Set2Model Networks: Learning Discriminatively To Learn Generative Visual Models

Alexander Vakhitov Andrey Kuzmin Victor Lempitsky

Skoltech Christmas Colloquium 2017

Set2Model Networks

- Web-initialized image search
- Meta-learning
 - Approaches overview
 - Notable works
- Set2Model
 - Learning within a task
 - Learning across tasks
- Experiments
- Live demo
- Conclusions

Web-initialized image search

- Problem: to find a certain visual concept in the image collection
- Solution:
 - get 'training' images using Internet image search
 - build a concept model in the latent space
 - use the model to compute relevance of images

One (few) shot learning

 A child generalizes a new concept from a single picture

but

- Deep learning systems need vast datasets to train
- => Need for new learning mechanisms

Meta-learning

"Learning to learn" loop:

Meta-learning cost function

$$\theta_* = \operatorname{argmin}_{\theta} \mathbb{E}_{D \sim p(D)} L(D; \theta)$$

- Dataset D = $\{d_t\} = \{(x_t, y_t)\}$
- $L(\theta, D)$ is a usual learning cost
- Both regression/classification possible
- p(D) can combine two distributions:
 - on classes (labels)
 - \circ on samples
- Ideally, we wish to output $p(y_t | X_t, D_{1:t-1}; \theta)$ with input X_t

Omniglot: MNIST "transposed"

- Each character is a class
- "MNIST transposed" 1623 classes, 20 images
- Training/testing classes are different
- To the right: 20-way 5-shot task

(Lake et al., 2011)

с _с К **с** с 그 큰 르 르 코 $\bigcirc \bigcirc \bigcirc \bigcirc$ മ Ф 됴 포 꼬 듄 Æ 6 6 6 6 イイメメノ എം എം എം എം എം IN IN IN IN IN FOR FOL FOL FOL FOL ш ч ч ч ιΨ ভিত্তত ভিত ጌ ዳ 2 ዳ ک ve æ 9

Meta-learning architecture requirements

According to (Santoro et al., 2016), meta-learning requires:

 Elementwise accessible stable memory M
 No. of parameters θ not tied to the size of the memory M

Some approaches

Denote embedding function as g...

- Metric learning + nearest neighbor
 - M = g(D), θ describes the metric
 e.g. Siamese nets (Koch et al., 2015)
- Aggregation models
 - NCM: M = mean descriptors (Mensink et al., 2012)
 - Set2Model: M = Gaussian mixture (g(D))
- Memory-augmented networks
 - Neural Turing Machine: M in the machine (Santoro et al., 2016)
 - Matching nets: $M = g(D) \cup f(g(D), \theta)$ (Vinyals et al., 2016)

Siamese net solution

- Siamese net trained with verification loss (0 same, 1 different class)
- Nearest neighbor with Siamese net as a metric
- Evaluation: M is the training set, θ describes the net

Nearest class mean (Mensink et al., 2012)

200-way classification

 SIFT-based features
 Generalization to unseen classes with and without prior

 $i_* = argmin_i softmax \{\rho(m_i, x)\}, m_i - mean descriptor for class i$

Meta-learning with Memory Augmented NN

1st phase: store data-label association in M 2nd phase: retrieve label for data, back-propagate (Santoro et al., ICML 2016)

Matching Networks for One Shot Learning

- Use attention kernel $a(x, x_i)$ where x is a test example, $(x_i, y_i) \in D$ $y = \sum_i a(x, x_i) y_i$
- Omniglot: "Soft" nearest neighbor

 $a(x,x_i) = softmax(x^T x_i)$

- ImageNet/Language: Attention constructed by LSTMs
- Training loops:
 - ∘ choose labels y_i
 - choose samples x_i
 - learn for D

(Vinyals et al., NIPS 2016)

Set2Model Network: learning within a task

- X class examples
- Y test examples
- (*) we use AlexNet, can be any Deep Net
- (⁺) we use Gaussian mixture as a model

Set2Model Layer

- Normalize a descriptor in I_2
- Build a Gaussian mixture model with k_{*} =
 - 1..4 components
 - k_{*} fixed a priori, or
 - k_{*} chosen using
 BIC (Bayesian Information Criterion):
 k_{*} = argmin k 2 k n log(N) 2 log p(X|X),
 where n is a descriptor dimension,
 N = |X|

X - class examples

Y₊,Y₋ - positive/negative test examples

(*) - we use AlexNet, can be any Deep Net

(⁺) - we use Gaussian mixture as a model

Histogram Loss

$$d_{+/-} = p(Y_{+/-} | X)$$

 $h_{+/-} = histogram (d_{+/-})$

$$L(d_{+}, d_{-}) = \sum_{i} h_{+}[i] \sum_{j>i} h_{-}[j]$$

Backpropagation through the S2M Layer: implicit diff

- $\nabla_{Y+/-}$ Loss: closed form expression
- Focus on ∇_x Loss
- Denote GMÂ parameters as q_{*}
- ∇_q Loss: closed form expression; $\nabla_X q = ?$ $q_* = \operatorname{argmax} p_{GMM}(X; q)$

$$\nabla_q p_{GMM}(X; q) = 0$$

$$\nabla_{qq}^{2} p_{GMM}(X;q) \nabla_{X} q + \nabla_{qX}^{2} p_{GMM}(X;q) = 0$$

Solve a linear system w.r.t. $\nabla_{X} q$.

Experiments

- Baselines (pre-learned & fine-tuned)
 - Nearest neighbor
 - SVM 1-vs-all
 - Nearest class mean
- Datasets
 - Oxford flowers
 - RGBD Object
 - ImageNet
 - Omniglot
- Test & train classes do not intersect

Implementation

- Caffe/Python
- Fine-tuning of AlexNet provided with Caffe (except Omniglot)
- Live demo

Oxford Flowers

- Train 80 / Test 22 classes
- (Nilsback & Zisserman, 2008)

RGBD Object

- Train 40 / Test 11 classes
- (Lai et al., 2011)

ImageNet

- Train 608 / Test 91 classes
- Random classes, not from ILSVRC'12

Query = 'crucian carp' (left), 'silverbush' (right)

'supernova' (left), 'seal' (right)

• Relevance by the mixture components

Query = 'pinto'

green: web search images, blue: ImageNet class images

Omniglot

S2M: 1-vs-all training Others: n-way cross entropy training

Model	5-way	20-way
Matching Nets	0.989	0.985
MANN (no Conv)	0.949	-
Convolutional Siamese net	0.984	0.965
S2M-Gauss	0.985	0.956

Conclusions

a.vakhitov @ skoltech.ru Alexander Vakhitov Senior researcher Skoltech, CV group

- Set2Model is a method for discriminative training of generative visual models
- Backprop using implicit differentiation
- Generalizes well to
 unseen classes
- Tested on 4 datasets
 CVIU'2017, ICCV Workshop'2017