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Abstract— Risk-aware Multi-Policy Decision Making
(MPDM) is a powerful framework for reliable navigation in
a dynamic social environment where rather than evaluating
individual trajectories, a “library” of policies (reactive
controllers) is evaluated by anticipating potentially dangerous
future outcomes using an on-line forward roll-out process.
There is a core tension in Multi-Policy Decision Making
(MPDM) systems - it is desirable to add more policies to
the system for flexibility in finding good policies, however,
this increases computational cost. As a result, MPDM was
limited to small (perhaps 5-10) discrete policies — a significant
performance bottleneck.

In this paper, we radically enhance the expressivity of MPDM
by allowing policies to have continuous-valued parameters,
while simultaneously satisfying real-time constraints by quickly
discovering promising policy parameters through a novel iter-
ative gradient-based algorithm. Our evaluation includes results
from extensive simulation and real-world experiments in semi-
crowded environments.

I. INTRODUCTION

Rather than evaluate individual trajectories, in Multi-

Policy Decision Making (MPDM) [1], the robot navigates

dynamic social environments by switching between a set of

candidate policies (closed-loop reactive controllers) to adapt

to different situations. For example, the robot may ‘Follow’

a pedestrian through a crowd or come to a ‘Stop’ in the case

of mounting uncertainty. Quick decision making allows the

robot to stay reactive to sudden and unexpected changes in

the environment.

The robot must consider numerous possible future out-

comes arising from the uncertainty associated with the in-

ferred state of the agents (people) due to tracking errors and

sensor noise, as well as the complex agent-agent interac-

tions. Risk-aware MPDM evaluates each candidate policy

(ego-policy) by anticipating potentially dangerous outcomes

through an on-line optimization process based on forward

roll-outs. While it is desirable to add more policies to

increase the expressivity of the system, the aforementioned

optimization is computationally expensive and only a handful

of policies can be evaluated reliably in real-time. As a result,

earlier MPDM systems were limited to a small finite set

of candidate policies, which was a significant performance

bottleneck.

C-MPDM radically enhances the expressivity of MPDM

without increasing computational complexity. By allowing

policies to have continuous-valued parameters, and then
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Fig. 1. Expressible policy spaces. Left: In principle, we would like to
find the best policy from the entire space of policies Π; this is generally
intractable. Middle: Earlier MPDM systems constrained the search to a finite
number apriori-known discrete policies, whose size (perhaps 5-10) depends
on the computational budget. Right: Continually-parameterized MPDM
(C-MPDM) can represent much larger volumes within the policy space.
By quickly generating promising context-derived candidate policies using
“risk-aware policy-gradients” ∇πΨ, C-MPDM increases expressivity of the
actions available to the robot without increasing computational complexity.

efficiently computing good values of those continuous pa-

rameters (Fig. 1), C-MPDM enables the robot to choose from

an infinite number of policies in real-time.

Bilevel optimization is a well-studied class of mathemat-

ical programs encountered in various fields ranging from

management [2], to optimal control [3] where there are

two levels of optimization tasks, one nested within the

other. In risk-aware MPDM, the upper-level optimizer (the

ego-robot) chooses the policy with the most benign (low-

cost) evaluation, while lower-level optimization (risk-aware

policy evaluation of an ego-policy) involves finding the most

potentially dangerous (likely, high-cost) outcome from all

possible pedestrian configurations. In this way, risk-aware

MPDM can be viewed as a bilevel optimization, but we

will now consider an infinite number of ego-policies for the

upper-level optimization.

Unfortunately, merely checking strict or local optimality in

bilevel optimization problems is NP-hard and most academic

research has been focused on simple bilevel programs with

convex objective functions [4]. In our domain, even evalu-

ating the cost function involves a time-consuming forward

simulation. Furthermore, the high-dimensional search-space

of possible robot policies and pedestrian configurations and

the complex multi-agent interactions make the forward-

simulated trajectories and thereby the cost function sensitive

to the decision variables. Conflicting objectives and real-time

requirements make this problem harder.

Our proposed algorithmic approach fundamentally re-

thinks the MPDM algorithm, replacing a core component

with a method that more closely resembles a deep learning

algorithm than a motion planner (though it is neither!). The

key idea in this paper is to quickly generate promising

context-derived candidate policies using a local iterative

gradient-based search procedure (Fig. 1) where the necessary

gradients are efficiently computed using backpropagation.

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

978-1-5386-8093-3/18/$31.00 ©2018 IEEE 7547



Promising policy candidates are then extensively evaluated.

Our contributions include the following:

• We formulate C-MPDM as a bilevel optimization and

allow policies to have continuous-valued parameters,

which improve the expressivity and flexibility of the

decision making process (Sec. III).

• We provide an effective real-time solution to the

bilevel program. Our novel anytime algorithm finds

increasingly desirable contextual ego-policy parameters

(Sec. IV).

• Through extensive experiments in simulation and on

a real robot platform, we demonstrate the benefits of

C-MPDM over evaluating a fixed set of hand-crafted

policies or evaluating randomly sampled policies.

II. RELATED WORK

We first discuss previous approaches in the area of au-

tonomous navigation in dynamic environments. In this work,

a new set of tools– well-developed in other disciplines– is

brought to bear on behavioral planning. We discuss other ap-

plications of bilevel optimization and gradient-based methods

that have motivated our approach.

Recent motion-planning approaches for autonomous navi-

gation in dynamic environments [5]–[7] augment the state of

the system with the inferred states of other agents to model

agent-agent interactions during planning which is required

to deal with more complex situations. Learning-based ap-

proaches [8]–[10] use relevant features that might explain

the interactions taking place between dynamic agents, but

may be limited by the training datasets used.

POMDPs provide a powerful formulation for incorporating

uncertainty into planning, but quickly become intractable.

Recently, approximate POMDP methods based on scenario

sampling and forward simulation have been applied to nav-

igation [11] and mapping [12]. MPDM [1] is a constrained

POMDP solver, in which the space of policies that can

be evaluated is constrained by design and the ego-robot

autonomously navigates by dynamically switching between

these candidate policies. In this paper, we extend MPDM

to continuous-valued policies, allowing the robot to choose

from an infinite number of ego-policies in real-time.

With its roots tracing back to Stackelberg’s game-theoretic

modeling [13], bilevel optimization commonly appears in

several practical applications such as environmental eco-

nomics [14], chemical engineering [15] and operations re-

search [16]. Risk-aware MPDM can be viewed as a bilevel

optimization although previous MPDM systems [17] only

considered apriori known discrete ego-policies, which re-

duced the bilevel problem to a series of single level op-

timizations. Unfortunately, bilevel programming is known

to be strongly NP-hard [18]. Most practical methods find

satisfactory, rather than optimal solutions by solving multiple

simpler single level optimizations [19]. The idea behind

C-MPDM is similar — promising candidates are quickly

generated based on the current context and then evaluated

extensively.

By representing a forward simulation as a deep neural

network, we compute accurate gradients efficiently using

backpropagation [20] and use an iterative gradient descent

algorithm (gradient-descent in the first variable and gradient-

ascent in the second one) similar to Ratliff et al. [21].

These iterative gradient-based methods, first introduced by

Arrow, Hurwicz and Uzawa [22], have also been applied

to distributed linear programming [23] and power networks

[24].

III. PROBLEM FORMULATION

For each observed agent i, the robot maintains a prob-

abilistic estimate of its state - i.e. its position, velocity and

inferred policy based on past observations of the pedestrians’

positions1. The collective state xt ∈ X consists of the state

of the robot and all observed agents at time t. Throughout

the paper, we will refer to x0 as the collective state of all

agents and the robot’s state at the beginning of the planning

cycle.

The robot’s policy πr (which we refer to as ego-policy)

is an instantiation of a continuously-parameterized policy

π(vpref , ψgr ) ∈ Π (similar to Chen et. al. [10]). The robot

executing πr = π(vpref , ψgr ) tries to move at a preferred

speed vpref , while avoiding obstacles according to the Social

Force Model [25]. Rather than heading straight towards its

goal gr, the robot tries to move towards a point to the

left or right of the goal, as determined by the direction

offset parameter ψgr . For example, πr = π(0.5, 30◦) implies

a policy where the robot tries to move at 0.5m/s at an

orientation 30◦ to the right of the goal. For the sake of clarity,

we do not explicitly refer to parameters of an ego-policy πr.

Gradients are expressed w. r. t. πr, although we are implicitly

referring to its parameters.

For an ego-policy πr, an initial sampled configuration x0

is forward simulated H time-steps (through t = 1, . . . , H),

by recursively applying the transition operator T : X → X
to yield a trajectory

X(x0, πr) = {x0, T (x0), T
2(x0), . . . , T

H(x0)}

= {x0,x1,x2, . . . ,xH},

where xt ∈ X is the collective state comprising of the

state of the robot plus all the agents at time t of the

forward simulation. The operator T () captures the policy that

each agent is executing while at the same time considering

the interactions with all other agents. The cost function

C
(

X(x0, πr)
)

assigns a scalar value to the outcome of a

forward simulation.

Like our earlier work [17], our transition function is gov-

erned by the Social Force Model [26] capturing agent-agent

interactions and agent kinematic models. Our cost function

penalizes the inconvenience the robot causes to other agents

in the environment (Blame) along the predicted trajectory

and rewards the robot’s progress towards its goal (Progress).

1Several methods can be used for obtaining this posterior. We use a
Kalman Filter to infer position and velocity and a Naive Bayes Classifier
to infer an agent’s policy parameters.
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Note that the MPDM framework is largely agnostic to the

chosen transition function and cost function.

In Risk-aware MPDM, each ego-policy πr is evaluated

based on the most influential (likely high-cost) forward simu-

lated configuration Ψ(πr), which is discovered by optimizing

a probabilistic cost surface -

Ψ(πr) = argmax
x0∈X

{P (x0)C
(

X(πr,x0)
)

}. (1)

During each planning cycle, the ego-policy with the

most benign influential outcome is chosen and executed.

Thus, policy election for risk-aware MPDM can be modeled

through the following bilevel program -

min
πr∈Π

P (x0)C
(

X(πr,x0)
)

s.t. x0 = argmax
x0∈X

{P (x0)C
(

X(πr,x0)
)

}

⇐⇒ x0 = Ψ(πr).

(2)

Algorithm 1 Policy Election with Handcrafted Policies

1: function POLICY-ELECTION LOOP(P (x),Πd, Nπ)

2: for π ∈ Πd do

3: Initialize Uπ, n← 0
4: while n < Nπ

|Πd|
do

5: Sample x0 ∼ P (x)
6: U∗, nopt ← Optimize-Env(x0, π)
7: n ← n+ nopt

8: Uπ ← max{U∗, Uπ}
9: end while

10: end for

11: π∗ ← argminπ Uπ

12: end function

Algorithm 1 describes earlier approaches to policy-

election. Provided with a probability distribution over ini-

tial configurations, P (x0), an apriori-known discrete set of

candidate policies, Πd, and a forward simulation budget, Nπ,

each candidate policy evaluated (scored) independently (Line

2) according to the most influential (worst-case) outcome

discovered within the computational budget and the policy

with the most benign influential outcome is elected.

Unfortunately, only a handful of ego-policies can be

reliably evaluated in real-time, limiting Alg. 1 to a small

number of discrete policies — a significant performance

bottleneck. In the next section, we extend the risk-aware

MPDM framework by allowing policies to have continuous-

valued parameters.

IV. CONTINUOUS RISK-AWARE MPDM

In our bilevel program (Eqn. 2), even the lower level

optimization (computing Ψ(πr) exactly for fixed ego-policy)

is computationally infeasible due to the large space of pos-

sible initial pedestrian configurations [17]. The conflicting

objectives, the real-time requirements and the lack of a

closed-form expression for the objective function make this

problem harder.

...

...

...

...

 forward 

simulation
backprop

...

Fig. 2. A deep network representation for our cost function. For an
ego-policy πr , the initial configuration x0 is propagated through several
layers of the transition function T (detailed in [17]). The output of layer
t determines a cost for a single time-step Lt(xt). Our cost function
C(X(x0, πr)) accumulates costs calculated at each time-step along the
forward simulated trajectory. Our representation enables quick computation
of accurate gradients for the bilevel optimization.

We propose a novel approach where accurate gradients

are computed efficiently through backpropagation and these

gradients are used to dynamically generate promising contex-

tual candidate policies in real-time. Our anytime candidate

generation algorithm produces increasingly desirable policies

for the robot to execute.

A. Accurate Gradients for discovering influential configura-

tions x0

Deep neural networks chain (compose) relatively simple

functions such as convolutions or sigmoids to model complex

functions. In the same way, a forward simulation for H
time-steps captures the complex dynamics of the system

using simple one-step transition functions T . We want to

penalize trajectories that have bad interactions at any point

during the forward roll-out, not just those that end in a bad

interaction. Therefore, unlike most deep networks, the cost

function C(X(x0, πr)) is not a simple loss computed at the

final output, but rather costs accumulated at each time step

Lt(xt).

We define a partial cost function L(t,X) that accumulates

costs along the trajectory from time τ = t . . .H (until the

end of the roll-out).

L(t,X) =

H
∑

τ=t

Lτ (xτ ). (3)

Accurate gradients of the cost function can be computed

efficiently by backpropagation through deep network, which

leverages the following recurrence relation -

∇xt
L(t,X) =

∂L(t,X)

∂xt

=
∂{L(t+ 1,X) + Lt(xt)}

∂xt

=
∂L(t+ 1,X)

∂xt+1

∂T (xt)

∂xt

+
∂Lt(xt)

∂xt

. (4)
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The gradient of the cost function with respect to the

agent configurations ∇x0
C(X(x0, πr)) = ∇x0

L(0,X) is

used during gradient-ascent to simultaneously perturb the

configurations of all pedestrians towards increasingly likely

and high-cost outcomes until convergence as follows -

x0 = x0 + η1
(∇x0

C(X(x0, πr))

C(X(x0, πr))
+
∇x0

P (x0)

P (x0)

)

. (5)

Each agent’s update rate is determined using line-search

along the gradient direction. Note that Eqn. 5 locally opti-

mizes log (P (x0)C
(

X(πr,x0)
)

). We refer to this procedure

as Optimize-Env.

B. Bilevel optimization by generating contextual risk-aware

policies πr

This section details the main contribution of this paper —

a technique for quickly discovering effective contextual ego-

policy parameters (boxed in Alg. 2). A key insight is that in

addition to discovering influential outcomes, we can use the

same backpropagation machinery to compute the gradient of

the cost function with respect to the ego-policy parameters -

∇πr
C(X(x0, πr)) =

H
∑

t=1

∂L(t,X)

∂xt

∂xt

∂πr
.

We perform gradient-descent, perturbing the ego-policy πr
towards increasingly benign parameters until convergence as

follows -

πr = πr − η2
∇πr

C(X(x0, πr))

C(X(x0, πr))
. (6)

This gradient-descent procedure, which we call Optimize-

Robot, locally optimizes log
(

C
(

X(x0, πr)
))

.

Since finding the global optimum for the bilevel program

(Eqn. 2) is computationally intractable, we first generate

promising contextual candidate policies using a greedy local

search procedure (POLICY-GENERATION) and then evaluate

these candidates extensively (POLICY-EVALUATION).

Algorithm 2 summarizes the overall policy election cycle.

C-MPDM elects an ego-policy, taking as input a probability

distribution over initial pedestrian configurations, P (x0),
a continuous ego-policy space, Π, and forward simulation

budgets for candidate generation (Ncg) and policy evaluation

(Nπ). A pedestrian configuration x0 sampled from P (x0)
and an ego-policy πr sampled from Π (Line 3), seed the

POLICY-GENERATION procedure (Line 4) which discovers

promising policy parameters in the current navigation con-

text. Promising policies π∗
r are extensively evaluated (Line

8) and the policy with the most benign influential outcome

is executed (Line 10).

POLICY-GENERATION is an iterative gradient-based pro-

cess that converges at a saddle point where the robot’s policy

and the pedestrian configuration are both locally optimal as

illustrated in Fig. 3. First, Optimize-Env (Line 15) perturbs

the seed pedestrian configuration x0 towards the locally

most influential outcome which determines the score U0

of the seed ego-policy πr. Then, the seed ego-policy is

repeatedly perturbed and evaluated locally - at each iteration,

Algorithm 2 Policy Election for Continuous Policy Spaces

1: function C-MPDM(P (x),Π, Ncg, Nπ)

2: while Time Remaining do

3: Sample x0 ∼ P (x), πr ∼ Π
4: π∗

r , Uπ, U0 ← Policy-Generation(πr,x0, Ncg)
5: if Uπ − U0 ≤ δ then

6: continue

7: end if

8: Uπ ← Policy-Evaluation(πr , Uπ, Nπ)
9: end while

10: return argminπ Uπ

11: end function

12:

13: function POLICY-GENERATION (πr, Uπ, Ncg)

14: Initialize Uπ, n← 0
15: x0, nopt ← Optimize-Env(x0, πr)
16: n ← n+ nopt

17: U0 ← P (x0)C(x0, πr)
18: while n < Ncg do

19: π̃r, nopt ← Optimize-Robot(x0, πr)
20: n ← n+ nopt

21: x0, nopt ← Optimize-Env(x0, π̃r)
22: n ← n+ nopt

23: Ui ← P (x0)C(x0, π̃r)
24: if Ui ≤ Ui−1 − ǫ then

25: πr ← π̃r
26: Uπ ← Ui
27: else

28: break

29: end if

30: end while

31: return πr, Uπ, U0

32: end function

33:

34: function POLICY-EVALUATION(πr, Uπ, Nπ)

35: while n < Nπ do

36: Sample x0 ∼ P (x)
37: U∗, nopt ← Optimize-Env(x0, πr)
38: n ← n+ nopt

39: Uπ ← max{U∗, Uπ}
40: end while

41: return Uπ

42: end function

Optimize-Robot (Line 19) perturbs the ego-policy πr towards

more benign parameters using nopt gradient-descent steps

(Eqn. 6) and the perturbed policy is evaluated according to

the locally most influential outcome (Line 21). If the forward

simulation budget for candidate generation Ncg is exceeded

(Line 18) or if ego-policy perturbation does not improve the

worst-case outcome by ǫ (Line 24), the search terminates. If

perturbations in the ego-policy result in a significantly more

benign (locally) worst-case outcome than the seed ego-policy

(Line 5), we assume that π∗
r is likely to be promising.

The POLICY-EVALUATION function evaluates π∗
r more
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Optimize-Env

II

Fig. 3. Candidate ego-policy generation through iterative gradient-based optimization (Alg. 2 - POLICY-GENERATION). The forward propagated outcome
of a randomly sampled joint configuration (tile I) is not discouraging for the robot as its ego-policy π0

r does not inconvenience either agent. For agent
i ∈ {1, 2}, the gradients computed using backpropagation ∇

x
i
0

ln
(

C(X)
)

(Blue) drives the agent towards configurations where the robot would cause

inconvenience under its current policy while ∇
x
i

0

ln
(

P (x0)
)

(Green) drives it towards a more likely configuration (tile II inset). The agent configurations are

simultaneously updated (dotted black arrows) according to Eqn. 5 until convergence, resulting in a likely high-cost outcome (tile II) that is used to evaluate
π0
r . The bar plot (Bottom-Right) shows the corresponding rise in the objective function P (x0)C

(

X(π0
r ,x0)

)

. Once π0
r is evaluated, −∇πr

ln
(

C(X)
)

is
computed (tile III inset) through backpropagation (Blue), and the ego-policy is updated according to Eqn. 6 until convergence, resulting in a more benign
robot policy π1

r with a lower objective function value. The newly discovered ego-policy π1
r is then evaluated once again perturbing the agent configurations

to discover the locally most influential outcome for π1
r (tile IV). The bar plot (Bottom-Right) shows that even though the outcome in tile III for π1

r has
higher cost than the outcome (tile I) for π0

r , the worst-case outcome for π1
r (tile IV) is more benign than that for π0

r (tile II). After one more iteration,
our approach converges to a saddle point, yielding a candidate ego-policy π2

r .

extensively by performing local searches for influential out-

comes from different seed pedestrian configurations (Line

36) using at most Nπ forward simulations. Otherwise, a new

joint configuration is sampled and the procedure repeats.

V. EXPERIMENTS

Our operating environment consists of an open area that

is freely traversed by a set of pedestrians that randomly

change speed and direction without signaling while the robot

tries to reach its goal. The unconstrained nature of this

domain makes the trajectories more sensitive to the initial

pedestrian configurations as well as the robot’s ego-policy.

By re-planning quickly (every 300ms), the robot is able to

react to sudden and unexpected changes in the environment.

For each observed agent i, the robot maintains a proba-

bilistic estimate of its state. A sudden change in speed is

accounted for by assuming a distribution over the preferred

speed vpref of each agent that is a mixture of two truncated

Gaussians - one centered around the estimated most-likely

current speed with a σ = 0.4m/s to account for speeding up

or slowing down and a truncated half Gaussian with a peak

at 0 and σ = 0.2m/s to account for coming to a sudden

stop. Pedestrian i’s sub-goal gi is inferred from a set of

salient points in the environment using a Naive Bayes classi-

fier. However, the pedestrian can suddenly change direction

without signaling which is captured by assuming a Gaussian

distribution for the pedestrian’s short-term heading ψgi that is

centered around the agent’s estimated most-likely orientation

and σ = 30◦. All truncated Gaussians are restricted to

µ± 1.5σ.

High-cost outcomes correspond to those where the robot

inconveniences other agents by driving too close to them,

thus accumulating high Blame. The robot is also rewarded

according to the Progress it makes towards the goal. These

cost-metrics are defined in greater detail in previous MPDM

systems [27].

A. Simulation Experiments

Our simulation experiments are run on an Intel i7 proces-

sor and 8GB RAM to mimic the computational capabilities

of our robot platform. We have used the same simulation

environment that was used in our previous work [17]. We

demonstrate that our proposed approach discovers more de-

sirable ego-policies than random policy sampling. Moreover,

we show that C-MPDM outperforms previous approaches in

finding safe, yet effective policies in real-time.

1) Efficiency of Candidate Generation: We generated a

dataset consisting of 4k randomly chosen simulated scenar-

ios, each of which has at least one agent present within 5m

of the robot. For each scenario, we estimate max
πr∈Π

Ψ(πr), the

optimal solution to the bilevel optimization (Eqn. 2) by evalu-

ating a large number of policies Π̃, consisting of 1k randomly

sampled ego-policies as well as 500 context-aware policies

generated using our proposed approach (Alg. 2). For each

policy, Ψ(πr) was estimated using the POLICY-EVALUATION

function with a forward simulation budget Nπ = 100. This

brute force estimation of the “globally optimal” ego-policy

takes about 5 minutes for each scenario (three orders of

magnitude slower than our real-time requirements).

Given real-time constraints, only a handful of ego-policies

can be evaluated reliably. For a particular scenario in the

dataset, we define the Performance Ratio of N candidate

ego-policies Πcand = {πi
r}

N
i=1 the ratio of “globally optimal”

ego-policy’s utility to the utility of the most benign ego-
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Fig. 4. Varying the planning time, we evaluate the efficacy of our proposed
method in estimating min

πr∈Π

Ψ(πr) (a bilevel optimization). We compare

the distribution of the Performance Ratio of 400k candidate sets generated
using our approach with those generated by random policy sampling. The
bars mark the median and quartiles of the data-points while the lower
whisker represents the 10th percentile. A Performance Ratio of 1 indicates
optimality, while candidates with lower Performance Ratios would cause
the robot to stop unnecessarily or pick a sub-optimal policy. Random
policy sampling often fails to find desirable ego-policy parameters even
with impractical planning times of 1s. Our method significantly outperforms
random policy sampling over the entire range of Planning Time.

policy in the generated candidate set -

Performance Ratio (Πcand) =

min
πr∈Π̃

Ψ(πr)

min
πr∈Πcand

Ψ(πi
r)
.

A Performance Ratio of 1 is ideal and smaller ratios imply

poorer candidates.

Varying the time available for planning tp from 50ms
to 1s, we compare the Performance Ratio of 400k candi-

date sets of randomly sampled ego-policies with context-

derived candidate ego-policies generated using our proposed

approach. As more planning time is available, more candidate

policies can be evaluated and in general, the Performance

Ratio increases. However, in order to stay reactive to sudden

changes in the environment, tp should not exceed 400ms
(based on experiments on our physical robot platform).

For each scenario, candidates are bootstrap sampled from

the dataset and their Performance Ratio is represented by

box-plots in Fig. 4. The boxes represent the quartiles while

the bar represents the 10th percentile. We observe that our

method significantly outperforms random policy sampling

over the entire range of Planning Time. Within real-time

constraints (300 − 400ms), while random policy sampling

is highly unreliable (long 10th percentile bars), our iterative

gradient-based approach the elected policy is almost always

within a factor of two of the optimal ego-policy (99.9% of

the times) which is better than random policy sampling with

1s of (impractical) planning time.

2) C-MPDM system validation: Through 10 hours of

autonomous navigation in our simulated environment, we

demonstrate that the enhanced expressivity provided by C-

MPDM results in significant performance improvements.

Each simulation ‘epoch’ consists of a random initialization

of agent states followed by a 5 minute simulated run at a
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Fig. 5. Our proposed method, C-MPDM can find good policies more often,
even other where methods cannot. We compare the performance of various
algorithms on 10 hours of navigation in our simulated environment. We
measure the Time Stopped for every goal reached as well as the Blame per

meter traveled by the robot. For each algorithm, we use bootstrap sampling
to estimate the mean and standard error for these metrics, represented by
the axes of an ellipse. Smaller values of Blame and Time Stopped are
better. Note that in practice, a planning time tp < 0.4s is required for
responsive behavior tp = 1.5s is impractical for our application. Without
risk-aware evaluation, even densely sampling the policy space fails to
anticipate potentially dangerous outcomes and incurs high Blame. Upon
running the simulator in real-time with a planning time tp = 0.3s (solid
ellipses), we observe that our proposed method (C-MPDM) outperforms
both, risk-aware policy evaluation with random samples and with hand-
crafted ego-policy parameters. Upon slowing down the simulator in order
to allow an impractical planning time tp = 1.5s (dashed ellipses), all the
algorithms perform better. Still, C-MPDM outperforms both policy-sampling
and Hand-crafted policies.

granularity ∆t = 0.15s. During each policy-election cycle,

the simulator was perturbed to account for sensor noise and

tracking uncertainty.

We record the Time Stopped as well as the Blame nor-

malized by the distance to goal. Time Stopped indicates the

failure of the planner to find a safe policy. With a larger

policy set, the robot is more likely to find a safe policy, and

Stops less often. However, if the robot cannot evaluate its

policy set quickly enough, it is unable to react to sudden

changes in the environment and accumulates Blame. Ideally

we would like a robot to navigate safely (low Blame), with

minimal Stop-and-Go motion.

We run the simulator both in real-time (tp = 0.3s),
as well as slowed-down to allow an unrealistic planning

time (tp = 1.5s). We compare the performance of our

proposed approach C-MPDM, which allows for continuous-

valued parameterized policies with the following alternatives

for generating discrete policies -

1) Hand-crafted Candidates (HC) - A set of hand-

crafted candidate policies Πhc = {(Fast, Medium,

Slow)×(Straight, Left, Right), Stop, Follow-other} -

used in previous MPDM-systems [17] is provided.

Each candidate is independently evaluated as in Alg. 1.

Rather than going straight towards the goal at maxi-

mum speed (1.6m/s), the robot may also choose to
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Fig. 6. Repeated real-world experiments. Data is collected from two repeatable experiments represented by different symbols. 1) Pedestrians crossing
the robot’s trajectory orthogonally (∆) and 2) Pedestrians walking slowly in front of the robot (star). We measure the trajectory Deviation as well as the
Blame per meter traveled by the robot. Lower the Deviation and Blame, the better. Our proposed approach C-MPDM allows the robot to modulate policy
parameters appropriately so as to achieve low Deviation while avoiding close encounters.

go at Medium speed (0.9m/s) or Slowly (0.2m/s).
Simultaneously, the robot can also choose to create a

sub-goal to the Left or Right of the goal. Additionally,

the robot can choose to follow any nearby agent. Due

to the open nature of our domain, the Follow-other

policies have the lowest priority (they are evaluated

only if time permits after evaluating the others).

2) Policy Sampling with Risk-Aware evaluation (PS-RA)

- Given a continuous policy space Π, (without a set

of hand-crafted policies), a set of policies can be

randomly sampled from Π and evaluated in a risk-

aware fashion.

3) Policy Sampling without Risk-Aware evaluation (PS-

ML) - Since risk-aware policy evaluation is computa-

tionally expensive, an alternate approach is to densely

sample the policy space Π and evaluate policies very

quickly only based on the most-likely scenario. In

our experiments, around 150-200 policies could be

evaluated for a planning time of 0.3s.

For each of the four planning algorithms, Fig. 5 shows the

mean and standard error for the Time Stopped and the Blame

per meter traveled by the robot. Under real-time constraints,

we observe that our proposed method (C-MPDM) is able

to discover effective ego-policy parameters more often than

both, risk-aware policy evaluation with randomly sampled

(PS-RA) as well as with hand-crafted (HC) ego-policy

parameters and Stops less frequently. On the other hand,

dense policy sampling (PS-ML) does not account for the

uncertainty while evaluating a policy and accumulates much

higher Blame as it fails to anticipate potentially dangerous

outcomes and Stops only when collision is imminent. Upon

slowing down the simulator to 5x slower than real-time

constraints would allow, sampling performs much better. The

hand-crafted Follow-other policies can be evaluated with

tp = 1.5s and hence, with more candidates, HC Stops less

often. However, C-MPDM still offers much more flexibility

to the decision making process and outperforms both HC

and PS-RA.

B. Real-World Experiments

We implemented our system on a differential drive robot

equipped with a Velodyne VLP-16 laser scanner used for

tracking pedestrians as well as for localization. Every 300ms,

MPDM evaluates a set of policies and chooses the least risky

one. Although the policy election is slow, the robot is respon-

sive as the policies themselves run at 50Hz. Fig. 6 shows

data from 75 minutes of repeatable real-world experiments

where volunteers were asked to repeat fixed scenarios while

the robot made its way towards its goal about 25m away.

We compared C-MPDM with hand-crafted discrete poli-

cies (HC) based on the Blame per meter traveled as well

as the trajectory Deviation which we define as the ratio of

the extra distance traveled by the robot to the minimum

(straight line) distance that the robot would travel if there

were no pedestrians. Using the 10 hand-crafted policies

(the planning time was insufficient to evaluate the Follow-

other policies), the robot often finds sub-optimal policies

resulting in larger trajectory Deviation. Our proposed method

C-MPDM (purple) is able to adjust its speed and direction at

a much higher resolution and as a result, finds policies that

result in lower Blame and Deviation.

In another real-world experiment, seven volunteers were

asked to move between marked points around an open space

for 45 minutes. On several occasions, the volunteers were

adversarial towards the robot, trying to test its capabilities

by suddenly changing direction, blocking its path or jumping

in front of it. We encourage the reader to see our attached

video demonstrating emergent behavior using C-MPDM.

(https://goo.gl/WgXW55)
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MPDM with few 

hand-crafted policies

Fig. 7. Robot trajectories from a real-world experiment. Two agents walk
closely in front of the robot as it navigates towards its goal. The agents
arbitrarily change speed and suddenly turn acutely near the robot’s goal
(star). The arrows mark the general trajectory of the pedestrians. Salient
locations are marked by circles. The undesirable behavior from MPDM with
hand-crafted policies (Πhc) stems from switching between very distinct
policies (Left). At location 1, the MPDM chooses to overtake the agents
at a High speed towards the Left of the goal (see Sec. V-A.2). However,
the pedestrians also speed up slightly and the robot still lags behind as
it approaches location 2 at which point, in order to make more Progress,
the robot switches strategies and attempts to overtake from the other side
(towards the Right of the goal). As the robot approaches location 3, the
agents start turning acutely. and in order to reduce Blame, rather than going
straight towards the goal, the robot tries to swerve around the agent from the
Left of its goal. This extreme switch causes the robot to deviate once again.
By allowing smoother transitions in nominal speed and heading, C-MPDM
avoids unnecessary deviation (Right).

Discussion: Undesirable behavior arising from discrete ego-

policies

Fig. 7 shows the resultant trajectories from an experiment

where two pedestrians walk closely in front of the robot,

but not directly towards the robot’s goal. The pedestrians

arbitrarily change speed along their path and suddenly turn

acutely near the robot’s goal. With a small set of discrete

hand-crafted policies, MPDM is forced to make extreme

choices such as overtaking from the right or left, or going

very slowly. Switching between these policies can result in

undesirable trajectories (Fig. 7). C-MPDM alleviates this

problem through continuous-valued parameterized policies,

allowing the robot to modulate its speed and heading. The

attached video shows the dynamics of this scenario.

VI. CONCLUSIONS

In this paper, we have extended MPDM, allowing ego-

policies to have continuous-valued parameters and reducing

the need for carefully hand-engineered policies. C-MPDM

radically improves the flexibility of MPDM while simulta-

neously satisfying real-time constraints by quickly finding

promising parameters through an iterative gradient-based

optimization. As a result, we can generate a continuum of

risk-aware policies allowing the robot to adapt better to the

dynamic environment which is critical for real-time risk-

aware navigation, as demonstrated through our experimental

results and the attached video.
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