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Motivation

What changed in how we train deep neural networks since ImageNet?

Optimization: SGD with momentum [Polyak, 1964] is still the most effective
training method

Regularization: still use basic l2-regularization

Loss: still use softmax for classification

Architecture: have batch normalization and skip-connections

Weight parameterization changed!
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Motivation

Single hidden layer MLP:

o = σ(W1 � x),

y = W2 � o

where � denotes linear operation, σ(x) - nonlinearity.
Given enough neurons in hidden layer W1 MLP can approximate any
function [Cybenko, 1989]. However:

Empirically, deeper networks (2-3 hidden layers) are easier to
train [Ba and Caruana, 2014]

Suffer from overfitting, need regularization, e.g. weight decay, dropout, etc.

Deeper networks suffer from vanishing/exploding gradients
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Motivation

Improvement #1

Batch Normalization

Reparameterize each layer as:

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
γ(k) + β(k) for each feature plane k,

o = σ(W � x̂)

+ Alleviates vanishing/exploding gradients problem (dozens of layers), does not
solve it

+ Trained networks generalize better (greatly increased capacity)

+ γ and β can be folded into weights at test time

− Weight decay loses it’s importance

− Struggles to work if samples are highly correlated (RL, RNN)
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Motivation

Improvement #2

skip connections - Highway / ResNet / DenseNet

Instead of single layer:
o = σ(W � x) (1)

Residual layer [He et al., 2015]:

o = x + σ(W � x) (2)

+ Further alleviates vanishing gradients (thousands of layers), does not solve it

− No improvement from depth: - it comes from further increased capacity

Batch norm is essential
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Motivation

To summarize, deep residual networks:

able to train with thousands of layers

+ simplify training

+ achieve state-of-the-art results in many tasks

− have diminishing feature reuse problem

− improving accuracy by a small fraction doubles computational cost
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Wide Residual Networks,

Zagoruyko&Komodakis, in BMVC 2016
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Wide residual parameterizations

Can we answer these questions:

is extreme depth important? does it saturate?

how important is width? can we grow width instead?
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Wide residual parameterizations

Residual parameterization

Instead of single layer:
xn+1 = σ(W � xn)

Residual layer [He et al., 2015]:

xn+1 = x + σ(W � xn)

“basic” residual block:

xn+1 = xn + σ(W2 � σ(W1 � xn))

where σ(x) combines nonlinearity and batch normalization
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Wide residual parameterizations

Residual blocks
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Wide residual parameterizations

WRN architecture

group name output size block type = B(3, 3)

conv1 32× 32 [3×3, 16]

conv2 32×32

[
3×3, 16×k
3×3, 16×k

]
×N

conv3 16×16

[
3×3, 32×k
3×3, 32×k

]
×N

conv4 8×8

[
3×3, 64×k
3×3, 64×k

]
×N

avg-pool 1× 1 [8× 8]

Table: Structure of wide residual networks. Network width is determined by factor k.
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Wide residual parameterizations

CIFAR results
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Figure: Training curves for thin and wide residual networks on CIFAR-10 and CIFAR-100.
Solid lines denote test error (y-axis on the right), dashed lines denote training loss (y-axis
on the left).
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Wide residual parameterizations

CIFAR computational efficiency

164 1004

85

512

thin

40-4 16-1028-10
0

100

200

300

400

500

68

164

312

ti
m
e
(m
s)

wide

5.
46
%

4.
64
%

4.
66
%

4.
56
%

4.
38
%

Figure: Time of forward+backward update
per minibatch of size 32 for wide and thin
networks(x-axis denotes network depth and
widening factor).

Making network deeper makes
computation sequential, we want it to
be parallel!
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Wide residual parameterizations

ImageNet: basic block width

width 1.0 2.0 3.0 4.0

WRN-18
top1,top5 30.4, 10.93 27.06, 9.0 25.58, 8.06 24.06, 7.33

#parameters 11.7M 25.9M 45.6M 101.8M

WRN-34
top1,top5 26.77, 8.67 24.5, 7.58 23.39, 7.00

#parameters 21.8M 48.6M 86.0M

Table: ILSVRC-2012 validation error (single crop) of non-bottleneck ResNets with various
width. Networks with the comparable number of parameters achieve similar accuracy,
despite having 2 times less layers.
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Wide residual parameterizations

ImageNet: bottleneck block width

Model top-1 err, % top-5 err, % #params time/batch 16

ResNet-50 24.01 7.02 25.6M 49
ResNet-101 22.44 6.21 44.5M 82
ResNet-152 22.16 6.16 60.2M 115
WRN-50-2 21.9 6.03 68.9M 93
pre-ResNet-200 21.66 5.79 64.7M 154

Table: ILSVRC-2012 validation error (single crop) of bottleneck ResNets. Faster
WRN-50-2 outperforms ResNet-152 having 3 times less layers, and stands close to
pre-ResNet-200.
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Wide residual parameterizations

Conclusions

Harder the task, more layers we need:

MNIST: 2 layers
SVHN: 8 layers
CIFAR: 20 layers
ImageNet: 50 layers

ResNet does not benefit from increased depth, it benefits from increased
capacity

Deeper networks are not better for transfer learning

After some point, only number of parameters matters: you can vary
depth/width and get the same performance



Weight Parameterizations in Deep Neural Networks

Dirac parameterizations

Dirac parameterizations
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Training Very Deep Neural Networks Without Skip-Connections,

Zagoruyko&Komodakis, 2017, https://arxiv.org/abs/1706.00388

https://arxiv.org/abs/1706.00388
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Dirac parameterizations

Do we need skip-connections?

Several issues with skip-connections in ResNet:

Actual depth is not clear: might be determined by the shortest path

Information can bypass nonlinearities, some blocks might not learn anything
useful

Can we train a vanilla network without skip-connections?
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Dirac parameterization

Let I be the identity in algebra of discrete convolutional operators, i.e. convolving
it with input x results in the same output x (� denotes convolution):

I� x = x

In 2-d case: Kronecker delta, or identity matrix.
In N-d case:

I(i, j, l1, l2, . . . , lL) =

{
1 if i = j and lm ≤ Km for m = 1..L,

0 otherwise;
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Dirac parameterization

I[0,0,:,:]

I[:,:,1,1]

Figure: 4D-Dirac parameterezed filters
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Dirac parameterization

For a convolutional layer y = Ŵ� x we propose the following parameterization for
the weight tensor Ŵ:

y = Ŵ � x,

Ŵ = diag(a)I + diag(b)Wnorm,

where:

a – scaling vector (init a0 = 1) [no weight decay]

b – scaling vector (init b0 = 0.1) [no weight decay]

Wnorm – normalized weight tensor where each filter v is normalized by it’s
Euclidean norm (init W from normal distribution N (0, 1))
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Dirac parameterizations

Connection to ResNet

Due to distributivity of convolution:

y = σ
(
(I + W)� x

)
= σ

(
x + W � x

)
,

where σ(x) is a function combining nonlinearity and batch normalization. The skip
connection in ResNet is explicit:

y = x + σ(W � x)

Dirac parameterization and ResNet differ only by the order of nonlinearities

Each delta parameterized layer adds complexity by having unavoidable
nonlinearity

Dirac parameterization can be folded into a single weight tensor on inference
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Dirac parameterizations

DiracNet architecture

Same with ResNet, but with Dirac parametrization instead of residuals

name output size layer type

conv1 32× 32 [3×3, 16]
group1 32×32

[
3×3, 16× 16k

]
×2N

max-pool 16×16
group2 16×16

[
3×3, 32k × 32k

]
×2N

max-pool 8×8
group3 8×8

[
3×3, 64k × 64k

]
×2N

avg-pool 1× 1 [8× 8]

Table: Structure of DiracNets. Network width is determined by factor k. Groups of
convolutions are shown in brackets as [kernel shape, number of input channels, number of
output channels] where 2N is a number of layers in a group. Final classification layer and
dimensionality changing layers are omitted for clearance.
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Dirac parameterizations

CIFAR results

depth-width # params CIFAR-10 CIFAR-100

DiracNet
28-5 9.1M 4.93 23.39
28-10 36.5M 4.73 21.59

ResNet 1001-1 10.2M 4.92 22.71
WRN 28-10 36.5M 4.00 19.25

Table: CIFAR performance of plain (top part) and residual (bottom part) networks on
with horizontal flips and crops data augmentation. DiracNets outperform all other plain
networks by a large margin, and approach residual architectures. No dropout it used.
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Dirac parameterizations

CIFAR results
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ImageNet results
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Figure: Convergence of DiracNet and ResNet on ImageNet. Training top-5 error is shown
with dashed lines, validation - with solid. All networks are trained using the same
optimization hyperparameters.
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Dirac parameterizations

ImageNet results

Network # parameters top-1 error top-5 error

plain

VGG-CNN-S 102.9M 36.94 15.40
VGG-16 138.4M 29.38 -
DiracNet-18 11.7M 30.37 10.88
DiracNet-34 21.8M 27.79 9.34

residual
ResNet-18 [our baseline] 11.7M 29.62 10.62
ResNet-34 [our baseline] 21.8M 27.17 8.91

Table: Single crop top-1 and top-5 error on ILSVRC2012 validation set for plain (top) and
residual (bottom) networks.
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Dirac parameterizations

In a trained network Dirac parameterization and batch normalization fold into
filters:

Ŵ = diag(a)I + diag(b)Wnorm,

Resulting in MLP-like architecture (for n-th layer):

xn+1 = ReLU(Ŵn � xn)
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Dirac parameterizations

Conclusions

+ Trained network is very simple: Dirac parametrization folds into weights,
resulting in a plain feed-forward network like VGG

+ Can match ResNet accuracy on ImageNet

− Worse parameter efficiency and top accuracy on CIFAR (probably due to
weight decay)

DiracNets do not solve the depth issues yet, but significantly simplifies deep
networks.
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Symmetric parameterizations
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Exploring Weight Symmetry in Deep Neural Networks,

Sergey Zagoruyko, Shell Hu, Nikos Komodakis, under review at CVPR 2018
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Symmetric parameterizations

Networks that achieve top accuracy are massively overparameterized, e.g.
50M-100M parameters for top ImageNet and seq2seq models.

Can we somehow introduce structure in linear layers to reduce the number of
parameters, keeping the network capacity?
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Symmetric parameterizations

We propose to introduce symmetry:

Channelwise symmetry: over feature dimension

Spatial symmetry: over spatial dimensions

Example: in 32× 32× 3× 3 filters channelwise over 32× 32, spatial over 3× 3 1.

1require filters to have equal numbers of input and output channels
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Symmetric parameterizations

Ways to impose symmetry

Soft constraint (additional loss):

E
[
L(W̃, x)

]
+ ρ

L∑
l=1

∑
i∈I

∥∥∥vec(Wl
i)− vec(Wl

i
>

)
∥∥∥
p

(3)

At test time we use upper triangular part for lower triangular part for each layer
(similar to pruning).

− Same number of parameters at train time, 2× less at test time

+ More freedom during training
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Symmetric parameterizations

Ways to impose symmetry

Hard parameterization:

Ŵ = f(W,v) := diag(v) + triu(W) + triu(W)>,

W is an upper triangular matrix. We call the above triangular parameterization.

+ 2× less parameters both at train and test time

+ Potential speed-up both at train and test time

− Less freedom in linear layers
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Symmetric parameterizations

Other hard parameterizations:

average parameterization:

Ŵ = f(W) :=
1

2
(W + W>)

Eigen parameterization:

Ŵ = f(V, λ) := Vdiag(λ)V>

LDL parameterization:

Ŵ = f(L,D) := LDL>, (4)
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Symmetric parameterizations

N-way parameterizations:

0 1 2 3

3
2

1
0

0 1 2 3

3
2

1
0

0 1 2 3

3
2

1
0

0 1 2 3

3
2

1
0

0 1 2 3

3
2

1
0

Figure: N-way parameterizations. (a) Original 4× 4 weight matrix. (b) 4-way chunking: V
is the first strip; Ŵ = tile4×(V ). (c) 4-way blocking: V is the bottom-right block;
Ŵ = reflect−(reflect|(V )). (d) 4-way triangulizing: V is the top triangle;

Ŵ = reflect/(reflect\(V )). (e) 8-way triangulizing: V is the top-left triangle;

Ŵ = reflect/(reflect\(reflect|(V ))).
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Symmetric parameterizations

CIFAR results

symmetrization
#parameters

CIFAR-10
train test

baseline 0.219M 0.219M 8.49
L1 soft 0.219M 0.172M 8.61
channel-triangular 0.172M 0.172M 8.84
channel-average 0.219M 0.172M 8.83
channel-eigen 0.173M 0.173M 10.23
channel-LDL 0.172M 0.172M 9.15
spatial-average 0.219M 0.187M 9.70
spatial&channel-average 0.219M 0.156M 10.20

Table: Various parameterizations on CIFAR-10 with WRN-16-1-bottleneck.
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Symmetric parameterizations

Basic or bottleneck

Basic: 3× 3, 3× 3, imposing symmetry on both is very restrictive, 50% parameter
reduction.

Bottleneck: 1× 1, 3× 3, 1× 1, imposing symmetry on 3× 3 only, 1× 1 are “free”
layers, 25% parameter reduction.
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Symmetric parameterizations

CIFAR results
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Symmetric parameterizations

ImageNet results

network sym #params top-1 top-5

MobileNet 4.2M 28.18 9.8
MobileNet X 3.0M 30.57 11.6
ResNet-18 11.8M 30.54 10.93
ResNet-18 X 8.6M 31.44 11.55
ResNet-50 25.6M 23.50 6.83
ResNet-50 X 20.0M 23.98 7.25
ResNet-101 44.7M 22.14 6.09
ResNet-101 X 34.0M 22.36 6.35 0 20 40 60 80 100
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Symmetric parameterizations

Channelwise symmetry

(a) W (b) v (c) Ŵ

Figure: Visualization of a channel slice of weights from ResNet-50 trained with triangular
parameterization. (a) and (b) show triangular parameterization weights, upper triangular
and diagonal, (c) shows resulting symmetric weight matrix.
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Symmetric parameterizations

Conclusions

Weights in deep neural networks can be constrained to be symmetric without
significant loss in accuracy, as long as they are able to closely fit into training
data.

Networks with 1× 1 layers such as MobileNet can benefit from specialized
SYMM routines on CPU and GPU, and convolutional layers could be potentially
made faster too.
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Symmetric parameterizations

Conclusions

Need to continue looking for better parameterizations:

Automatic architecture search?

Issues of weight decay combined with batch norm?
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Symmetric parameterizations
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