof of concept we propose a modified KinectFu-
sion algorithm, where mixing of separate TSDF volumetric
frames into the global volumetric map is done fully in the
compressed format.

1) Obtain and preprocess a depth image,
2) estimate camera pose,
3) construct a TSDF frame of the current depth image

(Alg. 1),
4) compress the TSDF frame using TT-SVD,
5) fuse TT-TSDF frame into the compressed global vol-

umetric map (5).
Technically it is possible to construct the current TSDF

frame from a depth image directly in the TT format using an
algorithm from the TT-CROSS [17] family. However both the
theory and our experiments with Amen-CROSS have shown
that the resulting TT frame is of full rank (R = N ), requiring
even more memory than an uncompressed tensor, while being

ModelNet plane-0629 (watertight version)

Crossection of the SDF (uncompressed)

Crossection of the TT-SDF (R = 7). Original surface is far
from being well reconstructed after compression.

Crossection of the TSDF (uncompressed)

Crossection of the TT-TSDF (R = 7). Original surface is
well reconstructed.

Fig. 3. The model and middle crossections of its SDF and TSDF.
Uncompressed forms and R = 7 TT-forms are shown. Dashed line
corresponds to the surface of the model (zero isolevel)

sufficiently slower to obtain (O(dNR3) = O(N4) per frame
instead of O(N3)). And then we would still need to run TT-
SVD to re-compress it into low rank. Therefore it is hard to
avoid dealing with one full TSDF frame every iteration.

Camera pose estimation is out of the scope of this paper,
but it can be done by a variety of methods, using matching
depth point clouds [3] or sparse descriptors [6]. For the proof
of concept we considered a camera pose as given for every
frame.



Depth images are preprocessed with an inpainting algo-
rithm by A.Telea [18]. This is done to avoid propagation of
sharp discontinuities and aliasing in the data that is to be put
into TT-compression.

Given a preprocessed depth image D with size of W ×H
and a camera pose matrix T , we construct the corresponding
TSDF of the depth frame according to the standard algorithm
(see Alg. 1). b. . .e denotes rounding to the closest integer. If
pix_x or pix_y are beyond the depth image then we put
distance d = 0. This part of the algorithm requires O(N3)
operations per depth image.

Data: depth image D, camera pose matrix T
Result: TSDFframe
for all voxel centers p̃ in volume V do

(x, y, z) := T−1p̃,
pix_x, pix_y := bx/ze, by/ze,
d := D(pix_x, pix_y),
TSDF(p̃) := truncate(d− z,±µ)

end
Algorithm 1: Depth image to volumetric TSDF frame

The fusion is done in the TSDF-Fusion / KinectFusion
fashion:

Fk(p) = Fk−1(p) +WframeTSDFframe,

Wk(p) = Wk−1(p) +Wframe,
(5)

where Wframe is the binary view frustum mask of the
current frame.

One minor difference with the original algorithm is that
after obtaining a non-compressed 3D TSDF for a piece of
the 3D scene generated from the current depth image we
then compress the full update term WframeTSDFframe
by applying truncated TT-SVD with a fixed maximum rank
R. It requires O(N3R2) operations, which is the most
computationally expensive part. Then we further perform
fusion to the compressed global map Fk(p). The second
minor difference is that instead of using running average
over frames we separately accumulate the enumerator Fk(p)
and denominator Wk(p). The final TSDF is then computed
as Fk(p)/Wk(p) and the mesh of the scene is restored using
the Marching Cubes algorithm [19].

VI. EVALUATION

A. Synthetic models

In this section we will test the impact of our Tensor
Train compression on TSDFs. To analyze the behavior of
the meshes we will test on Stanford Dragon, Armadillo and
selected models from ModelNet40 [20] and ShapeNet [21].
Those are popular synthetic datasets for 3D objects. Many
of the models have fine details and complex non-convex
geometries, so it is informative for testing lossy compression
algorithms.

There are some fundamental limitations that are not related
to our compression. The first one is that we use TSDF-
Fusion/KinectFusion pipeline and we can only see the ex-
ternal shell of each model. And statistical nature of the

KinectFusion better detects features that can be observed
from multiple viewpoints. The second one is that a minimum
size of fine details is limited by the voxel size. The third
one is that we recover mesh from TSDF by the Marching
Cubes, and it adds angular artifacts to the surface. The
original KinectFusion paper [3] as well as DeepSDF paper
[13] render the surface of the recovered model by directly
ray-tracing through TSDF, nevertheless, for our purposes it
is not necessary.

For gathering synthetic depth data from the meshed mod-
els we use an approach similar to the one used in [13].
We normalize a model isotropically such that it fits in a
unit sphere with 5% margin. Then we create 100 uniformly
distributed camera observation points, render virtual depth
maps and perform standard KinectFusion on the pairs (depth,
camera pose) data with resolution 5123 voxels. Meshes are
recovered using the Marching Cubes algorithm [19]. This
approach produces clean watertight meshes with no interior
structure, even from relatively dirty non-manifold meshes.

For quantitative evaluation, we will be using Intersection
over Union metric (Hausdorff (Table II) and Chamfer dis-
tance (Fig. 5) metric on the recovered watertight mesh.

B. Intersection over Union (IoU) metric

For two closed 3D objects (Ω and Θ) IoU is defined as:

IoU(Ω,Θ) =
|Ω ∩Θ|
|Ω ∪Θ|

.

IoU is a volume-based metric, and it is naturally computed
on the binary masks of bodies where TSDF < 0. IoU
is the most straightforward metric to compute, especially
considering that mesh-related metrics require cleaning mesh
models by running high-resolution TSDF-Fusion beforehand.

C. Hausdorff distance

For a pair of surfaces ∂Ω, ∂Θ Hausdorff distance is:

dH(∂Ω, ∂Θ) = inf
ε>0

[∂Ω ⊆ ∂Θε and ∂Θ ⊆ ∂Ωε] .

In our ablation study we report relative (dimensionless)
Hausdorff distance, which is dH normalized by the length
of the diagonal of the bounding box of the mesh.

D. Chamfer distance

Symmetric Chamfer distance is defined as:

dCD(∂Ω, ∂Θ) =
∑
x∈∂Ω

min
y∈∂Θ

||x−y||22 +
∑
y∈∂Θ

min
x∈∂Ω

||x−y||22.

In our test in Fig. 5 we measure symmetric Chamfer
distance on 30000 points. On the plot we report dCD/30000.

Note that we measure Hausdorff and Chamfer distances
between non-compressed TSDF-recovered mesh and every of
TT-compressed TSDF-recovered meshes. This is to negate an
uncertainty related to non-manifoldness and possibly existing
interiors of 3D meshes from evaluated datasets.

Visual results on the quality of shapes recovered from
compressed TSDFs are shown in Figures 4 and 5. As seen
from both pictures and metrics, small or thin details start



deteriorating first as the rank decreases. The best results are
obtained for the chair model (simple shape, many smooth
surfaces), and the worst are for the Stanford Dragon and
Stanford Armadillo (complex shapes, a lot of thin details).

TABLE I
IOU METRIC (LARGER IS BETTER)

Max-Rank 40 30 20 10
Car .9820 .9720 .9580 .8803

Plane .9799 .9730 .9608 .9131
Dragon .9831 .9749 .9543 .8814
Bench .9758 .9706 .9565 .8890
Chair .9828 .9800 .9701 .9097

TABLE II
RELATIVE HAUSDORFF DISTANCE ×103 (SMALLER IS BETTER)

Max-Rank 40 30 20 10
Car .28± .41 .38± .41 .57± .79 1.41± 1.95

Plane .19± .29 .26± .41 .39± .61 .95± 1.35
Dragon .42± .56 .70± 1.17 1.34± 2.42 4.4± 7.3
Bench .14± .19 .18± .26 .30± .43 .82± 1.30
Chair .12± .16 .14± .20 .24± .33 .79± 1.13

E. Depth dataset

In this section we will test the fusion algorithm discussed
in the section V.

As shown on our tests on synthetic models (see Fig.
4), maximum rank R = 40 is sufficient to preserve fine
details such as car wheel rims or dragon’s horns. Our
KinectFusion implementation maintains a fixed maximum
TT-rank R = 40 for the global TSDF map. Only a single
uncompressed volumetric TSDF frame needs to be stored in
the memory. It then can be compressed and fused with the
global map directly in a compressed form. The experiments
were conducted on the global volumetric grid of resolution
324× 209× 231.

We use a dataset from Zeng [22] that contains RGBD
frames (we use depth channel only), intrinsic calibration
matrix as well as extrinsic transformation matrices for every
frame. Evaluating camera positions is out of the scope of this
work, and we assume extrinsic camera matrices are already
known. For the scene from the dataset, metrics are shown
in Table III. Reconstructed scenes are shown in Fig. 6. As
seen from the pictures and the Hausdorff distance, TT is an
effective method for compressing TSDF.

VII. CONCLUSIONS

We have proposed a new algorithm for handling TSDFs
and performing fusion of a global TSDF map in a com-
pressed form using low-rank Tensor Train decomposition. It
is learning-less, mathematically simple and relies only on a
single hyperparameter - desired truncation rank.

We have shown that since Tensor Train allows for al-
gebraic computations in a compressed format, it may be

Fig. 4. From left to right: Uncompressed TSDF, Low-rank TT-TSDFs
with maximum tensor ranks R = 40 (0.64% memory), R = 20 (0.17%
memory), R = 10 (0.046% memory)

TABLE III
TENSORIZED TSDF FUSION METRICS

KinectFusion TT-TSDF Fusion
[3], CPU (ours), CPU

Hausdorff distance, relative 0 2.3± 0.5× 10−2

Memory for scene 62.6 MB 1.43 MB
100% 2.3%

Integration time per frame 42 ms 1734 ms
Total time per frame 1.26 s 2.94 s

directly embedded in a KinectFusion pipeline, such that the
global map is always maintained in the compressed form
with a fixed low rank. We have shown that it also works
for sophisticated synthetic models with fine details. For the
resolution of N = 512 it performs very efficiently, allowing
for storing high-resolution 3D TSDFs requiring only for
0.64% of the memory for an almost visually indistinguish-
able quality compression (R = 40), and up to 0.046% for
the compression that still preserves main geometric features
of the model (R = 10).

The future directions of this work may be to use differen-
tiability property of the Tensor Train representation to apply
it as a learning-less implicit TSDF shape embedding layer
for 3D deep learning tasks, such as shape completion.
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