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Introduction

q(X ) – true probability density over natural image X ∈ X .

X = {x1, . . . , xn} – collection of n pixels; xi ∈ {0, . . . , 255}

D = {X1,X2, . . . ,Xm} – i.i.d. samples from q.

Goal: use D to estimate probability density p(X ) = p(x1, . . . , xn),
which is close to q.

p(X ) is also called likelihood of X .

• p(X ) ≥ 0

•
∑

X∈X
p(X ) = 1

• Min. KL(q||p)⇔ Max. E
X∼q

log p(X ) ≈ 1
n

∑
X∈D

log p(X )
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Motivation: image manipulations

Automatic colorization Image debluring

X
′
– corrupted image

X ∗ = argmax
X∈X

p(X ) + similarity(X ,X ′
).
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Motivation: reinforcement learning

Count-Based Exploration with Neural Density Models by Ostrovskiy et al.
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Motivation: Defense against Adversarial Samples

PixelDefend: Leveraging Generative Models to Understand and
Defend against Adversarial Examples by Song et al.

Category: wi-fi router
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Motivation: generalization to other domains

Wavenet for modeling audio

Image modeling techniques generalize beyond images:

• Audio [Oord, Dieleman, et al. 2016]
• Video [Kalchbrenner et al. 2016]
• Natural language [Gulrajani et al. 2017]
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Research landscape

GANs: Generative Adversarial Networks

• Implicit likelihood. Learns generator G : Z → X

VAEs: Variational AutoEncoders

• Intractable latent variable model: p(X ) =
∫
z p(X |z)p(z)dz

Tractable models

• Explicit and computationally tractable likelihood p(X )

Autoregressive model + conv. network = PixelCNN

This talk

Main result
Introduce autoregressive models with auxiliary variables:

• Improved perceptual quality of produced samples.

• Improved sampling speed.
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Background:
PixelCNN model

[Oord el al, ICML 2016]

[Oord el al, NIPS 2016]



PixelCNN Model

Key modeling idea: elementary chain rule
Represent a distribution over natural images as a product of
one-dimensional conditional distributions:

p(X ) = p(x1, x2, . . . , xn) =
n∏

i=1
p(xi |x1, . . . , xi−1)

• Need to model only 1-dimensional distributions!

• Images are translation invariant, thus all conditional
distributions can be modeled by a single function

• All conditional distributions can be computed in a single
forward pass of an appropriate convolutional network
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PixelCNN model

An illustration of how a single conditional distribution is computed.

Image credit: Conditional Image Generation with PixelCNN
Decoders by Oord et al.
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PixelCNN: implementation details

• Displaced receptive field
• Gatinig non-linearity: φ(x) = tanh(xl) ∗ σ(xr )

Straightforward to derive conditional model: p(X |z)

Image credit: Conditional Image Generation with PixelCNN
Decoders by Oord et al.
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PixelCNN: Training

D = {X1,X2, . . . ,Xm} – training data

w – model parameters

Training procedure
Log-likelihood maximization using stochastic gradient descent:

max
w

1
m

∑
X∈D

n∑
i=1

log pw (xi |x1, . . . , xi−1)

Gradients can be computed in a single backward pass
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PixelCNN: Sampling

Sampling is sequential:
x1 ∼ p(x1)

x2 ∼ p(x2|x1)

x3 ∼ p(x3|x2, x1)

x4 ∼ p(x4|x3, x2, x1)

. . .

Image credit: https://github.com/PrajitR/fast-pixel-cnn
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Shortcomings of the PixelCNN model

• Lack of global structure in image samples:

• Slow sampling: deep neural networks needs to be invoked for
every pixel which is being generated.
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PixelCNN models
with Auxiliary Variables

(ICML 2017)



PixelCNN with Auxiliary Variables

We extend PixelCNN with auxiliary variable, X̂ and model a joint
probability distribution:

p(X , X̂ ) = p(X |X̂ )p(X̂ )

Crucial modeling assumption:
X̂ = f (X ), where f is a deterministic function.

In this talk: X̂ = f (X ) is an image, also modeled by PixelCNN.

Efficient training: max
∑
X∈D

[log p(f (X )) + log p(X |f (X ))]

Efficient sampling: sample X̂ from p(X̂ ), then X from p(X |X̂ )
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Grayscale PixelCNN

Problem: Lack of global structure in random image samples

Solution: Explicitly encourage model to capture
global image statistics

X̂ – 4-bit quantized grayscale view of X

4-bit grayscale original

X̂ retains global image information and
omits distracting texture patterns 17



Grayscale PixelCNN: insight into image modeling problem

Average loss of the trained model:

− log p(X̂ ) ≈ 0.46 − log p(X |X̂ ) ≈ 2.52

Likelihood objective is dominated by colors/texture patterns

original 4-bit grayscale samples from p(X |X̂ )

4-bit grayscale image transform is sufficient
to produce photo-realistic images 18



Grayscale PixelCNN: samples

Grayscale PixelCNN samples are globally coherent.

19



Grayscale PixelCNN: likelihood

Model Bits per dim.
Deep Diffusion [Sohl-Dickstein et al. 2015] ≤ 5.40
NICE [Dinh, Krueger, and Y. Bengio 2014] 4.48
DRAW [Gregor, Danihelka, et al. 2015] ≤ 4.13
Deep GMMs [Oord and Schrauwen 2014] 4.00
Conv Draw [Gregor, Besse, et al. 2016] ≤ 3.58
Real NVP [Dinh, Sohl-Dickstein, and S. Bengio 2016] 3.49
Matnet + AR [Bachman 2016] ≤ 3.24
PixelCNN [Oord, Kalchbrenner, and Kavukcuoglu 2016] 3.14
VAE with IAF [Kingma, Salimans, and Welling 2016] ≤ 3.11
Gated PixelCNN [Oord, Kalchbrenner, Espeholt, et al. 2016] 3.03
PixelRNN [Oord, Kalchbrenner, and Kavukcuoglu 2016] 3.00
Grayscale PixelCNN [this talk] ≤ 2.98
DenseNet VLAE [Chen et al. 2017] ≤ 2.95
PixelCNN++ [Salimans et al. 2017] 2.92

The negative log-likelihood of the different models for the CIFAR-10
test set measured as bits-per-dimension.
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Pyramid PixelCNN

Problem: Slow sampling
Solution: Multiscale decomposition

X̂ – a low-resolution view of X .
Can be applied recursively.

Start from generating tiny 8x8 seed
Upscale 4 times to 128x128

Image generation = super-resolution

Tiny network for each step:
3 residual blocks =⇒ fast sampling

Concurrent work: Parallel autoregressive density estimation
Imporoves complexity by Reed et al: O(n)→ O(log n)
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Pyramid PixelCNN: samples

Despite tiny PixelCNN models, which are used, high-resolution
samples are accurate and globally coherent samples.
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Summary

• High-frequency texture patterns dominate the likelihood objective

• Auxiliary quantized grayscale variable can be used to encourage
PixelCNN model to focus more on semantic structure of an image

• Low-resolution auxiliary variables help to scale PixelCNN for
high-resolution images

• Grayscale and low-resolution auxiliary variables can be combined
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Application:
Probabilistic Image

Colorization
Joint work with Amèlie Royer and Christoph Lampert (BMVC
2017)



PixelCNN for Automatic Colorization

Model: p(X color|X gray)

• Handles diversity and pixel correlations
• Clean objective, no ad-hoc heuristics

Parallel work: PixColor: Pixel Recursive Colorization by Sergio
Guadarrama et al
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Qualitative Results
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Thank you for your attention!

Face generation demo:
https://github.com/kolesman/FaceGeneration

Image colorization code:
https://github.com/ameroyer/PIC

Apply for PhD at IST Austria: https://phd.pages.ist.ac.at/

Deadline: 8 January (very soon!)
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