
PixelCNN Models with Auxiliary Variables
for Natural Image Modeling

Alexander Kolesnikov, IST Austria (joint work with Christoph Lampert)

The Third Christmas Colloquium on Computer Vision, Moscow, Russia



Introduction

q(X ) – true probability density over natural image X ∈ X .

X = {x1, . . . , xn} – collection of n pixels; xi ∈ {0, . . . , 255}

D = {X1,X2, . . . ,Xm} – i.i.d. samples from q.

Goal: use D to estimate probability density p(X ) = p(x1, . . . , xn),
which is close to q.

p(X ) is also called likelihood of X .

• p(X ) ≥ 0

•
∑

X∈X
p(X ) = 1

• Min. KL(q||p)⇔ Max. E
X∼q

log p(X ) ≈ 1
n

∑
X∈D

log p(X )

2



Motivation: image manipulations

Automatic colorization Image debluring

X
′
– corrupted image

X ∗ = argmax
X∈X

p(X ) + similarity(X ,X ′
).

3



Motivation: reinforcement learning

Count-Based Exploration with Neural Density Models by Ostrovskiy et al.

4



Motivation: Defense against Adversarial Samples

PixelDefend: Leveraging Generative Models to Understand and
Defend against Adversarial Examples by Song et al.

Category: wi-fi router

5



Motivation: generalization to other domains

Wavenet for modeling audio

Image modeling techniques generalize beyond images:

• Audio [Oord, Dieleman, et al. 2016]
• Video [Kalchbrenner et al. 2016]
• Natural language [Gulrajani et al. 2017]

6



Research landscape

GANs: Generative Adversarial Networks

• Implicit likelihood. Learns generator G : Z → X

VAEs: Variational AutoEncoders

• Intractable latent variable model: p(X ) =
∫
z p(X |z)p(z)dz

Tractable models

• Explicit and computationally tractable likelihood p(X )

Autoregressive model + conv. network = PixelCNN

This talk

Main result
Introduce autoregressive models with auxiliary variables:

• Improved perceptual quality of produced samples.

• Improved sampling speed.

7



Research landscape

GANs: Generative Adversarial Networks

• Implicit likelihood. Learns generator G : Z → X

VAEs: Variational AutoEncoders

• Intractable latent variable model: p(X ) =
∫
z p(X |z)p(z)dz

Tractable models

• Explicit and computationally tractable likelihood p(X )

Autoregressive model + conv. network = PixelCNN

This talk

Main result
Introduce autoregressive models with auxiliary variables:

• Improved perceptual quality of produced samples.

• Improved sampling speed. 7



Background:
PixelCNN model

[Oord el al, ICML 2016]

[Oord el al, NIPS 2016]



PixelCNN Model

Key modeling idea: elementary chain rule
Represent a distribution over natural images as a product of
one-dimensional conditional distributions:

p(X ) = p(x1, x2, . . . , xn) =
n∏

i=1
p(xi |x1, . . . , xi−1)

• Need to model only 1-dimensional distributions!

• Images are translation invariant, thus all conditional
distributions can be modeled by a single function

• All conditional distributions can be computed in a single
forward pass of an appropriate convolutional network

9



PixelCNN model

An illustration of how a single conditional distribution is computed.

Image credit: Conditional Image Generation with PixelCNN
Decoders by Oord et al.

10



PixelCNN: implementation details

• Displaced receptive field
• Gatinig non-linearity: φ(x) = tanh(xl) ∗ σ(xr )

Straightforward to derive conditional model: p(X |z)

Image credit: Conditional Image Generation with PixelCNN
Decoders by Oord et al.

11



PixelCNN: Training

D = {X1,X2, . . . ,Xm} – training data

w – model parameters

Training procedure
Log-likelihood maximization using stochastic gradient descent:

max
w

1
m

∑
X∈D

n∑
i=1

log pw (xi |x1, . . . , xi−1)

Gradients can be computed in a single backward pass

12



PixelCNN: Sampling

Sampling is sequential:
x1 ∼ p(x1)

x2 ∼ p(x2|x1)

x3 ∼ p(x3|x2, x1)

x4 ∼ p(x4|x3, x2, x1)

. . .

Image credit: https://github.com/PrajitR/fast-pixel-cnn

13


outfile.mp4
Media File (video/mp4)



Shortcomings of the PixelCNN model

• Lack of global structure in image samples:

• Slow sampling: deep neural networks needs to be invoked for
every pixel which is being generated.

14



PixelCNN models
with Auxiliary Variables

(ICML 2017)



PixelCNN with Auxiliary Variables

We extend PixelCNN with auxiliary variable, X̂ and model a joint
probability distribution:

p(X , X̂ ) = p(X |X̂ )p(X̂ )

Crucial modeling assumption:
X̂ = f (X ), where f is a deterministic function.

In this talk: X̂ = f (X ) is an image, also modeled by PixelCNN.

Efficient training: max
∑
X∈D

[log p(f (X )) + log p(X |f (X ))]

Efficient sampling: sample X̂ from p(X̂ ), then X from p(X |X̂ )

16



Grayscale PixelCNN

Problem: Lack of global structure in random image samples

Solution: Explicitly encourage model to capture
global image statistics

X̂ – 4-bit quantized grayscale view of X

4-bit grayscale original

X̂ retains global image information and
omits distracting texture patterns 17



Grayscale PixelCNN: insight into image modeling problem

Average loss of the trained model:

− log p(X̂ ) ≈ 0.46 − log p(X |X̂ ) ≈ 2.52

Likelihood objective is dominated by colors/texture patterns

original 4-bit grayscale samples from p(X |X̂ )

4-bit grayscale image transform is sufficient
to produce photo-realistic images 18



Grayscale PixelCNN: samples

Grayscale PixelCNN samples are globally coherent.

19



Grayscale PixelCNN: likelihood

Model Bits per dim.
Deep Diffusion [Sohl-Dickstein et al. 2015] ≤ 5.40
NICE [Dinh, Krueger, and Y. Bengio 2014] 4.48
DRAW [Gregor, Danihelka, et al. 2015] ≤ 4.13
Deep GMMs [Oord and Schrauwen 2014] 4.00
Conv Draw [Gregor, Besse, et al. 2016] ≤ 3.58
Real NVP [Dinh, Sohl-Dickstein, and S. Bengio 2016] 3.49
Matnet + AR [Bachman 2016] ≤ 3.24
PixelCNN [Oord, Kalchbrenner, and Kavukcuoglu 2016] 3.14
VAE with IAF [Kingma, Salimans, and Welling 2016] ≤ 3.11
Gated PixelCNN [Oord, Kalchbrenner, Espeholt, et al. 2016] 3.03
PixelRNN [Oord, Kalchbrenner, and Kavukcuoglu 2016] 3.00
Grayscale PixelCNN [this talk] ≤ 2.98
DenseNet VLAE [Chen et al. 2017] ≤ 2.95
PixelCNN++ [Salimans et al. 2017] 2.92

The negative log-likelihood of the different models for the CIFAR-10
test set measured as bits-per-dimension.

20



Pyramid PixelCNN

Problem: Slow sampling
Solution: Multiscale decomposition

X̂ – a low-resolution view of X .
Can be applied recursively.

Start from generating tiny 8x8 seed
Upscale 4 times to 128x128

Image generation = super-resolution

Tiny network for each step:
3 residual blocks =⇒ fast sampling

Concurrent work: Parallel autoregressive density estimation
Imporoves complexity by Reed et al: O(n)→ O(log n)

21



Pyramid PixelCNN

Problem: Slow sampling
Solution: Multiscale decomposition

X̂ – a low-resolution view of X .
Can be applied recursively.

Start from generating tiny 8x8 seed
Upscale 4 times to 128x128

Image generation = super-resolution

Tiny network for each step:
3 residual blocks =⇒ fast sampling

Concurrent work: Parallel autoregressive density estimation
Imporoves complexity by Reed et al: O(n)→ O(log n)

21



Pyramid PixelCNN: samples

Despite tiny PixelCNN models, which are used, high-resolution
samples are accurate and globally coherent samples.

22



Summary

• High-frequency texture patterns dominate the likelihood objective

• Auxiliary quantized grayscale variable can be used to encourage
PixelCNN model to focus more on semantic structure of an image

• Low-resolution auxiliary variables help to scale PixelCNN for
high-resolution images

• Grayscale and low-resolution auxiliary variables can be combined

23



Application:
Probabilistic Image

Colorization
Joint work with Amèlie Royer and Christoph Lampert (BMVC
2017)



PixelCNN for Automatic Colorization

Model: p(X color|X gray)

• Handles diversity and pixel correlations
• Clean objective, no ad-hoc heuristics

Parallel work: PixColor: Pixel Recursive Colorization by Sergio
Guadarrama et al

25



Qualitative Results

26



Thank you for your attention!

Face generation demo:
https://github.com/kolesman/FaceGeneration

Image colorization code:
https://github.com/ameroyer/PIC

Apply for PhD at IST Austria: https://phd.pages.ist.ac.at/

Deadline: 8 January (very soon!)

27

https://github.com/kolesman/FaceGeneration
https://github.com/ameroyer/PIC

