GANs for Biological Image Synthesis

ICCV 2017

Anton Osokin Anatole Chessel, Rafael Carazo-Salas Federico Vaggi

NATIONAL RESEARCH UNIVERSITY

What are GANs?

- Generative Adversarial Networks (Goodfellow et al., 2014)
- Generative models (usually for images)
- The main idea: instead of specifying the objective (e.g. likelihood, reconstruction error) the objective is learned together with the generator.
- Generator a network that generates images from noise
- Discriminator a network classifying real vs. fake

Are GANs good?

- Definitely hyped
- Samples from different GAN-based methods:

Images from Goodfellow (2016) and others

Are GANs good?

- GANs cannot (maybe not?) generate realistic images
- Computer graphics can do way better (CG + GAN?)!
- But, natural images are hard

Global structure:

Counting:

Images from Goodfellow (2016)

GANs to generate cells

Real images

Synthetic images

How do GANs work?

Slide by Goodfellow (2016)

How do GANs work?

$$\begin{split} J^{(D)} &= -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right) \\ J^{(G)} &= -J^{(D)} \end{split}$$

-Equilibrium is a saddle point of the discriminator loss
-Resembles Jensen-Shannon divergence
-Generator minimizes the log-probability of the discriminator being correct

How do GANs work?

- In practice, it is not easy to make GANs work
- Some good practices, code that works <u>https://github.com/soumith/ganhacks</u>
- Many works improving GANs

DCGAN architecture

(Radford et al. 2014)

GANs to generate cells

Real images

Fake images

Fission yeast cells

Fission yeast cells

How to use it?

- Just generating random images is not very useful
- Add conditioning of different types
 - Class labels
 - Green on red channel
- Generate many green channels synced with one red channel (given only two-channel data)
- Biologists like interpolation by moving in the latent space

Separate red-green channels

- Conditioning on an image gets deterministic
 (pix2pix; Isola et al., 2017)
- We separate channels
 1) generate the red
 2) generate the green
 based on the red features

Mode collapse of separable generator

Improve on mode collapse

- One of the big trends of GAN papers: solve mode collapse
- We've tried Wasserstein GANs, WGAN-GP (Gulrajani et al., 2017)
 - Approximate Earth Mover's distance between distributions:

$$L = \underbrace{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{g}} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_{r}} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_{2} - 1)^{2} \right]}_{\text{gradient penalty}}$$

- Behaves better than JS (symmetric KL) when data is on low dimensional manifolds
- There is a quantity that goes down

WGAN helps with mode collapse

GAN

Next step: condition on the label

- We've tried several approaches (from recent papers), but nothing really worked together with WGAN
- Two "brute-force" approaches to sync multiple "greens":
 - Construct a multi-channel dataset by copying channels from images with similar red (L2-distance); architectures stays the same
 - Star-shaped generator: one red tower and several green towers

How to evaluate GANs?

- Evaluating samples is hard: staring is limited
- We've tried two approaches:
 - Neural network two-sample test similar to (Lopez-Paz & Oquab, 2017)
 - Reconstructing test images similar to (Metz et al., 2017)

Classifier two-sample test

- Get a hold out dataset
- Split it in train/test
- Train a classifier on sampled vs. train, test on sampled vs. test
- Test error estimate of quality
- Important to fix training procedure!
- In practice, neural networks are too good, so they need to be cut
- We use WGAN-GP discriminator
- We also to 10 random splits to get error bars

Does C2ST work?

	Steps	C2ST	Samples					
sep. GAN	1k	$\begin{array}{c} 11.0\pm \\ 0.1 \end{array}$						
	5k	$\begin{array}{c} 6.7\pm \\ 0.1 \end{array}$		C.Sea		7		
	50k	$\begin{array}{c} 3.2\pm \\ 0.1 \end{array}$	61.2 0			6 11 (1)		
sep. WGAN-GP	1k	$\begin{array}{c} 6.0\pm \\ 0.1 \end{array}$						
	5k	$_{0.1}^{2.2\pm}$		(23)				
	50k	$egin{array}{c} 1.6\pm\ 0.1 \end{array}$				64 <i>3</i> 9		
Real	-	$\begin{array}{c} -0.7 \\ \pm 0.6 \end{array}$	(*# <i>\$</i> 73)			(** 33)		

Real vs. real images of different classes

test	Alp14	Arp3	Cki2	Mkh1	Sid2	Teal
Alp14	0.1 ± 0.2	12.5 ± 0.3	8.1 ± 0.3	12.5 ± 0.5	9.5 ± 0.2	10.9 ± 0.3
Arp3	14.4 ± 0.2	0.8 ± 0.4	16.2 ± 0.2	11.5 ± 0.4	20.5 ± 0.3	13.2 ± 0.2
Cki2	8.6 ± 0.2	15.9 ± 0.3	-0.2 ± 0.3	13.7 ± 0.4	12.0 ± 0.3	15.8 ± 0.3
Mkh1	12.3 ± 0.4	12.2 ± 0.6	13.6 ± 0.3	-0.2 ± 0.4	12.4 ± 0.6	13.3 ± 0.6
Sid2	9.0 ± 0.3	19.5 ± 0.4	11.8 ± 0.5	13.4 ± 0.9	-0.6 ± 0.3	12.6 ± 0.3
Teal	11.3 ± 0.3	11.5 ± 0.5	15.9 ± 0.3	14.4 ± 0.6	13.1 ± 0.1	-0.1 ± 0.4

Real vs. real images of different classes

test	Alp14	Arp3	Cki2	Mkh1	Sid2	Teal	Fiml	Tea4
Alp14	0.1 ± 0.2	12.5 ± 0.3	8.1 ± 0.3	12.5 ± 0.5	9.5 ± 0.2	10.9 ± 0.3	15.6 ± 0.3	11.4 ± 0.3
Arp3	14.4 ± 0.2	0.8 ± 0.4	16.2 ± 0.2	11.5 ± 0.4	20.5 ± 0.3	13.2 ± 0.2	3.7 ± 0.2	18.3 ± 0.3
Cki2	8.6 ± 0.2	15.9 ± 0.3	-0.2 ± 0.3	13.7 ± 0.4	12.0 ± 0.3	15.8 ± 0.3	18.5 ± 0.4	16.0 ± 0.5
Mkh1	12.3 ± 0.4	12.2 ± 0.6	13.6 ± 0.3	-0.2 ± 0.4	12.4 ± 0.6	13.3 ± 0.6	15.1 ± 0.5	14.9 ± 0.8
Sid2	9.0 ± 0.3	19.5 ± 0.4	11.8 ± 0.5	13.4 ± 0.9	-0.6 ± 0.3	12.6 ± 0.3	23.9 ± 0.4	7.7 ± 0.6
Teal	11.3 ± 0.3	11.5 ± 0.5	15.9 ± 0.3	14.4 ± 0.6	13.1 ± 0.1	$\textbf{-0.1}\pm0.4$	14.5 ± 0.5	$\textbf{6.9} \pm \textbf{0.5}$
Fiml	16.3 ± 0.2	$\textbf{2.8} \pm \textbf{0.3}$	18.4 ± 0.2	14.5 ± 0.3	23.4 ± 0.3	15.1 ± 0.2	-0.2 ± 0.3	20.8 ± 0.5
Tea4	9.7 ± 0.6	15.8 ± 0.7	14.0 ± 0.9	13.9 ± 0.9	6.2 ± 0.4	$\textbf{5.9} \pm \textbf{0.3}$	19.5 ± 0.7	-0.5 ± 0.7

Comparing different C2ST

Evaluation

	raalimagas	one-class	one-class	multi-channel	multi-channel	star shaped	
	ieai iiiages	non-separable separable non-separable separ		separable	stai-shapeu		
separable red/green	-	X	\checkmark	X	\checkmark	\checkmark	
class conditioned	-	X	×	1	\checkmark	1	
Alp14	0.1 ± 0.2	0.6 ± 0.3	1.2 ± 0.2	3.2 ± 0.4	2.3 ± 0.5	0.6 ± 0.3	
Arp3	0.8 ± 0.4	1.2 ± 0.3	2.4 ± 0.4	3.2 ± 0.4	4.2 ± 0.4	2.1 ± 0.5	
Cki2	-0.2 ± 0.3	0.3 ± 0.5	1.0 ± 0.3	2.5 ± 0.3	3.6 ± 0.5	1.2 ± 0.3	
Mkh1	-0.2 ± 0.4	0.8 ± 0.6	0.5 ± 0.4	4.6 ± 0.5	6.6 ± 0.5	2.4 ± 0.6	
Sid2	-0.6 ± 0.3	0.8 ± 0.4	1.0 ± 0.5	4.5 ± 0.5	3.2 ± 0.6	1.1 ± 0.6	
Teal	$\textbf{-0.1}\pm0.4$	0.8 ± 0.5	0.8 ± 0.5	4.4 ± 0.3	2.8 ± 0.5	1.1 ± 0.4	
6 proteins	-0.1 ± 0.2	0.8 ± 0.2	1.1 ± 0.2	3.7 ± 0.1	3.8 ± 0.2	1.4 ± 0.1	

Reconstructing test images

- Get a hold out dataset
- Minimize L2-error between generated and target images w.r.t. the input noise vector

- (a) target image
- (b) the nearest neighbor
- (c) reconstruction one-class
- (d) reconstruction star-shaped

Reconstructing test images

- Get a hold out dataset
- Minimize L2-error between generated and target images w.r.t. the input noise vector

- (a) target image
- (b) the nearest neighbor
- (c) reconstruction one-class
- (d) reconstruction star-shaped

Reconstructing test images

Look at reconstruction error and log. likelihood of the noise

We can interpolate all classes together!

Code, data, results: https://github.com/aosokin/biogans

Conclusion

- GANs might be already usable for bio-images
- We can interpolate between samples: cell cycle
- One needs to adopt the architecture to the task, e.g. conditioning
- Separable generator works well
- Generating multi-channel images works, but worse

Future work:

- improve conditioning, e.g., on the class labels
- help biologists to extract some value

Code, data, results: <u>https://github.com/aosokin/biogans</u>