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Task
Numerical experiments

Obtain properties of matter (e.g. formation 
energy, polarizability, phase stability) which are 
difficult/expensive to get experimentally or are 

unobservable at all. 

Tool
Molecular dynamics

Used for modelling of physical processes on the 
atomic level. In principle can provide a lot of 

valuable information.

Problem
Computational cost

Requires computationally demanding quantum 
mechanical  calculations (energies, forces, 

stresses) 

Solution
Machine Learning Interatomic Potentials

To construct a surrogate machine learning model predicting quantum mechanical data. We want to 
fit 𝐸qm 𝑿 with 𝐸 𝑿 , which means being able to predict energy 𝐸 for a given atomic configuration 
𝑿, as close as possible to the quantum data 𝐸qm 𝑿 . This results in minimizing the following 
functional:

𝐹 = 

𝑖

𝐸 𝑥 𝑖 − 𝐸qm 𝑥 𝑖
2
+ forces + …

It requires:
- Regression model to learn
- Reference data (training set)
- Optimization algorithm 

1 - Huang, B., & von Lilienfeld, O. A. (2016) The Journal of Chemical Physics. 
2 - De, S., Bartók, A. P., Csányi, G., & Ceriotti, M. (2016). Physical Chemistry Chemical Physics
3 - Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R., & Tkatchenko, A. (2017). Nature Communications

Improving transferability
The Active Learning approach

Application 2
Organic molecules

Application 1
Metallic alloys

Regression model
Moment Tensor Potentials

Desired impact
Software allowing fast & accurate MD

AgPd phase diagram MAE Models

Property MTP
MTP,
active BAML1 SOAP2 DTNN3

atomization 
energy, [kcal/mol] 0.55 0.43 1.15 0.92 1.04

atomization
energy max.err, 

[kcal/mol] 20 3.79

Polarizability, [Å3] 0.04 0.07 0.05 -

HOMO_gw, [eV] 0.12 0.1 0.12 -

LUMO_gw, [eV] 0.12 0.11 0.12 -

The main idea is to predict, whether our potential will extrapolate on a given configuration and if yes, 
include it in the training set. 

This makes Learning on the Fly possible: we run MD with our potential, calling slow QM calculations 
only if extrapolating configuration occurs. This significantly reduces computation time and almost 
preserves accuracy.

QM calculations are launched only when configuration occurred in MD is “new” to our potential.

With time, the potential learns itself and requires less and less quantum data, which boosts the 
whole MD significantly.

Below you can see number of QM calculations with MD step and accuracy for different thresholds, 
which means allowed degree of extrapolation.

00.010.1110

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0 500 1000 1500 2000 2500 3000 3500 4000

ΔE, eV

QM calcs

RMS Energy error vs. QM calcs

Common approach is to introduce locality of interatomic interactions. It works for most cases, 
when electrostatic forces can be neglected, and gives us energy partitioning
𝐸 =  𝑖 𝑉 𝑟𝑖1, 𝑟𝑖2, … , where each atom interacts only with its neighborhood in some cutoff radius

(~6 Å )

The problem is to find a good 𝑉, employing some parameterized functional form and then choose 
optimal parameters which minimize 𝐹 function. 

Ab-initio MD is too slow.

MD with empirical potentials is too inaccurate.

MD with our Machine Learning Potential is fast & precise.

Fully automated usage is possible, no additional expertise required!

Our package launches DFT when needed, otherwise provides much faster response.

MTP is a reactive potential, which means it can create and destroy interatomic bonds without 
explicitly defining them. Thus it is suitable for studying organic molecules.

We’ve fitted the so-called GDB-7 database, including more than
7,000 molecules with up to 7 heavy (C, N, O, F, S) atoms. The mean average errors are listed and 
compared to state-of-the art works in this field. 

With Active Learning approach maximum errors can be greatly decreased. It selects the optimal 
set of configurations to train on, excluding overfitting for the potential.

The phonon spectrum and a part of the phase diagram for the AgPd system, calculated with MTP 
potential. Note that fitted DFT data itself may contain errors in melting temperature. The 
complexity of system processing with MTP potentials scales as 𝑁, where 𝑁 is number of atoms. 
For comparison, complexity of DFT calculation scales as 𝑁3.

Binary MTP potential was trained on liquid and deformed solid AgPd configurations calculated via 
VASP DFT package. 

MTP potential can be integrated into LAMMPS for carrying on MD simulations. In this case, MTP 
works as a black-box providing energies/forces/stresses for incoming configurations. 

1 - Shapeev, A. V. (2016). Moment Tensor Potentials: a class of systematically improvable interatomic potentials. 
Multiscale Modeling & Simulation, 14(3), 1153-1173.

𝑖

𝑟𝑖1

𝑟𝑖2

𝑟𝑖3

𝑀α – inertia tensor, 
invariant to translation, 
rotation and permutation 
of equivalent atoms

𝒖 = {𝑟𝑖1,..., 𝑟𝑖𝑛} –
atomic 
environment

𝑉 𝒖; 𝜃 =  𝛼 𝜃
𝛼𝐵𝛼(𝒖), where 𝐵𝛼(𝒖) are all different contractions of 𝑀α(𝒖) yielding a scalar. 

Varying the set of {𝛼} we can switch the potential. 𝐵𝛼(𝒖) is complete basis, see [1] for proofs.

𝑖

𝑀α = 𝑀α(𝒖)

Examples of descriptors: 

𝑀𝑖
0 𝒖 = 𝑟𝑖1+. . +𝑟𝑖𝑛
𝑀𝑖
1 𝒖 = 𝒓𝑖1+. . +𝒓𝑖𝑛

𝑀𝑖
2 𝒖 = 𝒓𝑖1⊗𝒓𝑖1+. . +𝒓𝑖𝑛⊗𝒓𝑖𝑛

Examples of basic functions:
𝐵0 𝒖 = 𝑀0 𝒖

𝐵1 𝒖 = 𝑀1 𝒖 ∙ 𝑀1 𝒖

𝐵2 𝒖 = 𝑀0 𝒖 𝑀2 𝒖 ∶ 𝑀2 𝒖
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