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Abstract—We present a new approach to monocular
learning-based gaze redirection problem in images that is able
to train on raw sequences of eye images with unknown gaze
directions and a small amount of eye images, where the gaze
direction is known. The proposed approach is based on a pair
of deep networks, where the first encoder-like network maps
eye images to a latent space, while the second network maps
pairs of latent representations to warping fields implementing
the transformation between the pair of the original images.
In the proposed system, both networks are trained in an
unsupervised manner, while the gaze-annotated images are
only used to estimate displacements in the latent space that
are characteristic to certain gaze redirections. Quantitative
and qualitative evaluation suggests that such characteristic
displacement vectors in the learned latent space can be learned
from few examples and are transferable across different people
and different imaging conditions.

I. INTRODUCTION

In this work, we consider the task of gaze redirection
in images and video frames. The problem is an important
particular case of image (re)-synthesis and has immediate
applications in video conferencing, where the purpose of
gaze manipulation is to restore an eye-to-eye contact, as
well as in movie and photo post-production. Recently, the
approaches [1], [2], [3] have demonstrated that realistic gaze
redirection is possible in monocular setting, i.e. without any
additional hardware other than a single camera that is used to
acquire the images or videos. The warping-based model of
[1], [2], [3] however relies heavily on supervised machine
learning, and in particular requires a considerable amount
of eye images labeled with gaze direction. Acquiring such
images is tedious and requires imaging of multiple people
in constrained and uncomfortable setting.

Here, we extend the warping-based model of [1], [2],
[3] to unsupervised and semi-supervised settings, where
most of the learning happens in an unsupervised way using
sequences of eye images of different people with varying and
unknown gaze direction. In more detail, we use unsupervised
learning to construct the deep embedding of eye images into
a low-dimensional latent space (via the encoder network)
and, in parallel, learn a decoder network that constructs a
warping flow field based on the latent representation of two
eyes from the same sequence.

Once the unsupervised training is accomplished, the sys-
tem can redirect gaze of an arbitrary eye image by mapping
it to a latent space, and then modifying its latent representa-
tion by adding a certain vector in order to estimate the latent
representation of the target image. The decoder network can
then be used to estimate the warping between the source
and the unknown target images. The presented model is

similar in spirit to the visual analogy making of [4] though
it predicts the warping fields rather than the target images
directly. The model can use a small amount of supervised
data (e.g. a single pair of eye images with known difference
in gaze direction) to estimate the displacements in latent
space that are characteristics to certain gaze redirections (e.g.
lifting the gaze by 15 degrees upwards as is practical to the
videoconferencing scenario).

As we show in the experiments (Section III), the resulting
semi-supervised solution achieves convincing gaze redirec-
tion, which outperforms in visual quality the fully supervised
solution of [2] in the case when supervised data are limited.
At the same time, relying on warping rather than direct re-
synthesis ensures high realism of the resulting images and
avoids the loss of high-frequency details.

Related work. As discussed above, our work is the
continuation of the DeepWarp system [2]. Similar fully-
supervised models for general types of images have also
been suggested recently in [5], [6], [7]. All these works rely
on bilinear sampling layer popularized by [8] as part of their
spatial transformer networks. Our model is related to the
deep-analogy making model of [4]. The model [4] however
requires the knowledge of transformations that needs to be
provided in the form of analogy-forming quadruplets, which
is not required by our model. Perhaps even more related
is the inverse graphics model of [9], which can be trained
with a similar level of supervision to our system, i.e. with
subsets of images where some factors of variations are fixed
while others are varying arbitrarily. Both [4] and [9] however
tend to produce blurry non-photorealistic images that are not
suitable for the application scenarios of gaze redirection.
This is overcome in our model by using warping instead
of direct re-synthesis. Our work is also related to [10],
where a physical model of the eye is used to solve the gaze
redirection problem.

II. UNSUPERVISED TRAINING OF GAZE REDIRECTION

Data collection and preprocessing. Before discussing
the details of our approach, we review the data collection
and preprocessing procedures. To collect sequences with
annotated gaze direction, we follow [1], [2], [3] and record
the images of a person with fixed head position and follow-
ing a dot on a screen. A two minutes length sequence is
recorded by a webcam mounted in the middle of the screen.
We manually sort out bad shots with eye blinking, head
shaking, or where the gaze is not changing monotonically
as anticipated. For different sequences, we vary the head
pose and lightning conditions. Gaze direction changes in
range from −30 to 30 degrees in both x and y directions
(relatively the camera in the center of the screen).
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Figure 1: Architecture of unsupervised gaze redirection train-
ing. Two images of the same eye with different gaze direction are
passed to the encoder network that outputs their latent represen-
tations. These representations are then concatenated and passed to
the decoder network that outputs the predicted flow from the first
image to the second one. The flow can be used by the bilinear
sampler. The architecture is trained by minimizing the disparity
between the output image and the second image. Blue dots on eyes
represent the input distance maps, and arrows represent intended
gaze direction.

For the unlabeled part of dataset the process is signifi-
cantly simplified. The person is instructed to keep the head
approximately still and to quickly move the gaze along
the screen for about 10 seconds. This recording time is
comfortable for not blinking and not shaking head, while
sufficiently long for a person to gaze at different parts of
the screen. This scenario also eliminates the problems with
the person not following the dot on the screen as prescribed,
which we found out to be a recurrent problem.

Following the approach of [1], we emulate the change
in the appearance of eyes, when a person changes a gaze
direction, keeping the head pose unchanged. Thus, all im-
age modifications are concentrated in the close vicinity of
each eye. We use off-the-shelf facial landmark detection
software [11], [12] to localize eye. We use the method
suggested in [2] for an eye cropping, which computes tight
bounding box around eye landmarks and then enlarges it
proportionally to the distance between the eye corners.
Located eye landmarks are also embedded in the architecture
as additional features in both training and testing of the
model. All models assume they are dealing with right eyes,
while left eyes are processed using symmetry.

Model architecture. We now discuss the architecture
of our approach (Figure 1) as well as the training of the
encoder and the decoder networks, which, as discussed
above, happens in unsupervised mode and utilizes only
image sequences with varying but unknown gaze direction.

In general, similarly to [1], [2], [3], we perform the gaze
redirection by warping the input eye images. Thus, at the
core of our system is the ability to model the change of
appearance within the pair of the eye images (I1, I2) from
the same video sequence using warping. Such warping is
determined by the latent representations of the images h1 =
E(I1;ψ), h2 = E(I2;ψ), where E denotes a feed-forward
encoder network with learnable parameters ψ. The latent
representations live in low-to-medium dimensional space (up
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Figure 2: Demonstration of analogy property of the learned
embedding (zoom-in recommended). The three left-most columns
alongside the right-most one form analogy quadruplets (the dif-
ference in gaze direction between the first two columns is ap-
proximately the same as the difference in gaze direction between
the third and the last columns). ’Results 50’ and ’Results 500’
demonstrate the warped images obtained using modification in
latent space (as discussed in the text), after the encoder and the
decoder are trained in an unsupervised setting on 50 or 500 eye
sequences respectively. Overall, training on more unsupervised data
(500 sequences) leads to better and more robust result.

to 500 dimensions in our experiments).
Given the latent representations of the images, a decoder

network D with learnable parameters ω is applied to the
stacked latent representations of the image pair and outputs
the warping field, corresponding to the transformation of
image I1 into I2: F = D(h1, h2;ω). Finally, the standard
bilinear sampling layer S as defined in [8] outputs the result,
which is the prediction Î2 of image I2. Overall, the warping
process can be written as:

Î2(I1;ψ, ω) = S(I1,D(E(I1;ψ),E(I2;ψ);ω))). (1)

The training objective then naturally corresponds to min-
imizing the disparity between the true image I2 and its
predicted version (1). The training process then corresponds
to sampling pairs (I1; I2) and optimizing the parameters for
the encoder and the decoder networks by minimizing the
following `2-loss L(ψ, ω) =

∑
(I1,I2)

‖Î2(I1;ψ, ω) − I2‖2,
where the summation is taken over all training pairs of eye
images that correspond to the same sequences.

Notably, the training process does not require gaze annota-
tion, and, as will be verified below, learns meaningful latent
representations that are consistent across eye sequences in
the following sense. Let a visual analogy be quadruplet
(I1, I2, I3, I4), in which I1 and I2 correspond to one eye
sequence, and I3 and I4 correspond to other eye sequence (of
a potentially different person and/or different lighting etc.),
and where the change of gaze direction from I1 to I2 and
from I3 to I4 are similar (Figure 2). The learned embeddings
possess the property of having similar displacement vectors
across the two pairs:

E(I1;ψ)−E(I2;ψ) ≈ E(I3;ψ)−E(I4;ψ) (2)

The property (2) facilitates easy semi-supervised training
with limited amount of gaze-annotated data.

Details of the architectures. Using eye feature coordi-
nates as an input was important for the success of the system
in [2], and we follow this by making the encoder networks to
accept the locations of the eye feature coordinates as part of
the input alongside the input image. We thus add additional



14 maps to the input three-channeled image, one for each of
seven eye landmarks’ coordinates. Each of the added maps
encodes the distance from the pixel to the landmark along
the chosen coordinate (either x or y).

To describe the specific architectures, we denote
conv(m, k, s) a convolutional layer with m maps, kernel size
k and size of the stride s, and FC(m) a fully connected
layer with m maps. The architecture of the encoder we
used in our experiments is the following: conv(48, 5, 1) →
conv(48, 5, 2) → conv(96, 5, 2) → conv(96, 3, 2) →
FC(800) → FC(50). The decoder mirrors the architecture
of the encoder, except for the input (which is the vector
of length 100, being a concatenation of two representations
of length 50) and the output, which are two maps of the
warping field used in (1). The model is trained using Adam
optimizer [13]. Each batch contains 128 randomly sampled
pairs of images, each pair consisting of the input and output
eye from the same sequence.

Semi-supervised learning. The architecture discussed
above trains on pairs of eye images, and treat each of
the images in the pair similarly. At test time, however,
we are interested in computing the warping field without
knowing the second image (which itself is the unknown
that we wish to estimate). Fortunately, the analogy property
(2) possessed by the embeddings allows us to estimate
characteristic displacements in the latent space given some
amount of gaze direction-annotated data obtained with the
time-consuming process.

We consider the following test-time gaze redirection prob-
lem: given the query image Iq , obtain the image Oq corre-
sponding to the same eye under the same imaging condition,
with the gaze redirected by a given angle αq = (αx

q , α
y
q ).

As the angle αq is given, we can query the direction-
annotated part of the dataset for the set of pairs P (αq) =
{(I11 , I12 ), . . . , (In1 , I

n
2 )} that would form an analogy with Iq

and Oq , i.e. the pairs with the difference in the gaze direction
within each pair approximately equal αq (in practice we
use a hard threshold ε to determine whether some angular
difference is close enough to αq).

We then consider two methods of computing Oq given
the set of pairs P (αq). The first (baseline) method is to use
the mean warping field of the set of analogy pairs. Here,
for each pair we calculate the predicted warping field from
the first image in the pair to the second, and then apply the
averaged warping field F̄ to the query image:

F̄ =
1

n

n∑
i=1

D(E(Ii1;ψ),E(Ii2;ψ);ω). (3)

However, the clear drawback of this method is that the same
warping field F̄ will be applied to all query images with the
same desired angular redirection αq , being independent from
the content of the query Iq .

The second method that directly relies on the analogy
property (2) computes the mean latent vector displacement
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Figure 3: Quantitative comparison of methods: errors for
redirection on 15 degrees upwards (zoom-in recommended).
Horizontal axis shows the number of sequences labeled with gaze
direction provided to the methods. All methods are trained for
arbitrary redirection angle, but applied to a testing setting with 15◦

vertical redirection. “Code” corresponds to estimating the warped
image latent representation (5), “flow” corresponds to warping
the input image using mean flow (3). 100/500 corresponds to
the number of unlabeled sequences used to train the encoder-
decoder model. The single scale Deep Warp system [2] does not use
unlabeled data. Semi-supervised system performing analogies in
latent representation space outperforms other methods, and training
this method on more unlabeled data helps a lot irrespective the
amount of labeled data.

corresponding to angle αq:

∆h(αq) =
1

n

n∑
i=1

(E(Ii2;ψ)−E(Ii1;ψ)). (4)

Such precomputed vector can be used to estimate the desired
output image as:

Ôq = S(Iq, D (E(Iq;ψ), E(Iq;ψ) + ∆h(αq);ω) ). (5)

All latent representations for labeled part of the dataset could
be precomputed in advance and stored. Thus, performing the
redirection following (5) requires only a single pass through
the encoder and the decoder network at test time, which
opens up a possibility for real-time gaze manipulation (on a
device with a GPU).

III. EXPERIMENTS

We perform our experiments using the dataset that con-
sists of 640 sequences, each containing images of the same
eye from one video (under the same lightning conditions,
head pose, etc.) with different known gaze directions. Each
sequence contains 100−220 images. We use 500 sequences
for training and validation, leaving 140 for testing (the train
and the test sets do not contain sequences of the same
people). The angular tolerance ε for picking up analogies
from the labeled part of dataset was set to 0.5◦.

Quantitative evaluation of semi-supervised learning.
We then perform quantitative evaluation for the task of fixed
redirection angle 15◦ upwards (following the main setting
in [2]). We consider the following methods:

• Our system trained on different amount of unlabeled
sequences, as discussed in Section II, with two semi-
supervised approaches for test-time prediction:



Method DeepWarp Flow100 Code100 Flow500 Code500
10 seqs 3.9 5.8 3.9 4.5 2.7
20 seqs 3.5 5.5 3.8 4.3 2.7

Table I: Mean absolute difference between the estimated actual
redirection angle and the requested 15◦. See text for details.

1) Based on mean displacement vector in represen-
tation space (5), denoted as “code”.

2) Based on mean warping field (3), denoted as
“flow”.

• The single-scale Deep Warp system [2]. The single
scale version was used as it is similar to our encoder-
decoder network in complexity. Note that the encoder-
decoder network architectures presented here also al-
low multi-scale extensions, as in [2], when a flow is
predicted in a coarse-to-fine manner: residual flow is
predicted on a finer scale, utilizing features from a
coarse scale.

During training, all methods were trained for the task of
redirection by an arbitrary angle (the redirection angle was
fixed for the testing only). We vary the amount of labeled
sequences shown to the methods. The unsupervised models
were trained for 150 epochs on the unlabeled datasets
containing either 100 or 500 sequences. For images from
test set, we pick all possible analogies from given labeled
sequences, and we vary the number of sequences in this
labeled part. The Deep Warp system requires full supervision
and therefore was trained only on the labeled part of the
dataset for 150 epochs.

The quantitative comparison is represented in Figure 3.
We evaluate the mean (over pixels) sum of squared errors
across channels between the output and ground truth, and
divide it by the MSE between the input and ground truth
(referring to this measure as relative MSE). The semi-
supervised models outperform the Deep Warp model, which
does not exploit the unlabeled data, and, as expected, the ad-
vantage is bigger when the amount of labeled data is smaller.
Increasing the number of unlabeled sequences also improves
the performance of the model. The method based on latent
representation (5) better exploits the trained unsupervised
model, than the baseline which averages the warping flows.
The performance of semi-supervised methods saturate after
seeing approximately 15 labeled sequences. With an increase
in the number of labeled sequences, Deep Warp begins to
outperform the best of semi-supervised approaches (Code-
500). In our experiment, this happens at around 45 labeled
sequences. Due to a restricted demographics of our dataset
(mostly Caucasian and young people were imaged), the
number 45 is probably an underestimate of the number
that would be observed on a more diverse/balanced dataset.
For the reference, the Unsupervised oracle baseline corre-
sponding to the unsupervised model that knows the latent
representation of the ground truth and uses it to estimate
the warping field, relative MSE 0.32 for 100 sequences of
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Figure 4: Sample results on the hold-out set (zoom-in rec-
ommended). Columns from left to right: the input image, the
ground truth, the results of single scale deep warp system, the
result of the semi-supervised model that uses mean warping field,
the result of the semi-supervised model that uses mean difference in
latent representation space. With limited labeled data the perceptual
quality of the results is significantly improved using large dataset
of unlabeled data.

Figure 5: Vertical redirection by ±15 degrees (zoom-in needed)
by our semi-supervised model. The middle row shows the input.
The rightmost column is an example of failure case.

unlabeled data and 0.24 for 500 sequences.

To fully evaluate whether the gaze difference between the
input image and the output equals the requested angle, we
provide an additional assessment using evaluation model
E. It was trained to estimate the vertical gaze difference
between two input images on a large labeled training set (500
sequences). The validation error of the trained model is 1.1◦.
The evaluation score of the result O of the gaze redirection
by 15◦ upwards in input image I is |15− E(I,O)|, where
E(I,O) is the estimation of an actual redirection angle.
Results for 10 and 20 labeled sequences are presented in
the Table I. Semi-supervised system based on latent repre-
sentation with 500 unlabeled sequences outperforms Deep
Warp by a larger margin than in relative MSE comparison.
However, the score of Deep Warp is increased with respect
to other methods.

Qualitative evaluation of semi-supervised learning.
Finally, we demonstrate the qualitative results of redirection
on arbitrary angles in Figure 4 and Figure 5. All systems
here (except DeepWarp) use 15 labeled and 500 unlabeled
sequences. Performing analogies in the latent representation
space allows to get a substantial perceptual improvement
over the results of supervised model.
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