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Abstract

To compress large datasets of high-dimensional descrip-
tors, modern quantization schemes learn multiple code-
books and then represent individual descriptors as com-
binations of codewords. Once the codebooks are learned,
these schemes encode descriptors independently. In con-
trast to that, we present a new coding scheme that arranges
dataset descriptors into a set of arborescence graphs, and
then encodes non-root descriptors by quantizing their dis-
placements with respect to their parent nodes. By optimiz-
ing the structure of arborescences, our coding scheme can
decrease the quantization error considerably, while incur-
ring only minimal overhead on the memory footprint and
the speed of nearest neighbor search in the compressed
dataset compared to the independent quantization. The ad-
vantage of the proposed scheme is demonstrated in a series
of experiments with datasets of SIFT and deep descriptors.

1. Introduction
Visual search and other computer vision applications are

routinely dealing with million or billion-scale datasets of
visual descriptors corresponding to images and/or image
parts. Lossy compression of such descriptor datasets that
reduce their memory footprint and increase the search speed
have therefore become an active area of research. Currently,
approaches based on (non-binary) quantizations [14, 12, 18,
3, 22, 5] achieve the best compression error-compression
ratio trade-off, while also permitting efficient computation
of scalar products and squared distances between uncom-
pressed queries and compressed descriptor sets using look-
up tables. For million-scale datasets, the look-up tables al-
low fast exhaustive search that scans through entire datasets
in a matter of milliseconds.

Existing quantization approaches represent dataset de-
scriptors as combinations of codeword vectors that come
from different codebooks. The codebooks are invariably

adapted to the dataset (or its hold-out part) through the op-
timization process, so that statistical regularities of the de-
scriptor distribution can be exploited for better coding ac-
curacy. Importantly, once the codebooks have been learned,
existing quantization schemes apply independent coding to
each of the dataset descriptors.

In this work, we propose the approach that brings fur-
ther improvement in terms of coding accuracy on top of
the existing descriptor coding techniques, while incurring
small memory and search time overheads. The improve-
ment comes as we consider joint coding of descriptors in
the dataset that goes beyond codebook learning. Our ap-
proach (arborescence coding) avoids direct coding of the
majority of the dataset vectors, and instead focuses on cod-
ing relative displacements between nearby vectors. A sim-
ilar idea underlies predictive coding [11], however arbores-
cences coding goes beyond predictive coding by selecting
sets of parent-children pairs that are most suitable for pre-
dictive quantization.

The main idea of our approach is simple (Figure 1).
During coding, the optimization process splits the dataset
into a set of arborescence graphs (i.e. directed trees), with
individual descriptors being the vertices of those arbores-
cences. For each arborescence, the topology (structure), the
absolute position of the root, and the relative displacements
along the arcs are encoded and stored using quantization
techniques. When computing the scalar product with the
query vector, the scalar product between the query and the
root vector is computed first, and the scalar products with
other vectors are computed in a breadth-first manner. Such
breadth-first scan process can then benefit from the stan-
dard look-up table tricks used by quantization methods [14]
thanks to the additivity of the scalar product. Arborescence
coding therefore does not incur significant reductions in
search speed compared to the base quantization algorithm.

Crucially, arborescence coding makes the topology (in-
cluding the number) of the arborescences part of the op-
timization process during the encoding of the dataset. In
the process of optimization, individual descriptors are free
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Figure 1: Independent (traditional) coding vs. Arborescence coding. Left – a set of descriptors (black dots) are encoded
using the codebook of eight codewords (red). Each descriptor gets assigned to the closest codeword. This is a standard,
independent (given the codebook) coding approach resulting in large coding errors (thin solid lines). Middle – arborescence
coding splits the dataset into a set of arborescence graphs (the roots of arborescences are highlighted in red). Right – following
the structure of these arborescences, the coding uses one four-word codebook to encode root descriptors (red circles), and
another four-word codebook to encode displacements along arcs in the arborescences (the codewords are shown as green,
magenta, orange, blue vectors). By coordinating the choice of arborescence topology and the codebooks, arborescence coding
creates reconstructions (circles) that result in much lower coding errors (thin lines) than independent coding, while still using
one codeword per descriptor and eight different codewords for the dataset. The cost of storing arborescence topology is small
and independent of space dimensionality. Note: in this 2D toy example, single codebook quantizations are used. In high
dimensions, both plain coding and arborescence coding can benefit from multi-codebook quantization methods (e.g. product
quantization [14]) .

to choose whether to become roots (and to be encoded di-
rectly) or to become non-root nodes (and to be coded rel-
ative to some parent descriptor). The choice of the parent
is driven by the (greedy) desire to minimize the coding er-
ror. Importantly, our approach can be used on top of almost
any existing quantization scheme [14, 10, 12, 18, 3, 22, 5]
or, in fact, any other vector compression schemes such as
generative binary hashing [20]. The optimization process
in arborescence coding can be initialized with the “trivial”
state where each desriptor forms a separate arborescence
and is therefore coded independently. As the subsequent
optimization is guaranteed not to increase the coding errors
of individual vectors, our approach is guaranteed to achieve
same or lower compression error compared to the base cod-
ing algorithm.

Alongside the full-fledged version of our approach (ar-
borescence coding), we also consider the simpler version
of the approach where all arborescences are restriced to be
star-shaped (star quantization). In a number of experiments
on datasets of various nature (SIFTs [17] and deep descrip-
tors), we show that both arborescence coding and star cod-
ing bring consistent improvements in terms of coding er-
ror (which directly translates into the accuracy of nearest
neighbor search) over the base quantization scheme, which
in our experiments is optimized product quantization (OPQ)
[12, 18].

Below, we cover the related work in Section 2. We then
introduce the general principles of arborescence coding in

Section 3. In Section 4, we discuss the specific instantiation
of arborescence coding on top of optimized product quan-
tization. We conclude with the experimental validation in
Section 5 and the discussion in Section 6.

2. Related Work
The plethora of recently proposed quantization methods

include product quantization [14], residual vector quantiza-
tion [10], optimized product quantization [12, 18], additive
quantization [3], composite quantization [22], tree quan-
tization [5]. All of these approaches can be used as base
methods for arborescence coding or star coding. In our ex-
periments, we use optimized product quantization [12, 18]
because of its appealing balance between the speed and the
accuracy of the encoding process.

Arborescence coding and in particular star coding are
in some ways reminiscent of the bi-layer coding approach
used in the IVFADC [14] and Multi-D-ADC systems [2].
Both systems are motivated by the indexing task for very
large scale datasets, as they split the descriptor space into
disjoint cells, and encode the displacements of individual
points w.r.t. cell centroids. The Multi-D-ADC system thus
uses two separate codebook sets, one to encode the cen-
troids and one to encode the displacements (while the IV-
FADC system stores the centroids directly). Arborescence
coding also maintains difference codebooks for root encod-
ing and descriptor encoding. However, unlike IVFADC and
Multi-D-ADC that pick centroids in a separate optimiza-



tion process and automatically assign each descriptor to the
nearest centroid, arborescence coding makes the optimiza-
tion over possible arborescence topology part of the encod-
ing process. In the experiments, we compare arborescence
coding with the Multi-D-ADC system in a comparable set-
ting, and find such optimization advantageous. Star coding
is also related to the locally-optimized product quantization
system that also uses multiple OPQ codebooks [16].

Another method that perform non-independent compres-
sion of descriptor sets is [1] that is targeted towards very
strong compression of low to medium-dimensional data,
and is not competitive with quantization-based approaches
for the code lengths that we consider (e.g. eight bytes per
vector or more).

Compression of unordered sets is also studied in the data
compression community. Many of such studies are focused
on sets of simple objects such as integers [21, 19, 13, 8]
or real numbers [21], whereas we are interested in com-
pression of sets of high-dimensional descriptors. A popu-
lar idea for set coding is seeking optimal permutation of the
entries (re-ordering) that permits efficient predictive cod-
ing. Re-oredering has been applied to e.g. image pixels [7]
and binary strings [15]. Finding optimal order involves (ap-
proximate) solution to the travelling salesman problem. The
resulting Hamiltonian path can be regarded as a very large
arborescence spanning the entire dataset, and therefore ar-
borescence coding can be regarded as a generalization of
re-ordering.

3. Arborescence coding
In this section, we introduce arborescence coding and its

variant, star coding, in their general form. The next section
then discusses the particular instantiation of arborescence
coding on top of optimized product quantization [12, 18].
The variants of arborescence coding on top of other quanti-
zation schemes can then be derived analogously.

Assume that a dataset X = {x1,x2, . . . ,xN} of D-
dimensional vectors is given. Arborescence coding is a
lossy compression scheme that for each vector xi in the
dataset encodes either its absolute position in the descrip-
tor space, or its relative displacement w.r.t. a certain other
descriptor. We denote the code stored for the i-th descriptor
ti and we denote with pi the index of its parent. Parent-child
relations are constrained to form a set of arborescences (i.e.
directed tree graphs). If the i-th descriptor is the root of its
arborescence, then we use the convention pi=0. Arbores-
cences that consist of single descriptors are allowed.

We also consider a particular variant of arborescence
coding (star coding), which corresponds to the case when
all arborescences have depth at most one, i.e. no non-root
descriptors are allowed to have children. Below, ‘arbores-
cence coding’ refers to all variants including star coding,
unless stated otherwise.

Arborescence coding requires that two decoding opera-
tions are defined that allow to recover the reconstruction yi
for every descriptor xi. The first decoder d0 with parame-
ters θ0 reconstructs the roots of the arborescences:

yi = d0(ti; θ
0), if pi = 0 . (1)

The coding process then picks the code ti and the parame-
ters of the encoder θ0 to ensure that yi ≈ xi for root de-
scriptors.

The second decoder d∆ with parameters θ∆ reconstructs
the displacements zi from the reconstructions of parents to
their children:

zi = yi − ypi = d∆(ti; θ
∆), s.t. pi > 0 . (2)

The coding process then picks the code ti and the parame-
ters of the encoder θ∆ so that zi ≈ xi−ypi .

Encoding process. The dataset can be encoded by min-
imizing the overall squared reconstruction error. This opti-
mization task has the following formulation:

minimize
θ0,θ∆,P,T,y

∑
i: pi=0

‖d0(ti; θ
0)− xi‖2+

∑
i: pi>0

‖ypi + d∆(ti; θ
∆)− xi‖2 (3)

subject to yi =

{
d0(ti; θ

0), if pi = 0

ypi + d∆(ti; θ
∆), if pi > 0

.

In (3) P denotes the set (vector) {p1, p2, . . . , pN}, which
defines the topology of arborescences, T denotes the set of
codes {t1, t2, . . . , tN}. Performing optimization (3) pro-
cess is usually hard, only an approximate (local) minimum
can be found, and a reasonable initialization procedure is
usually required. In Section 4.1, we discuss the optimiza-
tion for arborescence coding based on optimized product
quantization scheme.

Decoding process. The approximations to the original
dataset can be recovered by applying formulas (1) and (2).
To decode all descriptors from a certain arborescence, we
first decode the root descriptor using (1). We then proceed
along the arborescence. For the ith descriptor, we take the
reconstruction ypi of its parent, recover the displacement
vector zi using (2), and get the descriptor reconstruction as
yi = ypi + zi.

Fast search. For the majority of quantization schemes,
search for descriptors with high scalar product or low
squared distance to a certain query descriptor q does not
require explicit decoding (1)-(2). Instead, the quantization
schemes usually provide the way to quickly estimate the
scalar product Π0

i (q, ti; θ
0) = 〈q, d0(ti; θ

0)〉 = 〈q,yi〉
using look-up tables precomputed once for the given q
and the parameters θ0 [14]. Likewise, the scalar product
Π∆
i (q, ti; θ

∆) = 〈q, d∆(ti; θ
∆)〉 = 〈q, zi〉 between the

query and the encoded displacement zi can be estimated



without the explicit reconstruction of zi. The scalar prod-
uct between the query and the encoded vectors can then be
quickly evaluated by traversing an arborescence from the
root to the leaves:

〈q,yi〉 =

{
Π0
i (q, ti; θ

0), if pi = 0

〈q,ypi〉+ Π∆
i (q, ti; θ

∆), if pi > 0
. (4)

The squared Euclidean difference can then be estimated
using the formula

‖q− yi‖2 = ‖q‖2 + ‖yi‖2 − 2〈q,yi〉 . (5)

While the third term in (5) can be estimated using (4), the
scalar term ‖yi‖2 is trickier to handle. In practice, we store
a coarse estimate of ‖yi‖2 (one-byte quantization) along
with (inside) every descriptor code ti. Note that some of
the quantization schemas (such as additive quantization [3],
tree quantization [5]) have to store such estimate anyways
(if fast nearest neighbor search is desired), so that the re-
quirement to store the quantized squared norm does not in-
cur additional memory costs over these schemes.

Memory overhead. In general, the memory footprint of
arborescence coding consists of the parameters θ0 and θ∆,
the codes ti, and the topology information, which is needed
to infer the parents pi during decoding or fast search. The
memory spent on the topology information thus constitutes
overhead over the base quantization scheme. If stored di-
rectly, the indices pi take dlog2 ne bits each, which is sig-
nificant for many interesting scenarios.

Fortunately, simple tricks can allow to store arbores-
cence topology at a much lower cost. For that, the descrip-
tors can be re-ordered, so that arborescences are stored se-
quentially (descriptors forming the same arborescence are
stored contiguously). Furthermore, within each arbores-
cence, the descriptors can be reordered following breadth-
first order. Then to recover the topology it is sufficient to
store the number of children with every descriptor. These
numbers follow a very low-entropy distribution (upto 2-3
bits in all our experiments), which is a very low overhead
compared to reasonable code sizes for most practical pur-
poses.

For star coding, the overhead can be made negligible as
follows. We store stars contiguously, further ordering stars
by the number of elements in them. Then, the only informa-
tion that needs to be stored in order to recover the topology
is the maximal star size and the number of stars of each
size, which is at most few hundred bytes per dataset for any
reasonable dataset.

4. Arborescence coding using OPQ
We now discuss a particular instantiation of arborescence

coding when the decoders (1) and (2) use optimized product
quantization (OPQ) [12, 18].

We first recap OPQ using the notation introduced above.
In the OPQ scheme, a vector is encoded as a rotated
concatenation of M codewords coming from M differ-
ent codebooks. The parameters for the decoders can thus
be written as: θ0 = {R0, C0

1 , C
0
2 , . . . , C

0
M} and θ∆ =

{R∆, C∆
1 , C

∆
2 , . . . , C

∆
M}, where R0 and R∆ are the D×D

orthogonal matrices, and each of the codebooks C0
j , C∆

j

contains K codeword D/M -dimensional vectors. We de-
note c0

j,k the k-th codeword in the j-th codebook for the
first decoder. In our implementation, we keep the two rota-
tion matrices the same: R = R0 = R∆. Using two differ-
ent rotation matrices is possible, but leads to more complex
encoding process.

The code ti for each vector is then an M -tuple of code-
word indices t1i , t

2
i , . . . , t

M
i in the respective codebooks,

each of them being an integer between 1 and K. The de-
coding of root descriptors (1) then takes the form:

yi = R [c0
1,t1i

, c0
2,t2i

, . . . , c0
M,tMi

], if pi = 0 , (6)

where square brackets denote concatenation. Likewise, the
decoding of displacements (2) then takes the form:

zi = R [c∆
1,t1i

, c∆
2,t2i

, . . . , c∆
M,tMi

], if pi > 0 , (7)

The fast search procedure discussed above then uses the
look-up tables L0(j, k) = 〈RTq, c0

j,k〉 and L∆(j, k) =

〈RTq, c∆
j,k〉 that are precomputed for a given query (after

rotating it by RT=R−1). Using these tables, the scalar
product of the query q with yi (for root nodes) or zi (for
non-root nodes) can be evaluated by M look-ups in the ta-
bles and M − 1 scalar additions.

4.1. Optimizing the encoding

We now discuss the encoding process (3) in the case of
OPQ. The following groups of variables are part of the op-
timization: the arborescence topology P , the code tuples T ,
the codebooks C, and the rotation matrix R. As common in
the quantization schemes, optimization proceeds by alterna-
tions (group-coordinate descent). At each update stage, one
group of variables is updated, while others are kept fixed.
We now go through the update stages.

Updating rotation. The updates for rotation can be per-
formed by finding optimal rotation δR of the dataset X that
minimizes the squared distance (3) and applying the update
R := δRTR to the current rotation. The update δR can be
found using Procrustes analysis as detailed in [12, 18]. In
the remaining updates,we can remove matrix R from con-
sideration by applying the rotation RT to the dataset X ,
effectively reducing our quantizers to unoptimized product
quantizers [14]. We apply this trick to simplify the deriva-
tions below.

Updating codebooks. When all other variables are
fixed, yi can be expressed as a linear function of the code-
word entries. Consider the f -th dimension in the recon-



struction yi. Let us assume that it corresponds to the l-
th dimension in the m-th chunk of dimensions that OPQ-
splits the D dimensions into. In other words, let f =
l + (m− 1) DM . Then the f -th dimension of the reconstruc-
tion yi can be found as:

yi[f ] = c0
m,tm

r(i)
[l] +

∑
j∈r(i)→i

c∆
m,tmj

[l] , (8)

where square brackets denote the dimension indexing, r(i)
denotes the root index of the arborescence that the i-th de-
scriptor belongs to, and r(i) → i denotes the set of indices
in the path from the root to the i-th descriptor (excluding
the root).

Plugging the unrolled expression (8) into the objective
(3) results in a least-squares problem over the entries of the
codebooks. The problem decomoses over different dimen-
sions, with each of the resulting D least-squares problems
having 2K variables (c0

m,k[l] and c∆
m,k[l] for k ∈ 1..K).

Solving these problems then gives the optimal codebook en-
tries (given the other variables fixed).

Updating topology and codes. Finally, we discuss the
updates to the topology (i.e. the variables pi and the codes
ti). We perform these updates sequentially, at each time
changing the variables pi and ti for a single i. In other
words, we iterate over descriptors one-by-one, and allow
each of them to improve its reconstruction error by simul-
taneously choosing a different parent and encoding the dis-
placement to this parent or becoming a root and encoding
its absolute position.

The change of pi and/or ti changes the reconstruction yi,
which also results in the change of reconstructions for all
descendants in the arborescence. Since we want to perform
updates efficiently and with the guarantee that the squared
reconstruction error does not increase, we skip all descrip-
tors with children during the updates.

To further speed-up the updates, for i-th descriptor xi
we only consider k = 20 descriptors with the closest re-
construction yj as potential parents. When performing star
quantization, we only consider descriptors that are currently
roots. For each potential parent j, we consider the vector
xi−yj , assess the error of its optimal product quantization
using codebooks C∆, assess the error of product quantiza-
tion of xi using the codebook C0, and pick the encoding
variant with the smallest error.

4.2. Initializating the encoding

The iterative updates discussed above are guaranteed to
not increase the reconstruction error, and given time will
converge to a certain configuration. This configuration,
however, is not guaranteed and most certainly will not be
a global minimum to the reconstruction error. Therefore,
the accuracy of the resulting encoding depends on the ini-
tialization.

We use the following initialization approach. We initial-
ize all parent variables pi to zero making them roots, and
initialize all other variables by effectively performing OPQ.
At this point, our reconstruction corresponds to OPQ. Since
the reconstruction error is guaranteed to not increase in the
further optimization steps and in subsequent optimization
updates, the squared error of arborescence coding (or star
coding) is guaranteed to be same or lower compared to
OPQ.

We then initialize the codebooks C∆ by running product
quantization on the random subset of displacements from yj
to xi, such that yj is one of the k = 20 nearest neighbors
of xi (among all reconstructions y).

Finally, we update the parameters pi and ti as discussed
in Section 4.1 with one additional heuristics. During the
first update only, we visit the descriptors in the order of in-
creasing OPQ reconstruction error. During this traversal,
we prohibit descriptor to choose parents among yet unvis-
ited descriptors, which have higher OPQ reconstruction er-
ror. As a result, every descriptor is childless by the mo-
ment it is visited, which gives it an opportunity to choose
a parent (among more “affluent” descriptors with lower re-
construction error) and to decrease its own reconstruction
error (recall, that in our optimization algorithm discussed in
Section 4.1 only childless descriptors are allowed to switch
parents).

5. Experiments
In this section, we present experimental evaluation of ar-

borescence coding and star coding. In the experiments, we
encode the datasets using the new coding schemes, as well
as several baselines. In the majority of the experiments and
unless noted otherwise, we simplify the experimental setup
and optimize parameters directly on the “test” dataset rather
than “learning” them on a hold-out dataset of similar na-
ture. While we do not evaluate generalization capabilities,
we still aim to compare methods with similar number of en-
coding parameters, making our comparisons valid. In the
final experiment, we demonstrate that the relative perfor-
mance of coding schemes remains approximately the same,
when coding parameters are learned on the hold-out dataset.

Datasets. We consider the following four datasets:
• SIFT1M [14] is a dataset of million SIFT vectors [17],

which are highly structured gradient-based descriptors,
extracted from natural image keypoints with the hold-
out set of 10.000 queries.
• DEEP1M and DEEP10M datasets contain deep de-

scriptors, which are computed from the activations of
deep neural networks. In general, deep descriptors are
emerging as the new state-of-the-art in retrieval. Here,
we use the first million and the first ten million vec-
tors from the dataset of 96-dimensional deep descrip-
tors introduced in [6].



SIFT1M, ≈ 8 bytes SIFT1M, ≈ 16 bytes

DEEP1M, ≈ 8 bytes DEEP1M, ≈ 16 bytes

DEEP10M, ≈ 8 bytes DEEP10M, ≈ 16 bytes

San Francisco, ≈ 8 bytes San Francisco, ≈ 16 bytes
Figure 2: Mean squared compression errors on four datasets for different methods and memory budgets. Arborescence
coding (red) provides considerably smaller errors comparing to the baselines except for SIFT1M (16 bytes), where TwinOPQ
performs best. We also show the average compression errors for different classes of nodes within arborescence coding (leaves
with parents, intermediate nodes that have both a parent and children nodes, roots with children, singletons). Compression
errors for the leaves and the intermediate nodes are much smaller than for the singletones and the roots. The most of the
points in arborescence coding are the leaves or the intermediate nodes (see the distributions of classes in the pie charts),
which leads to arborescence coding having smaller compression error overall.

• SFLD (San Francisco Landmark dataset) [9] contains
a database of 1.7 million images of buildings in San
Francisco collected with a vehicle-mounted camera.
We compute 128-dimensional deep SPoC descriptor
[4] for all images.

Coding methods. We evaluate arborescence and star
codings introduced in this paper. We invariably use the size
of codebooks K = 256 as is done in most other quantiza-
tion works, since it lead to small look-up tables and conve-
nient one-byte code entries ti,k. We consider two different
codebook numbers M = 8, 16 (much bigger M is less in-
teresting, because the performance of all methods start to
saturate, and extremely small M such as M = 4 leads to
an impractically poor compression). The size of the codes
ti is thus either 8 or 16 bytes, plus a few bits (less than one
byte) needed to encode the number of children in the case of
general arborescence coding (but not star coding). On top

of that, an additional byte is needed if fast nearest neighbor
search using (5) is to be performed.

We also consider three baselines. Our first baseline is
“vanilla” optimized product quantization (OPQ) [12, 18]
with the same number of codebooks M and the same code-
book size K leading to same code length as star coding (al-
though fast NN search does not need length encoding in this
case). Our second baseline (TwinOPQ) is a variant of OPQ
that uses two sets of codebooks (sharing the same rotation
matrix), so that each descriptor is encoded by one of the two
sets. At each iteration, after the codebooks and the rotation
matrix are re-estimated, a descriptor can switch to the other
codebook set, if such switch results in a lower compression
error. TwinOPQ has the same number of learnable parame-
ters as our systems (apart from the arborescence structure).

Our third and strongest baseline is the Multi-D-ADC [2],
which has clear similarities with star coding (as well as



≈ 8 bytes per vector ≈ 16 bytes per vector
Method R@1 R@4 R@16 R@64 R@256 R@1 R@4 R@16 R@64 R@256

SIFT1M
OPQ 0.241 0.469 0.724 0.904 0.983 0.463 0.776 0.949 0.995 0.999

Twin OPQ 0.292 0.545 0.787 0.944 0.991 0.506 0.812 0.965 0.997 0.999
Multi-D-ADC 0.282 0.530 0.772 0.935 0.988 0.464 0.763 0.947 0.996 0.999

StarC 0.307 0.556 0.802 0.947 0.992 0.484 0.794 0.964 0.997 1.0
ArborC 0.316 0.587 0.823 0.957 0.997 0.487 0.798 0.966 0.998 1.0

DEEP1M
OPQ 0.161 0.351 0.610 0.839 0.959 0.356 0.658 0.895 0.984 0.999

Twin OPQ 0.182 0.398 0.660 0.872 0.971 0.372 0.689 0.916 0.989 0.999
Multi-D-ADC 0.203 0.434 0.693 0.894 0.978 0.406 0.729 0.935 0.994 0.999

StarC 0.223 0.460 0.725 0.915 0.987 0.408 0.737 0.941 0.994 0.999
ArborC 0.243 0.485 0.750 0.924 0.989 0.421 0.757 0.947 0.995 0.999

DEEP10M
OPQ 0.134 0.270 0.466 0.694 0.875 0.309 0.570 0.816 0.948 0.992

Twin OPQ 0.151 0.305 0.516 0.736 0.903 0.331 0.600 0.841 0.960 0.993
Multi-D-ADC 0.188 0.362 0.587 0.805 0.939 0.370 0.657 0.891 0.980 0.998

StarC 0.206 0.394 0.629 0.837 0.957 0.388 0.681 0.899 0.984 0.998
ArborC 0.212 0.414 0.656 0.863 0.964 0.404 0.705 0.911 0.985 0.998

Table 1: Euclidean nearest neighbor search accuracy based on different compression methods for three datasets with the
different code lengths. The standard Recall@k measure (the probability of the true nearest neighbor being retrieved) is
used to compare the compression methods. Arborescence coding performance is uniformly higher than for the baselines on
datasets of deep features, while on SIFT1M (16 bytes) TwinOPQ is better for small k.

an earlier IVFADC system [14]). Multi-D-ADC first uses
“coarse-level” OPQ with M ′ = 2 large codebooks (K ′ =
512 for SIFT1M and DEEP1M, K ′ = 1024 for DEEP10M,
andK ′ = 512 for SFLD).K ′ was chosen to allow a slightly
more memory for the size of the coarse-level table in Multi-
D-ADC than the amount of memory spent on arborescence
topologies in arborescence coding. Each descriptor is then
assigned to the closest “centroid” out of K ′2 variants cor-
responding to different combinations of coarse-level code-
words, and then the displacement w.r.t. the centroid is en-
coded using product quantization (in the rotated system)
with the same M and K as in our method. If fast exhaus-
tive ANN search through the dataset is desired then Multi-
D-ADC also requires storing the quantized length with each
descriptor (an alternative is to either re-compute look-up ta-
bles for each visited non-empty cell or to store the tables of
scalar products between coarse-level codebooks and fine-
level codebooks). Overall, the memory footprint of Multi-
D-ADC in our comparisons is very close to the footprint of
arborescence coding and slightly larger than the footprint of
star coding.

5.1. Results

We compare different compression schemes using the
following two metrics. The mean squared reconstruction
error (MSRE) directly measures the reconstruction accu-
racy attained by different methods. For each dataset, we
also consider a hold-out set of query vectors, and consider
how well is the nearest neighbor search in the compressed
dataset able to recover the true nearest neighbor. As is
common for this task, we report recall@k measure (for
k = 1, 4, 16, 64, 256), which is the probability that the true

nearest neighbor is among k closest neighbors in the com-
pressed dataset. Two compression levels (≈ 8, 16 bytes per
vector) were evaluated.

Compression error. The average compression errors on
four datasets obtained by the different coding methods are
presented in Figure 2. Star coding and arborescence coding
provide significant improvements in the encoding accuracy.
The improvement over baselines are uniform everywhere
except the setting M = 16 for SIFT-1M. In particular, the
compression error is reduced by upto 20% on deep datasets.
On the dataset of SIFT descriptors the TwinOPQ baseline
provides smaller error, that, probably, reflects the fact that
the SIFT data is a favourable case for (O)PQ methods due to
its histogram-based construction process. We also demon-
strate the average compression errors for different classes of
points in arborescence coding. Each point in arborescence
coding belongs to the one of four classes depending on their
role in the arborescence structure. The singleton points do
not have a parent node and children nodes. The roots have
children nodes and do not have parent nodes. The leaves
do not have children nodes (but have parents) and the inter-
mediate nodes have both a parent and children nodes. The
distributions of descriptors over classes are shown in the pie
charts in Figure 2. Note, that the leaves and the intermedi-
ate nodes are compressed with much smaller errors than the
nodes without parents. Interestingly, the compression errors
for singletons and roots can be higher than average baseline
errors, but as their numbers is relatively small (about 10-
15%) the encoding accuracy of the whole dataset is higher.

Approximate nearest neighbor search. Here we evalu-
ate different coding schemes for nearest neighbor search in
compressed databases. The recall@k values obtained with



≈ 8 bytes per vector ≈ 16 bytes per vector
Method R@1 R@2 R@5 R@10 R@20 R@50 R@1 R@2 R@5 R@10 R@20 R@50

San Francisco Landmark
Uncompressed 0.305 0.359 0.425 0.457 0.509 0.585 0.305 0.359 0.425 0.457 0.509 0.585

Twin OPQ 0.164 0.215 0.289 0.349 0.407 0.499 0.242 0.299 0.377 0.436 0.489 0.567
Multi-D-ADC 0.167 0.221 0.297 0.353 0.407 0.506 0.245 0.300 0.379 0.437 0.497 0.571

StarC 0.168 0.225 0.304 0.355 0.410 0.503 0.253 0.306 0.385 0.441 0.502 0.575
ArborC 0.183 0.240 0.318 0.359 0.413 0.509 0.260 0.312 0.393 0.447 0.509 0.581

Table 2: The average recall w.r.t. ground truth matches obtained with retrieval from the San Francisco database compressed
with different methods and code lengths. Images in the database are presented by 128-dimensional SPoC descriptors[4].
The performance of arborescence coding is uniformly higher than for baselines for both memory budgets and all lengths of
candidate lists.

different compression schemes of the search databases are
presented in Table 1. As can be observed, the higher en-
coding accuracy results in higher search performance. Ar-
borescence coding provides considerable improvement over
baselines for deep descriptors and perform best in general
except for SIFT-1M (16 bytes), where the TwinOPQ base-
line is better for small k.

Landmark recognition. We also apply the proposed
methods to the problem of visual localization. We com-
pressed the set of SPoC descriptors of SFLD database im-
ages with different coding schemes and produce the list of
candidate matches for each of the uncompressed query im-
ages. Then for different methods we compare the mean re-
call w.r.t. the ground truth matches that are hand-labeled for
each query. In this experiment the database contains both
PCI and PFI images and GPS data is not used (for more
details see the protocol in [10]). The recall values for dif-
ferent number of candidates are presented in Table 2. The
advantage of arborescence coding is uniform for both com-
pression levels and different lengths of candidate lists.

Timings. The most computationally expensive part of
the AnnArbor encoding is the calculation of the topology
and the codes (corresponding to the variables pi and ti)
given codebooks and rotation matrix. In our experiments
the encoding of one million points with unoptimized Python
code requires 14 minutes on Xeon E5 CPU. The update of
codebooks and rotation matrix during learning is typically
much faster, e.g. on SIFT1M/DEEP1M one update requires
four minutes. These timings are obtained with the single-
thread implementation of the initialization procedure (sec-
tion 4.2) while the other parts use 30 CPU threads.

Hold-out set encoding. Finally, to confirm the ability of
the AnnArbor scheme to generalize to new datasets, when
the parameters are learned on hold-out data, we performed
the following experiment. We took the last one million
points from the DEEP10M dataset and encoded them with
the parameters obtained by training on DEEP1M (8 bytes)
that does not overlap with the test set. The results in the
Table 3 demonstrate that the MSRE increase on the hold-
out set for Star and Arborescence Coding is on par with the
baselines and the relative-performance of the methods on
the hold-out set is the same as on the train set.

Method OPQ TwinOPQ Multi-D-ADC StarC ArborC
In-sample

MSRE 0.250 0.231 0.219 0.203 0.185

Out-of-sample
MSRE 0.257 0.238 0.223 0.208 0.192

Table 3: The encoding mean-squared reconstruction er-
ror obtained with the different coding schemes trained on
the test and hold-out sets. The first row corresponds to
the setup where the coding parameters are trained on the
DEEP1M and the same dataset is encoded. The second row
presents MSRE obtained by the coding schemes trained on
DEEP1M, while the test set consists of the last one mil-
lion points from the DEEP10M which does not overlap
with DEEP1M. Eight bytes encoding is used in both setups.
The relative performance of coding schemes is the same be-
tween the two lines.

6. Discussion

We have presented a new descriptor coding scheme (ar-
borescence coding) and its variant (star coding). The new
schemes can be implemented on top of almost any of the ex-
isting quantization methods (and, in fact, almost any vector
compression methods), and are able to reduce the coding
error of the underlying method considerably by arranging
descriptors into arborescence graphs and coding the rela-
tive displacements rather than absolute positions. The en-
coded datasets still permit efficient search using look up ta-
bles, while the memory overhead that is required to store
the topology of the arborescences is very small.

To the best of our understanding, the source of the con-
siderable reduction of error within arborescence coding is
the ability of descriptors to choose their parents among large
pools of potential parents. Even though the distribution of
displacements between neighbors may not be much easier
to model than the distribution of absolute positions (as even
nearest neighbors in the high-dimensional space are usually
far away), each descriptor can get encoded with low error
if only one neighbor (not necessarily the nearest one) corre-
sponds to the displacement with low quantization error.

Future work involves implementations of arborescence
coding and star coding on top of other quantization
schemes, as well as combination of arborescence coding
with indexing approaches.
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