
Noname manuscript No.
(will be inserted by the editor)

Anticipative Kinodynamic Planning: Multi-Objective
Robot Navigation in Urban and Dynamic Environments

Gonzalo Ferrer · Alberto Sanfeliu

Received: date / Accepted: date

Abstract This paper presents the Anticipative Kino-
dynamic Planning (AKP) approach for robot naviga-

tion in urban environments, while satisfying both dy-

namic and nonholonomic constraints. Our main motiva-

tion is to minimize the impact that the robot is doing

to the environment, i.e. other pedestrians, while suc-
cessfully achieving a navigation goal. To this end, we

require a better understanding of the environment, and

thus, we propose to integrate seamlessly a human mo-

tion prediction algorithm into the planning algorithm.
In addition, we are able to anticipate for each of the

robot’s calculated paths or actions the corresponding

people’s future trajectories, which is essential to reduce

the impact to nearby pedestrians. Multi-objective cost

functions are proposed and we describe a well-posed
procedure to build joint cost functions. Plenty of sim-

ulations and real experiments have been carried out to

demonstrate the success of the AKP, compared to other

navigation approaches.
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1 Introduction

It is of the greatest importance that service robots can

successfully navigate in typically urban environments,

and at the same time, people’s behaviors should not

be conditioned by the presence and the maneuvering of
robots. Naturally, robots and people should interact if

they are sharing the same environment, as exemplified

in Fig. 1-Top. This issue becomes the main motivation

of the present work: we aim to minimize the robot’s im-
pact towards all those nearby pedestrians, while navi-

gating and executing tasks.

To this end, we propose an anticipative approach
that is able to foresee people’s trajectories and their

corresponding reactions to each one of the planned ac-

tions, selecting accordingly the best robot action. The

key point of our method lies in our effort to understand
the scene and the implications derived from the robot’s

actions, as a step towards a more intelligent behavior.

Temporal restrictions are important in social envi-
ronments: people walk and change their positions dur-

ing time, and thus, we consider them as dynamic ob-

stacles. Other approaches make the assumption that

pedestrians behave as static obstacles. Under some cir-
cumstances, such as simple configurations of the envi-

ronment, these approaches succeed perfectly. However,

when the conditions get more complex, like a highly

dynamic environment in semi-crowded scenes, under-

standing the consequences of robot’s actions is essential
to find a good navigation trajectory. In this work, we

define semi-crowded as a group of up to 8 dynamic ob-

stacles (people) that move around the robot and thus

significantly alter navigation paths. On the other hand,
static people or idle people are those pedestrians with

velocities close to zero that do not alter navigation

paths significantly. Predicting trajectories for dynamic
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Fig. 1 Top: The AKP navigating in a urban environment.
Bottom: Robot visualization of the scene, where people are
plotted as green cylinders and their predictions are drawn in
space× time, being the z axis time.

obstacles is thus more involved and prone to error than

static obstacles.

A cost-based navigation path is calculated while sat-

isfying both dynamic and nonholonomic constraints,

also referred as kinodynamic constraints. In in Fig. 1-
Bottom is depicted an example of the temporal con-

straints considered by the Anticipative Kinodynamic

Planning (AKP).

Our approach separates the generation of trajecto-

ries and their evaluation to achieve our objective: re-
ducing the social-aware navigation impact and at the

same time, navigating up to the goal. We have tested

the validity of the algorithm first through thousands of

simulations, and then in a real robotic platform com-
paring with widely-used methods.

The following is a list of the main contributions de-

rived from the present work:

1. An anticipative approach, where each action of the

robot corresponds to different people’s predictions.

2. A well-posed multi-objective cost function to find
the best trajectory among a set of candidates.

3. Experiment design seeking repeatability on a social

environment.

The structure of our proposed algorithm is depicted

in Fig. 2-Left. The white boxes represent well known

methods necessary for a navigation scheme, such as a

map and a global planner. Our contributions are within

the blue boxes and include modifications to the local
planner and an adjoint prediction module.

The remainder of this work is structured as fol-

lows. Section 2 describes the related work. In Section 3

we define the robot’s and people’s states considered

throughout the paper. Section 4 presents the prediction

framework and all its components. In Section 5, we dis-
cuss the planning algorithm used and how to integrate

it with the prediction framework. The multi-objective

costs are described in Section 6. Section 7 describes the

simulations, as a prior step before real testings are car-
ried out. Finally, Section 8 describes the experiments,

comparing our method with other state of the art ap-

proaches in real environments.

2 Related work

The prediction of human motion is not an easy en-

deavor. The Social Force Model (SFM) by Helbing and

Molnár [1] is a popular approach to describe human

motion as particles geverned by external forces. There

are multiple extensions of it such as heading heuristics
[2], or the work of Zanlungo et al. [3], considering a

collision time which determines the magnitude of the

interacting force.

Arechavaleta et al. [4] predicted human motion us-

ing control criteria and human trajectories are gen-

erated in controlled environments. A real-time multi-
agent navigation approach, based on the reciprocal ve-

locity obstacle, was presented by Berg et al. [5], which

works very well in simulation, while is not able to per-

form so well under realistic situations, where uncertain-
ties are present. Vasquez [6] proposed a prediction sys-

tem based on a joint planning problem, assuming some

optimal objectives to be sough by the pedestrians.

Using heuristics and geometric criteria, Foka and

Trahanias [7] proposed a geometric-based method for

human motion prediction that uses human motion in-
tentionality in terms of goals.

In the present article, we apply geometrical based

predictors such as the works of [8] and [9] that infer

human motion intentions and afterwards predict hu-

man motion in a continuous space, according to the

Social Force Model (SFM) [1], and the Extended SFM
(ESFM) [10].

The autonomous vehicles community has been inter-

ested on including an accurate prediction into the plan-

ning scheme, publishing relevant works for the problem
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Fig. 2 Left : Overview of the general AKP navigation scheme. The blue boxes are our contributions. Right : scheme of the
procedure to calculate the best path.

studied in this paper. Gindele et al. [11] used an occu-

pancy filter for prediction and Bahram et al. [12] pro-

posed a discrete set of behaviors for decision making
by a nonlinear model predictive approach in freeway

scenarios.

The literature on planning is vast and extensive. Po-

tential fields (PF) [13] were introduced for navigation
algorithms, mostly for static environments, since a cou-

ple of decades ago. Despite their advantages, there ex-

ist many well known limitations, such as local minima

or oscillations [14]. Several approaches try to overcome
these limitations, such as [15], by using a randomized

walking path when a local minimum is reached.

A special case of dynamic environments include robot

navigation among humans. Sisbot et al. [16] proposed
to model people as a summation of a PF. Svenstrup et

al. [17] used a navigation PF and minimized its cost

through people’s Potential Fields. Fulgenzi et al. [18]

calculated probabilities of collision and planned using a

set of motion primitives under a limited time horizon,
very similar to our approach. A pure reactive approach

based on PF (SFM) has been proposed by Ferrer et

al. [19], where their plans are socially aware in human

environments. We will present in this paper a solution
to overcome the well-known limitations of PFs, while

maintaining their benefits, using our early work [20,

21].

The dynamic window approach by Fox et al. [22] and

other velocity constrained approaches, such as the work
of Simmons [23], permitted to consider obstacles and

collisions. Unfortunately, they suffer from local minima

as well. Approaches combining a DWA with a global

planner as proposed by Brock and Khatib [24] solve the
problem by introducing a global function. Our approach

also relies on a global planner and repeatedly calculates

a local solution.

Sampling-based techniques have become quite pop-

ular when solving planning problems. They may take

into account kinematic and dynamic constraints such
as [25] and [26], which is very appropriate for dynamic

environments, and thus for our approach. Stachniss and

Burgard [27] obtain a kinodynamic compliant trajec-

tory by decoupling the problem into a search in space
and a posterior optimization of the path satisfying the

restrictions. Our approach integrates the search of a

path avoiding obstacles as well as provides the inputs

required to execute that trajectory considering kinody-

namic constraints.

Data driven techniques have been used extensively

to model human motion as well as robot planning. Ben-

newitz et al. [28] proposed a place-dependent prediction

method in which they analyze a collection of people’s
trajectories in an indoor environment. Their method

clusters motion trajectories by using the Expectation-

Maximization algorithm, and classifies new observed

trajectories.

Inverse Reinforcement Learning-based approaches
[29–31] can provide good solutions by predicting social

environments and planning through them. The work

by Ziebart et al. [29] uses both place dependences and

geometric criteria. The authors proposed to use a re-
ward function to generate the optimal paths towards

a destination. This method can also be used either for

modeling of route preferences or for inferring destina-

tions.

Kim et al. [32] formulated the problem as a Gaus-
sian Processes Regression by low-rank matrix approx-

imation. Chen et al. [33] proposed a Deep Reinforce-

ment Learning architecture to predict human motion

and robot collision avoidance.

A joint calculation of people’s path and the robot

path has been proposed by Trautman et al. [34], using

Gaussian processes and a distance-based interaction po-



4 Gonzalo Ferrer, Alberto Sanfeliu

tential between people. This method is able to provide

an approximation to an anticipative behavior finding

the less occupied robot trajectory, but unlike our ap-

proach, we are able to quantify the magnitude of the

alterations to nearby pedestrians and plan accordingly.

Finding a cost function to correctly characterize robot
navigation among people may become an ill-posed prob-

lem, e.g. local minima, etc. Kuderer et al. [35] have

addressed this problem and proposed a set of homo-

topically distinct trajectories. Sharing this same goal,
we tackle this problem by proposing a multi-objective

cost function where we optimize different independent

criteria, such as the distance to the goal or the cost to

navigate for pedestrians.

In this work, we present a multi-objective function

that considers different and independent objectives, such
as robot cost, nearby people cost, distance to goal, etc.

Additionally, this technique permits us to correctly han-

dle and compare different objectives into a single and

well-posed function. Multi-Objective Optimization (MOO)
methods [36–38] have inspired a solution to the mini-

mization problem that selects the best path.

3 State-space formulation

We consider that both robots and people move in a
two-dimensional space which represents urban environ-

ments. Let X denote the workspace and x ∈ X describes

the position x = [x, y]⊤ for moving objects, including

people and robots.

The configuration space C is defined as a pose q ∈ C
in 2D, where q = [x, y, θ]⊤ is the position and orienta-
tion of an object.

We define the augmented phase space S for the kino-

dynamic treatment of the states, that considers the first

order derivative plus time. The action u ∈ U modifies

the state s, and corresponds to the acceleration calcu-
lated by the the ESFM (Sec. 4.2). Similarly, U = {u}
is a set of inputs u ∈ U , that characterize a trajectory.

In particular, let the state of a person be defined as

sp = [x, y, vx, vy, t]
⊤. It corresponds to a double inte-

grator, a free moving particle subject to the following

differential equation in the continuous domain:

ṡp(sp, up) =
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Likewise, the robot’s state sr = [x, y, θ, v, ω, t]⊤ is a

unicycle model with nonholonomic constraints:

ṡr(sr, ur) =

















v cos(θ)

v sin(θ)
ω

av
aω
1

















. (2)

3.1 Joint state-space

We define a joint state of the system that takes into

account the robot state and the states for all the pedes-

trians in the scene. Although the dimensionality of the
problem grows considerably, it is a mandatory to con-

sider the reactions of nearby people to the robot’s ac-

tions.

The joint state space S consists of S = Sr ×
⋃

Spi
,

which considers the robot phase space Sr and the union
of every person’s phase space Sp. Correspondingly, the

joint state s ∈ S is defined as s = [sr, sp1
, . . . , spN

]⊤.

The time variable t = t(s) is equal for all the s

states. We will refer to S = {s} as a set of states s ∈ S
and U = {u} a set of inputs u ∈ U .

4 Prediction

Intuitively, prediction methods are of great importance

for a better robot navigation. Unfortunately, most of

the present approaches separate planning and predic-

tion in order reduce complexity, and they do not con-

sider the effect of moving objects in the robot naviga-
tion. In our method we take into account these effects

and we will later present a simple method that com-

bines prediction and planning in the same scheme. We

analyze human trajectories under the influence of dy-
namic semi-crowded and heterogeneous environments,

where there are moving people, moving objects, robots

and also static obstacles.

In this section we explain how we compute the tra-

jectory prediction of all the moving objects (mainly
people). First we briefly explain how the human mo-

tion intentionality is predicted. Then we describe the

Extended Social Force Model (ESFM) and how to ap-

ply it to the robot. Finally we explain how to compute
the trajectory prediction using the ESFM.

4.1 Intentionality Prediction

The main purpose of the intentionality predictor is to

infer which is the most expectable destination that a

person is walking to.
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In brief, we present the basic formulation necessary

to analyze real trajectories. Let

Xn(t) = {xn(t0), xn(t0 +∆t), . . . , xn(t)} (3)

be a set of positions (people detections) where as stated

before, each point xn(t) = [x(t), y(t)]n is the position at
time t of the nth trajectory with respect to the world

reference frame.

Moreover, we define a set of destination positions

D = {D1, D2, . . . , DM}, that indicates interesting po-

sitions in a scene that people might go to.
We infer the probability of the destination P

(

Dn=

Dm| Xn(t)
)

using a naive Bayes classifier, where Dn(t)

is the inner intention for the nth person to reach the

destination Dm, and can be any of the destinations D
in the scene. For further details, see [8].

4.2 Extended Social Force Model

In this work we use the Extended Social Force Model

(ESFM) [10] for predicting human motion. This method

can also be used for navigation purposes since it pro-
vides a realistic model describing interactions among

humans in typical social environments [9].

The ESFM considers humans and robots as free par-

ticles in a 2D space abiding the laws of Newtonian me-
chanics, and is based on attractors and repulsors. The

attraction forces assume that the pedestrian n tries to

adapt his or her velocity within a relaxation time k−1,

f goaln (Dn) = k
(

v0n(Dn)− vn
)

, (4)

where v0n(Dn) is the desired velocity vector to reach
her goal according to the intention Dn, and vn is the

current velocity.

The repulsive interaction forces are defined as fol-

lows:

f
int
n,z = aze

(dz−dn,z)/bz d̂n,z, (5)

where z is either a person, a robot, or a static object

in the environment. For each kind of interaction force

corresponds a set of force parameters {k, az, bz, λz , dz}.
The distance dn,z from the person n to the target z and

d̂n,z is the unity vector z → n.
Accordingly, the resultant force is the summation

fn = f goaln (Dn)+
∑

j∈P\n

f int
n,j +

∑

o∈O

f int
n,o +

∑

r∈R

f int
n,r , (6)

where each target on the scene, either a person, or an

obstacle, or a robot, contributes to fn. In Fig. 3 is de-

picted an example of the corresponding forces actuating
in a scene. This force is transformed into an accelera-

tion, and thus, an action un = fn/mn that takes into

account the mass mn of the nth target.

Fig. 3 Social forces actuating in the scene for the person
n (in blue), which is attracted to a destination while other
interactions take place with a robot and two pedestrians.

4.3 SFM applied to the robot

The objective is to treat the robot as a free moving
particle in the space, similarly to a person as explained

above. Unfortunately, nonholonomic constraints reduce

the robotic platform mobility. We need to bridge the

gap and provide an adjustment that permits the robot

being compatible with the ESFM. The resultant robot
force fr = fr||θ+ fr⊥θ consists of a component in the

translation direction fr||θ, which directly transforms

into a translational acceleration and an orthogonal force

fr⊥θ that does not contribute to the robot translation.
In order to solve this, the robot rotation acceleration is

computed considering the orthogonal force component

in the following way:

τr = r× fr⊥θ + kτω, (7)

where r is the vector radius of our platform, oriented

to θ and kτ is a damping factor in order to avoid oscil-
lations.

4.4 Trajectory Prediction using the ESFM

We formulate a prediction trajectory for a time horizon

t+ h. Let ŝn = [x̂n, v̂n] be the augmented state of po-

sition and velocity, and the continuous-time stochastic
dynamics

dŝ = ˙̂s(ŝ, u)dt+ g(ŝ, u)dW (t), (8)

where dW (t) is a Wiener process (W (∆t) − W (0)) ∼
N (0, ∆tI), ˙̂s(ŝ, u) is the deterministic part of the transi-

tion function, see (1), and g(s, u) is the stochastic part,
which becomes a Gaussian random variable N (0, Σ̂s)

for the discretized problem at time interval ∆t in this

particular case.
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Algorithm 1 MH trajectory prediction

1: for t′ = t, . . . , t+ h do

2: for n = 1, . . . , N do

3: if x̂n(t′) * Dn then

4: ŝn(t′ +∆t) = ŝn(t′) +
∫

∆t
˙̂sn

5: Σ̂n(t′ +∆t) = Σ̂n(t′) + Σ̂s

6: end if

7: end for

8: end for

For prediction purposes, we calculate the covariance

Σ̂n(t), however, this uncertainty diffusion is just an ap-
proximation being sometimes not consistent with real-

ity, e.g., an abrupt change on intentionality. In prac-

tice, we chose to propagate deterministic trajectories

and deal with uncertainty thought an MPC architec-
ture (see Sec. 5.1).

Accordingly, the set of predicted states is

Ŝn(t+h) = {ŝn(t+∆t), ŝn(t+2∆t), . . . , ŝn(t+h)} (9)

Σ̂n(t+ h) = {Σ̂n(t+∆t), Σ̂n(t+ 2∆t), . . . , Σ̂n(t+ h)}.

(10)

As shown in Alg. 1, all the present targets in the

scene propagate simultaneously and the expected prop-

agations are used in the next iteration. Once a nth tar-
get succeeds on its intention Dn to reach its correspond-

ing destination Dm, it remains idle waiting for the rest

of the targets to complete their trajectories or until the

time horizon h expires.

The ODE appearing in Alg. 1 line 4 is solved us-
ing integration methods, furthermore, it is subject to a

limitation in velocity ‖v‖ < vmax. In Fig. 4 is depicted

a simple trajectory for two people, where the future

position and covariance of each person is calculated si-
multaneously. We will discuss later how to incorporate

this prediction technique into the planning scheme.

Dm

Xn(t)

sn (t+h) 

D3

D1

^

D2

xn(t) 

vn(t) 

fn(t) 

Xj(t)

xj(t) 

sj (t+h) ^

sj(t+Δt) 

Σj(t+2Δt) 

^

^

Fig. 4 Trajectory prediction for two people at time t+ 2∆t.

Algorithm 2 AKP(qgoalr , sini, thorizon,K)

1: Initialize T (V , E)← {ø}
2: V ← sini

3: {qgoalpi } = people intentionality(X(t),D)
4: for j = 1 to K do

5: [qgr , β] = sample(qgoalr )
6: sparent = find nearest vertex(qgr ,T , β)

7: [Unew, Snew] = extend(sparent, q
g
r , {q

goal
pi })

8: Jnew = cost to go(Unew , Snew, qgoalr ,T )
9: if no collision(Snew) then

10: V ← V ∪ {Snew ,Jnew}
11: E ← E ∪ {Unew}
12: end if

13: end for

14: return minimum cost branch(T )

5 Anticipative Kinodynamic Panning

The scheme of our planning approach was presented on
the introduction section. Fig. 2-Right depicts the basic

procedure to calculate the robot path:

– Get and track obstacles and people in the scene.

– Calculate a large set of paths by using a modified

version of a kinodynamic RRT.

– Choose a set of possible path candidates and then
calculate the best path.

We have chosen to use the ESFM to alleviate calcu-

lations, since other methods focus only on solving the

Boundary Value Problem to connect a pair of poses and

are not capable of capturing the interacting nature of
the environment. An advantage of using the ESFM is

that we are directly planning in the action space u ∈ U ,
and thus, it is not necessary the use of a controller with

respect to a given path.

The prediction module provides a good prior of the

future trajectories of the dynamic obstacles in the scene.

Our approach samples multiple paths that modify these

priors and calculates the best trajectory that the robot
can describe. We use the basic mechanics of the kinody-

namic RRT [25] to extend paths, in order to generate

a large set of feasible paths and chose the best path

according to multiple minimization criteria.

Algorithm 2 requires four inputs: the goal qgoalr , the

initial state sini, the horizon time thorizon = t+ h, and

the number of vertices K. The qgoalr provides the po-

sition and orientation of the final robot configuration.
The initial state sini ∈ S contains the information of

the robot state plus all people’s states considered on the

scene. The horizon time thorizon specifies the temporal

window used to forecast the plan and the predictions.

The algorithm builds a tree T (V , E) and returns the

minimum cost branch. The edges E are the control in-

puts u ∈ U , and the vertices V consist of the joint state
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s ∈ S and the accumulated cost J to reach that vertex

(see Sec. 6).

The general algorithm scheme can be seen in Alg. 2,

which is quite similar to the original RRT, although we

have added some modifications, that are described in
the following subsections.

5.1 Horizon time

The horizon time parameter sets the amount of time

that the planner forecasts in order to obtain a path

similar to a model predictive control (MPC). Although

the inputs {ur(t), . . . , ur(t + h)} are calculated, only
the first input command is executed and a new set of

inputs will be calculated in the next iteration. In prac-

tice, MPC is a very successfull technique to deal with

unknown system modeling, as discussed in Sec. 4.4.

5.2 Sampling

The horizon time bounds the region of exploration Cr
to a circle radius equal to h ·vmax as depicted in Fig. 5.

Since there is a strong time restriction, the robot goal

qgr is sampled using a Gaussian distribution, over the

boundary of Cr to ensure that the paths generated in-
deed expand T . If the number of nearby obstacles on

the scene is high, the qgr sampling distribution is widespread

by augmenting linearly the Gaussian covariance w.r.t

number of people.

5.3 RRT extend: ESFM steering heuristic

As explained before, the prediction algorithm used by
our approach is based on the ESFM. We additionally

Fig. 5 Random goals qgr distribution, on the right there are no
people in CR and search is concentrated on the goal direction.
On the left the density of nearby people on the scene is higher,
and thus, the qgr sampling distribution is widespread.

Fig. 6 Tree T of paths in the space X × time. On the left, the
z axis represents time. On the right projection of T in X .

make use of this model in order to build a steering

heuristic that permits us to connect a pair of poses qini
and qf , in a computationally fast manner.

We calculate the resultant robot force fr using (6),

which takes into account its environment [sp1
, . . . , spN

],

while at the same time tries to reach the given random

goal qgr , that represents its inner intentionality Dr. In

Fig. 6 is depicted an example of depth propagation,
where each path tries to reach its corresponding random

goal.

Since the action space is limited to Ur and we can-
not control the environment, we need to infer human

intentions. As proposed in [8], we calculate the most

expectable qgoalpi
for every person on the scene (line 3 in

Alg. 2).

The extend function is depicted in Alg. 3, where

it firstly propagates the robot state sr(sparent) accord-

ingly to unew
r and integrates the differential constraints

(2) by using integration methods in the time interval

∆t. Then, for every person on the scene, and if the per-
son has not reached its inferred goal qgoalpi

(line 5 in

Alg. 3), an action unew
pi

is calculated depending on the

rest of the dynamical obstacles on the scene and the

new robot state snewr (line 6 in Alg. 3) in a cooperative
way.

The extend function calculates consecutively for each

instant of time the propagation for all people, and prop-

agates the state of the system until thorizon is reached
or the robot has reached the random goal qgr . The ex-

tend function closely resembles Alg. 1, but introducing

the calculation of the new robot state snewr , in which

the computed planning action Unew is seamlessly inte-
grated with the prediction algorithm in an anticipative

approach.

As explained in previous sections, steering methods

present excellent characteristics to drastically reduce
the computational cost of kinodynamic planners, both

in the extend function as well as the cost-to-go. How-

ever, there is an important drawback for such methods:
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Algorithm 3 extend(sparent, q
g
r , {q

goal
pi

},β)

1: while t(sparent) < thorizon & sr(sparent) * qgr do

2: unew
r = fr(sparent, q

g
r )/mr

3: snew
r = sr(sparent) +

∫

∆t
ṡr

4: for i = 1, . . . , N do

5: if spi(sparent) * qgoalpi then

6: unew
pi

= f
(

qgoalpi , sparent, snew
r

)

/mi

7: snew
pi

= spi(sparent) +
∫

∆t
ṡpi

8: end if

9: end for

10: sparent = [snew
r , snew

p1
, . . . , snew

pN
]

11: Snew ← Snew ∪ sparent

12: Unew ← Unew ∪ [unew
r , unew

p1
, . . . , unew

pN
]

13: end while

14: return [Snew, Unew ]

the set of trajectories that can be obtained is highly

dependent on the environment configuration, and thus,

we may be biasing the search space into only a subset

of it.

Since we need a set of paths that covers as much
of the solution space as possible, the sampling of qgr
expands the paths in many different directions, and ad-

ditionally, we propose to overcome this problem by in-

troducing randomness into the steering function, the
ESFM. We aim to introduce some randomness in the

generation of robot trajectories by attributing random

behaviors to the robot when trying to reach a destina-

tion qgr . The resultant force

fr = β1 fgoalr + β2 f int
people + β3 f int

obstacles (11)

determines the generated trajectory, being β = [β1, β2, β3]

a set of values associated to each sampled trajectory.
Sampling β will enrich the generation of paths to be

evaluated by the planner.

5.4 Cost functions

As stated before, we aim to obtain a navigation algo-

rithm that considers different cost functions. In this

subsection these costs functions are defined. The cost
to reach a goal Jd, is defined as

Jd(S, s
goal) =

tend
∑

t=tini

‖xr(t)− xgoal‖2, (12)

where we obtain the accumulated square distance value

from the initial state at time tini in the set of states S,
to the final state at time tend.

The cost orientation Jor expresses the difference be-

tween the desired orientation and the current orienta-

tion

Jor(S, s
goal) =

tend
∑

t=tini

‖θr(t)− θgoal‖2, (13)

representing the accumulated distance to the desired

goal orientation θgoal.

We additionally measure the cost associated to the

robot control Jr in the following way

Jr(U) =

tend
∑

t=tini

‖ur(t)‖
2, (14)

that sums the robot inputs ur throughout the calcu-
lated trajectory.

Similarly, we define the cost function for the pedes-
trians Jp as

Jp(U) =

tend
∑

t=tini

N
∑

i=1

‖upi
(t)‖2, (15)

where the inputs upi
due to the robot influence to other

pedestrians are summed over time for each person while

walking towards their goals.

We also take into account the cost produced by

nearby obstacles to the robot Jo as

Jo(U) =

tend
∑

t=tini

O
∑

i=1

‖uoi(t)‖
2, (16)

where again we consider the perturbation occasioned

to the robot due to nearby obstacles uoi , since we want

to avoid collisions. It will be explained below how to

combine these different metrics in order to obtain the
best path.

5.5 Cost-to-go

We have defined different cost functions, and thus a
multi-objective problem, that can also be used to eval-

uate the cost-to-go from a state to another state.

Euclidean distance is a good metric in a geometrical

planning problem, nevertheless, it is not so efficient in

kinodynamic planning schemes and cost-to-go functions
work better, as we will demonstrate later.

Many works [39–41] calculate the cost-to-go in the
absence of obstacles. In our case, we consider dynamical

obstacles and include these interactions, thanks to the

ESFM. In Fig. 7 is drawn the process to calculate the

nearest vertex in the search tree. We extend a virtual
path towards the goal qnew from each of the vertices,

and calculate the accumulated cost to reach it plus the

previous cost.
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We are highly concerned to provide a good represen-

tation of the solution space if we want to obtain a good

“best trajectory” solution. We will discuss in Sec. 7 the

coverage of the solution space explored using a cost-to-

go function to find the nearest vertex and compare it
to an Euclidean approach. It will be demonstrated later

the performance of our contributions, either in simula-

tions as well as in real experiments.

q1

q2

qnew

Fig. 7 Scheme of the cost-to-go function to reach qnew from
each of the vertices in the tree.

6 Multi-objective optimization

Multi-objective functions are built after a scalarization

of different variables, expressed in a function like J =

c1 · J1 + c2 · J2 + . . . + cI · JI , if the ci parameters are
known, which is not always the case. Each of the Ji may

be expressed in different units, and they are projected

into the real space J : RI → R. In our previous work

[20] we followed an scalarization approach for unknown

ci. It turns out that even learning a set of weight pa-
rameters, they are only valid in a limited number of

scenarios meeting similar conditions. In this section we

will describe a procedure to maintain the same set of

parameters for all our testing environments.
There are multiple objectives to be minimized ex-

pressed as a vector function consisting of I components

J(S, sgoal, U) = [Jd, Jor, Jr, Jp, Jo], (17)

in our case I = 5, and we should use different and inde-
pendent criteria instead of a single-objective composed

of different variables. In our problem, these functions

are described in (12)-(16).

To this end, inspired by a multi-objective optimiza-

tion technique, we solve the problem of finding a set
of optimal solutions. The weighted-sum method is a

popular and simple approach, although it also presents

limitations. We propose to avoid the scaling effect by

normalizing the objective functions according to:

J̄i(X) = erf
(x− µx

σx

)

. (18)

The variables µx, σx are estimated after the tree T
is built. The multi-objective cost function becomes a

single-objective by applying a three step calculation:

first, the individual costs for each criteria to be consid-

ered J : S×U → RI . Second, a normalization to (−1, 1)
for each of the costs (18), and finally, a projection via

a weighted sum J : RI → R as follows

J(S, sgoal, U) =
∑

i

wiJ̄i(S, sgoal, U). (19)

At the end, we have obtained a cost J ∈ R, but after
a normalization and a projection. We will demonstrate

in Sec. 7.1 that the w = [wd, wor, wr, wp, wo] parame-
ters are valid for a large number of different scenarios,

which is one of our initial motivations.

6.1 Identifying the non-dominated set

Our algorithm is inspired in a multi-objective approach
in order to calculate the best trajectory among the

paths calculated during the planning step. Prior to pro-

vide a solution, we seek to obtain the set of non-dominated

solutions depending on the different cost functions Ji
defined in Sec. 5.4.

In general, a solution x1 is said to dominate other

solution x2 if both of the following conditions are true:

1. Ji(x1) ≤ Ji(x2), ∀i ∈ I

2. Ji(x1) < Ji(x2) for at least one i ∈ I

When both conditions are asserted, then x1 domi-

nates x2 and we formulate it mathematically x1 � x2. If

we obtain the set of non-dominated solutions, then any

pair of solutions do not dominate each other. Ideally,

if we could calculate all the solutions in the solution
space, then the non-dominated set would be Pareto-

optimal set. No solution of this set is by itself better

than other, we have only discarded those solutions that

are dominated.
Obtaining a set of non-dominated solutions is of

great importance [36,37], since the AKP algorithm uses

this information to chose a better solution. The selec-

tion of the non-dominated is done before any scalariza-

tion or normalization and this fact is useful specially
when dealing with non-convex sets of solutions since it

allows us to discard local-optimal solutions in front of

global ones, before reprojecting into J ∈ R.

7 Simulations

Robot experimentation is a delicate matter specially

when there are people involved. For this reason, we be-

lieve that it is mandatory to validate any robotic system
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in a simulated environment before any real interaction

with people takes place.

The simulation framework used is a custom project

built around ROS. Human motion is simulated using

the work presented in [10], where we generate people

tracks, that is, a sequence of positions over time with
constant id, and model them as random variables. The

robotic platform is simulated according to a unicycle

model that is controlled by the AKP calculations. The

simulation scenario as well as the AKP code can be

found soon at the project web-page http://www.iri.upc.

edu/groups/lrobots/akp

We have carried out all the simulations in a In-

tel Core2 Quad CPU Q9650 @ 3.00GHz and memory

3.8 GB, at an average rate of 5Hz. The hardware used

for simulations is similar to the PC on-board the real
robot. The simulated scenarios are as follows: the robot

receives a query to a goal, in different scenarios that

are built combining a different number of obstacles and

pedestrians walking in the area, as can be seen in the

supplemental material at the web-page.

In this section we will discuss, by using these dif-
ferent simulated scenarios, some of the most relevant

topics regarding the AKP, such as the initial learning

of the weighting parameters w, the importance of a cor-

rect cost-to-go function compared to an Euclidean met-

ric, and finally the multi-objective optimization perfor-
mance with respect to a reactive approach.

7.1 Parameter learning

In order to correctly characterize the effect of the w =

[wd, wor, wr, wp, wo] parameters, we have used a Monte
Carlo approach to sample the weights of the normalized

costs, carrying out more than 20k simulations. We have

used many different scenarios which consist of a variable

number of people and obstacles, and we have calculated
the costs associated to the sampled w parameters for

each configuration.

The results of the simulations have been averaged in

order to address the fact that the scenario is dynamic

and the outcome for the same set of parameters can

be different depending on the initial conditions, those
are, the position of the simulated pedestrians and their

corresponding destinations.

In Fig. 8 is depicted the costs and average cost for

the distance and obstacle objectives, depending on the

same parameter wobs. As it can be seen, there is not a

clear value for the weight cost that can minimize simul-
taneously the obstacle’s and people’s costs. In addition,

there is a high variance in the results, since we are test-

ing a highly dynamic environment.
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obstacle work cost vs obstacles param
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140

160

180

200

220

240

260

distance cost vs obstacles param

wobs

JoJd

Fig. 8 On the left distance cost and on the right obstacle cost
w.r.t. the wobs weight parameter. Blue dots correspond to sin-
gle experiments and the red line is the calculated expectation
using a Gaussian likelihood. In both graphics appear the in-
terval of the acceptable region, intersection around wobs = 0.2.

For these reasons, we have used an heuristic method

to select which are the most convenient values of w.

Each of the costs considered in this work is drawn as
a function of a weight parameter, in the case of Fig. 8,

the parameter is wobs. We describe an acceptable region

starting at 20% of the maximum cost value to the 80%.

All the average costs are monotonic functions. The in-

tersection, if possible, of the different regions leads to
an approximate value for the parameter, after some ad-

justing by try and error.

The parameters used throughout the remaining of

the work are wdistance = 0.7,worientation = 0.4 , wrobot =
0.5, wppl = 0.3 and wobs = 0.2.
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Fig. 9 Distributions of the cost parameters Ji. Adaptively
normalizes the different cost values into (−1, 1).

In Fig. 9 we can observe the distribution of the cost
parameters, prior to normalization, and the correspond-

ing normalization function. The magnitudes of the vari-

ables are too different, and any attempt to scale them
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and sum (former approach) represents a real challenge,

if not an ill-posed problem.

We have observed an interesting feature after com-

paring the graphical results for the cost functions in

different scenarios: the expectation curves obtained are
very similar for the same cost in different scenarios, e.g.

one person, two people and two obstacles, etc. In other

words, they are not dependent on the number of inter-

acting obstacles or people, but we can chose the same

set of parameters w since the navigation outcome is
relatively invariant to the scenario configuration, and

thus, we can make use of the same weigh values in all

situations for future experiments and simulations.

7.2 Coverage of the solution space

In this subsection we measure the coverage of the workspace

comparing the em cost-to-go method with an Euclidean

distance to select the closest vertex for find nearest vertex().

In Fig. 10-left is depicted two of the scenarios chosen,
among many, to illustrate the problem. On the top,

there is an obstacle free scenario and on the bottom an

scenario with some obstacles. The tree generated by an

Euclidean function, as formulated in [20], can be seen
in Fig. 10-right and the tree generated by the cost-to-

go metric and randomness in the ESFM is depicted in

Fig. 10-center.

The area in red corresponds to an average of visited

regions and the blue area corresponds to non visited. It
is not possible to generate paths that can cover all the

solution space since there is a strong time restriction

thorizon = 5s. We observe that there is no difference

in the obstacle free scenario. Both approaches visit a

similar area. However, in the scenario with some ob-
stacles, there is a great difference: the Euclidean ap-

proach presents more difficulties to scape the obstacle

area. The cost-to-go and the randomness to the resul-

tant force make possible to explore a wider region of
the solution space.

These qualitative measures need to be quantified. To

this end, we have run another experiment, that mea-

sures the area visited in the obstacle scenario, while

growing the number of vertices in the AKP.

The results are depicted in Fig. 11. Clearly, the cost-
to-go and randomness approach outperforms the Eu-

clidean distance, at least under this configuration. The

computation overhead generated by using the cost-to-

go metric to find the nearest vertex compensates when
considering that to obtain the same area covered by

the Euclidean approach, we require multiple times the

number of vertices used.

7.3 Performance

We have conducted a large number of simulations in

different environments as described above: with multi-

ple obstacles, multiple people, very near obstacles while

navigating with people, etc. We want to provide a chal-

lenging testing for diverse environments.
To illustrate this idea, we have performed more than

5k experiments per method, comparing our approach,

the AKP using the cost-to-go distance, with the AKP

using Euclidean metrics and a third approach: a pure
reactive planning [19]. We have set the number of ver-

tices to K = 800 for both AKP approaches. The plan-

ner was able to provide a path at a rate not lower than

5Hz.

All the objective cost functions are plotted in Fig. 12,
averaged for the different scenarios analyzed, which are

presented jointly. Both of our approaches clearly out-

perform in all objectives the reactive approach, which

has demonstrated to behave badly in dynamic environ-
ments, since we often observed a go-stop-go strategy.

Both AKP behave similarly in simple scenarios, how-

ever the AKP with Euclidean metric presents a more

“straight behavior” towards its goal, specially in com-

plicated environments (lots of obstacles). Under this
circumstances is where the AKP with cost-to-go really

shines. The AKP is able to explore more solutions and

to provide more candidates that result in a better choice

for the best trajectory. Observing these results we can
conclude that our algorithm performs successfully in

many situations with the same set of parameters w.

8 Experiments

In the second part of the testing, the real experimen-

tation, we have evaluated the AKP in real scenarios

with volunteers, as we believe that social robot naviga-
tion should be largely tested in real situations, since all

the simulations have limitations. The two environments

used for the experimentation are a controlled environ-

ment consisting of a limited number of obstacles and
people, and a real environment were no instructions are

given to pedestrians. The experiment environments are

intended to be semi-crowded. Idle people are not con-

sidered as part of the dynamic obstacles.

The Tibi&Dabo robots are based on a two-wheeled
Segway RMP200 platform. To perceive the environment

they are equipped with two Hokuyo UTM-30LX 2D

laser range sensors used to detect obstacles and peo-

ple, giving scans over a local horizontal plane at 40cm
above the ground, facing forward and backward. We

use range information to navigate as well as to gener-

ate people detections needed for the AKP.
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Fig. 10 Coverage of the workspace according to the cost-to-go and randomness in the ESFM, and the Euclidean metric for
the same number of vertices and obstacles. In red, typically visited areas averaged over a large number of iterations, and in
blue, typically non visited regions. The gradient between red and blue represents rarely explored regions by the AKP.
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Using one of these platforms, we have conducted

52 experiments in a controlled environment, the Facul-

tat de Matemàtiques (FME), which consists of an open
space surrounded by some walls. The volunteers were

told to walk towards a destinations in the scene, while

simultaneously the robot performed a go-to query that

entailed an interaction with the pedestrian. The idea
behind these scenarios is to provide an isolated and un-

conditioned interaction between a person and the robot,

and thus, analyze the corresponding results which are
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Fig. 12 Results for the different cost functions Ji for the
AKP using cost-to-go function, compared with the AKP with
Euclidean metrics, and a pure reactive approach. All results
have been normalized to sum 1 for visualization reasons.

guaranteed to minimize other interactions or noise. We

have tested three different scenarios: on the Fig. 13-

Left is depicted the first scenario, where the volun-

teer, in green, is told to walk towards a destination in
a straight line, while the robot approaches the person

from behind, just in time to intersect with the volunteer

path. A side-frontal interaction, see Fig. 13-Center, and

a completely frontal interaction in Fig. 13-Right are the

remaining experiments.

In order to compare the AKP method with other
navigation methods, we have carried out the same set-

ting of experiments for two additional methods. The

first one is the Reactive approach [19] that we pre-
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sented in the simulations section. This method makes

use of the social force (ESFM) but is not able to plan

in advance, which will be demonstrated later to be a

great disadvantage in challenging scene configurations.

The second one is the Dynamic Window Approach [22]
implementation in the ROS navigation stack. We have

configured it to consider as local obstacles a region cen-

tered at the robot of 10m×10m, to be equivalent to the

area considered by the AKP which is a circle of radius
6m.

In Fig. 13 are depicted the results of the experi-

ments. We have chosen to show two variables: the accu-
mulated trajectory cost of people due to the interaction

with the robot, that is, the direct impact of the robot

towards its environment. The second one is the average

time for the robot to reach the goal. Since all methods
are compared under the same conditions, and that en-

tails the same distance to goal, with this measure we can

compare objectively the different approaches in terms

of efficiency of execution. Both of the results appearing

in Fig. 13 are normalized to sum the unity in all the
bar diagrams in order to facilitate the visualization.

In the first scenario, the side-rear interaction, the

results considering the people’s costs show a better per-
formance for the AKP approach than for the rest of the

approaches. Considering time of execution, the AKP

presents an slightly better performance. In the second

scenario, the side-frontal interaction, the DWA is able
to avoid people successfully since it can re-plan on time

and their results obtained are on par with the AKP and

far better than the reactive approach, that fails to avoid

interaction with people. The time of execution, is better

for the AKP, since it can avoid collision more efficiently
than the other two approaches. In the third scenario we

observe a clear winner, the AKP. When considering the

people’s cost, the AKP is able to reduce its impact to-

wards the scene and execute its task successfully. The
average time of execution is not considerably better for

the AKP than the other approaches, but the fact is

that our approach is really avoiding a possible collision

while the other two approaches fail to re-plan on time

and follow a too straight trajectory.

We can observe that the results are dependent on

the configuration, the more complex the configuration

is, the better relative results are obtained by our ap-
proach.We already demonstrated this statement in sim-

ulations, however it had to be verified in a real scenario.

We highly recommend to watch the videos at the

project web-page for a more detailed idea of the out-

come of the experiments, since movement is difficult to

be captured in images or words.

In order to further validate our approach, we have

tested it in a more complex scenario, where the robot

receives go-to queries in a urban environment and more

interactions take place. The testing is done under un-

controlled conditions, that is, no instructions are given

to people in the scene while the robot tries to navi-

gate. Two environments are tested, the FME where we
carried out the comparison explained before, and the

Barcelona Robot Lab. (BRL), which is a urban area in

the university campus, when many students were there.

The experiment’s main purpose is to demonstrate the
success of navigation queries in a real and uncontrolled

environment. To this end, we performed and recorded

the experience on a video. As stated before, simple

configurations with few interactions do not represent a

challenge for most navigation algorithms, however the
scene can increase in complexity and more challenging

configurations may appear. Is in these situations when

the AKP approach might help us to avoid possible colli-

sions or abnormal robot behaviors, and deal with these
situations more successfully while minimizing its im-

pact towards the pedestrians in the scene.

A sequence of one navigation experiment is depicted

in Fig. 14, where we observe the interaction of several

people with the robot at different instants of time and

how the robot is able to avoid them successfully.

For more details, check the multimedia material at
http://www.iri.upc.edu/groups/lrobots/akp/.

9 Conclusions

The main motivation of the present work, as stated in

the introduction, was to minimize the robot impact to-

wards all those nearby pedestrians, while navigating
and executing tasks. Throughout this paper we have

proposed an approach that is able to consider multiple

objectives for robot navigation and demonstrated to be

effective in real situations. In addition, the AKP ap-
proach has proven to foresee people’s trajectories and

their corresponding reactions to each of the planned

actions, and act accordingly.

The solution trajectories, calculated in an RRT fash-

ion, take into account kinodynamic and nonholonomic

restrictions which are mandatory considerations for a
realistic navigation in such highly time-variant scenar-

ios like urban environments.

We have presented a seamlessly integrated predic-

tion algorithm that builds predictions simultaneously

with plans. We have demonstrated that a joint approach

can be achieved without increasing much the system
complexity, and we have obtained multiple benefits by

integrating prediction and planning.

The cost for being anticipative is a more intensive

processing since we must propagate the state of moving
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Fig. 13 Results for different scenarios in the FME environment. On the top row is depicted the bar diagram for the people’s
costs and the average time of execution. Their corresponding standard deviation is drawn on each bar of the diagram. On the
bottom row appears an scheme of each of the experiments.

Fig. 14 Sequence of a navigation experiment interacting with multiple pedestrians.

pedestrians accordingly to the robot propagation. The

overhead generated by this feature has been demon-

strated to be justified, since challenging and complex
scenarios are more successfully solved by the AKP than

other state of the art navigation methods.

The multi-objective approach studied in this paper

has shed light into the construction of cost functions.

If there are few parameters and costs involved, a direct
scalarization of the costs may be fine, however we have

shown that it might not hold when considering several

costs. One contribution is that we have obtained a prac-

tically invariant set of navigation parameters that can

be used in many different scenarios.

The theoretical approach presented is well supported

by plenty of experiments and simulations. There are in

addition plenty of multimedia material and soon all the

code available at the web-page which better illustrates

the results that have been discussed in this work.
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