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Abstract

We present a new autoencoder-type architecture that is trainable in an unsupervised
mode, sustains both generation and inference, and has the quality of conditional and
unconditional samples boosted by adversarial learning. Unlike previous hybrids of
autoencoders and adversarial networks, the adversarial game in our approach is set
up directly between the encoder and the generator, and no external mappings are
trained in the process of learning. The game objective compares the divergences of
each of the real and the generated data distributions with the prior distribution in
the latent space. We show that direct generator-vs-encoder game leads to a tight
coupling of the two components, resulting in samples and reconstructions of a
comparable quality to some recently-proposed more complex architectures.

1 Introduction

Deep (Variational) Auto Encoders (AEs [2] and VAEs [14, 24]) and deep Generative Adversarial
Networks (GANs [8]) are two of the most popular approaches to generative learning. These methods
have complementary strengths and weaknesses. VAEs can learn a bidirectional mapping between
a complex data distribution and a much simpler prior distribution, allowing both generation and
inference; on the contrary, the original formulation of GAN learns a unidirectional mapping that only
allows sampling the data distribution. On the other hand, GANs use more complex loss functions
compared to the simplistic data-fitting losses in (V)AEs and can usually generate more realistic
samples.

Several recent works have looked for hybrid approaches to support, in a principled way, both sampling
and inference like AEs, while producing samples of quality comparable to GANs. Typically this is
achieved by training a AE jointly with one or more adversarial discriminators whose purpose is to
improve the alignment of distributions in the latent space [3, 19], the data space [4, 17] or in the joint
(product) latent-data space [5, 6]. Alternatively, the method of [30] starts by learning a unidirectional
GAN, and then learns a corresponding inverse mapping (the encoder) post-hoc.

While compounding autoencoding and adversarial discrimination does improve GANs and VAEs, it
does so at the cost of added complexity. In particular, each of these systems involves at least three
deep mappings: an encoder, a decoder/generator, and a discriminator. In this work, we show that
this is unnecessary and that the advantages of autoencoders and adversarial training can be combined
without increasing the complexity of the model.

In order to do so, we propose a new architecture, called an Adversarial Generator-Encoder (AGE)
Network (section 2), that contains only two feed-forward mappings, the encoder and the generator,
operating in opposite directions. As in VAEs, the generator maps a simple prior distribution in latent
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Figure 1: Our model (AGE network) has only two components: the generator g and the encoder
e. The learning process adjusts their parameters in order to align a simple prior distribution Z in
the latent space and the data distribution X . This is done by adversarial training, as updates for
the generator aim to minimize the divergence between e(g(Z)) and Z (aligning green with gray),
while updates for the encoder aim to minimize the divergence between e(X) (aligning blue with
gray) and to maximize the divergence between e(g(Z)) and Z (shrink green “away” from gray). We
demonstrate that such adversarial learning gives rise to high-quality generators that result in the close
match between the real distribution X and the generated distribution g(Z). Our learning can also
incorporate reconstruction losses to ensure that encoder-generator acts as autoencoder (section 2.2).

space to the data space, while the encoder is used to move both the real and generated data samples
into the latent space. In this manner, the encoder induces two latent distributions, corresponding
respectively to the encoded real data and the encoded generated data. The AGE learning process
then considers the divergence of each of these two distributions to the original prior distribution.

There are two advantages of this approach. First, due to the simplicity of the prior distribution,
computing its divergence to the latent data distributions reduces to the calculation of simple statistics
over small batches of images. Second, unlike GAN-like approaches, real and generated distributions
are never compared directly, thus bypassing the need for discriminator networks as used by GANs.
Instead, the adversarial signal in AGE comes from learning the encoder to increase the divergence
between the latent distribution of the generated data and the prior, which works against the generator,
which tries to decrease the same divergence (Figure 1). Optionally, AGE training may include
reconstruction losses typical of AEs.

The AGE approach is evaluated (section 3) on a number of standard image datasets, where we show
that the quality of generated samples is comparable to that of GANs [8, 23], and the quality of
reconstructions is comparable or better to that of the more complex Adversarially-Learned Inference
(ALI) approach of [6], while training faster. We further evaluate the AGE approach in the conditional
setting, where we show that it can successfully tackle the colorization problem that is known to be
difficult for GAN-based approaches. Our findings are summarized in section 4.

Other related work. Apart from the above-mentioned approaches, AGE networks can be related
to several other recent GAN-based systems. Thus, they are related to improved GANs [26] that
proposed to use batch-level information in order to prevent mode collapse. The divergences within
AGE training are also computed as batch-level statistics.

Another avenue for improving the stability of GANs has been the replacement of the classifying
discriminator with the regression-based one as in energy-based GANs [29] and Wasserstein GANs [1].
Our statistics (the divergence from the prior distribution) can be seen as a very special form of
regression. In this way, the encoder in the AGE architecture can be (with some reservations) seen as
a discriminator computing a single number similarly to how it is done in [1, 29].

2 Adversarial Generator-Encoder Networks

This section introduces our Adversarial Generator-Encoder (AGE) networks. An AGE is composed
of two parametric mappings: the encoder eψ(x), with the learnable parameters ψ, that maps the data
space X to the latent space Z , and the generator gθ(z), with the learnable parameters θ, which runs
in the opposite direction. We will use the shorthand notation f(Y ) to denote the distribution of the
random variable f(y), y ∼ Y .
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The reference distribution Z is chosen so that it is easy to sample from it, which in turns allow
to sample gθ(Z) unconditionally be first sampling z ∼ Z and then by feed-forward evaluation of
x = gθ(z), exactly as it is done in GANs. In our experiments, we pick the latent space Z to be an
M -dimensional sphere SM , and the latent distribution to be a uniform distribution on that sphere
Z = Uniform(SM ). We have also conducted some experiments with the unit Gaussian distribution
in the Euclidean space and have obtained results comparable in quality.

The goal of learning an AGE is to align the real data distributionX to the generated distribution gθ(Z)
while establishing a correspondence between data and latent samples x and z. The real data distribu-
tion X is empirical and represented by a large number N of data samples {x1,x2, ...xN}. Learning
amounts to tuning the parameter ψ and θ to optimize the AGE criterion, discussed in section 2.1.
This criterion is based on an adversarial game whose saddle points correspond to networks that align
real and generated data distribution (g(Z) = X). The criterion is augmented with additional terms
that encourage the reciprocity of the encoder e and the generator g (section 2.2). The details of the
training procedure are given in section 2.3.

2.1 Adversarial distribution alignment

The GAN approach to aligning two distributions is to define an adversarial game based on a ratio
of probabilities [8]. The ratio is estimated by repeatedly fitting a binary classifier that distinguishes
between samples obtained from the real and generated data distributions. Here, we propose an
alternative adversarial setup with some advantages with respect to GAN’s, including avoiding
generator collapse [7].

The goal of AGE is to generate a distribution g(Z) in data space that is close to the true data
distribution X . However, direct matching of the distributions in the high-dimensional data space, as
done in GAN, can be challenging. We propose instead to move this comparison to the simpler latent
space. This is done by introducing a divergence measure ∆(P‖Q) between distributions defined
in the latent space Z . We only require this divergence to be non-negative and zero if, and only
if, the distributions are identical (∆(P‖Q) = 0 ⇐⇒ P = Q).1 The encoder function e maps the
distributions X and g(Z) defined in data space to corresponding distributions e(X) and e(g(Z)) in
the latent space. Below, we show how to design an adversarial criterion such that minimizing the
divergence ∆(e(X), e(g(Z))) in latent space induces the distributions X and g(Z) to align in data
space as well.

In the theoretical analysis below, we assume that encoders and decoders span the class of all
measurable mappings between the corresponding spaces. This assumption, often referred to as
non-parametric limit, is justified by the universality of neural networks [10]. We further make the
assumption that there exists at least one “perfect” generator that matches the data distribution, i.e.
∃g0 : g0(Z) = X .

We start by considering a simple game with objective defined as:

max
e

min
g
V1(g, e) = ∆( e(g(Z))‖e(X) ) . (1)

As the following theorem shows, perfect generators form saddle points (Nash equilibria) of the
game (1) and all saddle points of the game (1) are based on perfect generators.

Theorem 1. A pair (g∗, e∗) forms a saddle point of the game (1) if and only if the generator g∗
matches the data distribution, i.e. g∗(Z) = X .

The proofs of this and the following theorems are given in the supplementary material.

While the game (1) is sufficient for aligning distributions in the data space, finding such saddle points
is difficult due to the need of comparing two empirical (hence non-parametric) distributions e(X)
and e(g(Z)). We can avoid this issue by introducing an intermediate reference distribution Y and
comparing the distributions to that instead, resulting in the game:

max
e

min
g
V2(g, e) = ∆(e(g(Z))‖Y )−∆(e(X)‖Y ). (2)

Importantly, (2) still induces alignment of real and generated distributions in data space:

1We do not require the divergence to be a distance.
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Theorem 2. If a pair (g∗, e∗) is a saddle point of game (2) then the generator g∗ matches the data
distribution, i.e. g∗(Z) = X . Conversely, if the generator g∗ matches the data distribution, then for
some e∗ the pair (g∗, e∗) is a saddle point of (2).

The important benefit of formulation (2) is that, if Y is selected in a suitable manner, it is simple
to compute the divergence of Y to the empirical distributions e(g(Z)) and e(X). For convenience,
in particular, we choose Y to coincide with the “canonical” (prior) distribution Z. By substituting
Y = Z in objective (2), the loss can be extended to include reconstruction terms that can improve
the quality of the result. It can also be optimized by using stochastic approximations as described in
section 2.3.

Given a distribution Q in data space, the encoder e and divergence ∆(·‖Y ) can be interpreted as
extracting statistics F (Q) = ∆(e(Q)‖Y ) from Q. Hence, game (2) can be though of as comparing
certain statistics of the real and generated data distributions. Similarly to GANs, these statistics are
not fixed but evolve during learning.

We also note that, even away from the saddle point, the minimization ming V2(g, e) for a fixed e does
not tend to collapse for many reasonable choice of divergence (e.g. KL-divergence). In fact, any
collapsed distribution would inevitably lead to a very high value of the first term in (2). Thus, unlike
GANs, our approach can optimize the generator for a fixed adversary till convergence and obtain a
non-degenerate solution. On the other hand, the maximization maxe V2(g, e) for some fixed g can
lead to +∞ score for some divergences.

2.2 Encoder-generator reciprocity and reconstruction losses

In the previous section we have demonstrated that finding a saddle point of (2) is sufficient to align
real and generated data distributions X and g(Z) and thus generate realistically-looking data samples.
At the same time, this by itself does not necessarily imply that mappings e and g are reciprocal.
Reciprocity, however, can be desirable if one wishes to reconstruct samples x = g(z) from their
codes z = e(x).

In this section, we introduce losses that encourage encoder and generator to be reciprocal. Reciprocity
can be measured either in the latent space or in the data space, resulting in the loss functions based on
reconstruction errors, e.g.:

LX (gθ, eψ) = Ex∼X‖x− gθ
(
eψ(x)

)
‖1 , (3)

LZ(gθ, eψ) = Ez∼Z‖z− eψ
(
gθ(z)

)
‖22 . (4)

Both losses (3) and (4) thus encourage the reciprocity of the two mappings. Note also that (3) is the
traditional pixelwise loss used within AEs (L1-loss was preferred, as it is known to perform better in
image synthesis tasks with deep architectures).

A natural question then is whether it is helpful to minimize both losses (3) and (4) at the same time or
whether considering only one is sufficient. The answer is given by the following statement:

Theorem 3. Let the two distributions W and Q be aligned by the mapping f (i.e. f(W ) = Q) and
let Ew∼W ‖w − h

(
f(w)

)
‖22 = 0. Then, for w ∼ W and q ∼ Q, we have w = h(f(w)) and

q = f(h(q)) almost certainly, i.e. the mappings f and h invert each other almost everywhere on the
supports of W and Q. Furthermore, Q is aligned with W by h, i.e. h(Q) = W .

Recall that Theorem 2 establishes that the solution (saddle point) of game (2) aligns distributions
in the data space. Then Theorem 3 shows that when augmented with the latent space loss (4), the
objective (2) is sufficient to ensure reciprocity.

2.3 Training AGE networks

Based on the theoretical analysis derived in the previous subsections, we now suggest the approach to
the joint training of the generator in the encoder within the AGE networks. As in the case of GAN
training, we set up the learning process for an AGE network as a game with the iterative updates over
the parameters θ and ψ that are driven by the optimization of different objectives. In general, the
optimization process combines the maximin game for the functional (2) with the optimization of the
reciprocity losses (3) and (4).
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(a) Real images (b) AGE samples (c) [Real, AGE reconstr.] (d) [Real, ALI reconstr.]

Figure 2: Samples (b) and reconstructions (c) for Tiny ImageNet dataset (top) and SVHN dataset
(bottom). The results of ALI [6] on the same datasets are shown in (d). In (c,d) odd columns show
real examples and even columns show their reconstructions. Qualitatively, our method seems to
obtain more accurate reconstructions than ALI [6], especially on the Tiny ImageNet dataset, while
having samples of similar visual quality.

In particular, we use the following game objectives for the generator and the encoder:

θ̂ = arg min
θ

(
V2(gθ, eψ̄) + λLZ(gθ, eψ̄)

)
, (5)

ψ̂ = arg max
ψ

(V2(gθ̄, eψ)− µLX (gθ̄, eψ)) , (6)

where ψ̄ and θ̄ denote the value of the encoder and generator parameters at the moment of the
optimization and λ, µ is a user-defined parameter. Note that both objectives (5), (6) include only
one of the reconstruction losses. Specifically, the generator objective includes only the latent space
reconstruction loss. In the experiments, we found that the omission of the other reconstruction loss
(in the data space) is important to avoid possible blurring of the generator outputs that is characteristic
to autoencoders. Similarly to GANs, in (5), (6) we perform only several steps toward optimum at
each iteration, thus alternating between generator and encoder updates.

By maximizing the difference between ∆(eψ(gθ̄(Z))‖Z) and ∆(eψ(X)‖Z), the optimization process
(6) focuses on the maximization of the mismatch between the real data distribution X and the
distribution of the samples from the generator gθ̄(Z). Informally speaking, the optimization (6) forces
the encoder to find the mapping that aligns real data distribution X with the target distribution Z,
while mapping non-real (synthesized data) gθ̄(Z) away from Z. When Z is a uniform distribution on
a sphere, the goal of the encoder would be to uniformly spread the real data over the sphere, while
cramping as much of synthesized data as possible together assuring non-uniformity of the distribution
eψ
(
gθ̄(Z)

)
.

Any differences (misalignment) between the two distributions are thus amplified by the optimization
process (6) and force the optimization process (5) to focus specifically on removing these differences.
Since the misalignment between X and g(Z) is measured after projecting the two distributions into
the latent space, the maximization of this misalignment makes the encoder to compute features that
distinguish the two distributions.

3 Experiments

We have validated AGE networks in two settings. A more traditional setting involves unconditional
generation and reconstruction, where we consider a number of standard image datasets. We have
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also evaluated AGE networks in the conditional setting. Here, we tackle the problem of image
colorization, which is hard for GANs. In this setting, we condition both the generator and the encoder
on the grayscale image. Taken together, our experiments demonstrate the versatility of the AGE
approach.

3.1 Unconditionally-trained AGE networks

Network architectures: In our experiments, the generator and the encoder networks have a similar
structure to the generator and the discriminator in DCGAN [23]. To turn the discriminator into the
encoder, we have modified it to output an M -dimensional vector and replaced the final sigmoid layer
with the normalization layer that projects the points onto the sphere.

Divergence measure: As we need to measure the divergence between the empirical distribution and
the prior distribution in the latent space, we have used the following measure. Given a set of samples
on the M -dimensional sphere, we fit the Gaussian Normal distribution with diagonal covariance
matrix in the embedding M -dimensional space and we compute the KL-divergence of such Gaussian
with the unit Gaussian as

KL(Q‖N (0, I)) = −M
2

+

M∑
j=1

s2
j +m2

j

2
− log(sj) (7)

where mj and sj are the means and the standard deviations of the fitted Gaussians along various
dimensions. Since the uniform distribution on the sphere will entail the lowest possible divergence
with the unit Gaussian in the embedding space among all distributions on the unit sphere, such
divergence measure is valid for our analysis above. We have also tried to measure the same diver-
gence non-parametrically using Kozachenko-Leonenko estimator [15]. In our initial experiments,
both versions worked equally well, and we used a simpler parametric estimator in the presented
experiments.

Hyper-parameters: We use ADAM [13] optimizer with the learning rate of 0.0002. We per-
form two generator updates per one encoder update for all datasets. For each dataset we tried
λ ∈ {500, 1000, 2000} and picked the best one. We ended up using µ = 10 for all datasets. The
dimensionality M of the latent space was manually set according to the complexity of the dataset.
We thus used M = 64 for CelebA and SVHN datasets, and M = 128 for the more complex datasets
of Tiny ImageNet and CIFAR-10.

Results: We evaluate unconditional AGE networks on several standard datasets, while treating the
system [6] as the most natural reference for comparison (as the closest three-component counterpart
to our two-component system). The results for [6] are either reproduced with the author’s code or
copied from [6].

In Figure 2, we present the results on the challenging Tiny ImageNet dataset [25] and the SVHN
dataset [21]. We show both samples g(z) obtained for z ∼ Z as well as the reconstructions g

(
e(x)

)
alongside the real data samples x. We also show the reconstructions obtained by [6] for comparison.
Inspection reveals that the fidelity of [6] is considerably lower for Tiny ImageNet dataset.

In Figure 3, we further compare the reconstructions of CelebA [18] images obtained by the AGE
network, ALI [6], and VAE [14]. Overall, the fidelity and the visual quality of AGE reconstructions
are roughly comparable or better than ALI. Furthermore, ALI takes notoriously longer time to
converge than our method, and the reconstructions of ALI after 10 epochs (which take six hours) of
training look considerably worse than AGE reconstructions after 10 epochs (which take only two
hours), thus attesting to the benefits of having a simpler two-component system.

Next we evaluate our method quantitatively. For the model trained on CIFAR-10 dataset we compute
Inception score [26]. The AGE score is 5.90 ± 0.04, which is higher than the ALI [6] score of
5.34± 0.05 (as reported in [28]) and than the score of 4.36± 0.04 from [26]. The state-of-the-art
from [28] is higher still (7.72± 0.13). Qualitative results of AGE for CIFAR-10 and other datasets
are shown in supplementary material. For the CelebA dataset, we obtain the following Inception
scores. The true CelebA image distribution has the Inception score of 3.31, the AGE model score is
2.56, whereas ALI [6] score is 2.32 after convergence (100 epochs) and 2.47 after 10 epochs.

Finally, similarly to [6, 5, 23] we investigated whether the learned features are useful for discriminative
tasks. We reproduced the evaluation pipeline from [6] for SVHN dataset and obtained 23.7% error
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Figure 3: Reconstruction quality comparison of our method with ALI [6] and VAE [14]. The first
column in each set shows examples from the test set of CelebA dataset. In the other columns the
reconstructions for different methods are presented: column two for ours method, three and four for
ALI and five for VAE. We train our model for 10 epochs and compare to ALI, trained for the same
number of epochs (column three). Importantly one epoch for our method takes 3 times less time than
for ALI. For a fair comparison we also present the results of ALI, trained till convergence.

rate in the unsupervised feature learning protocol with our model, while their result is 19.14%. At
the moment, it is unclear to us why AGE networks underperform ALI at this task.

3.2 Conditional AGE network experiments.

Recently, several GAN-based systems have achieved very impressive results in the conditional setting,
where the latent space is augmented or replaced with a second data space corresponding to different
modality [11, 31]. Arguably, it is in the conditional setting where the bi-directionality lacking in
conventional GANs is most needed. In fact, by allowing to switch back-and-forth between the data
space and the latent space, bi-directionality allows powerful neural image editing interfaces [30, 3].

Here, we demonstate that AGE networks perform well in the conditional setting. To show that, we
have picked the image colorization problem, which is known to be hard for GANs. To the best of our
knowledge, while the idea of applying GANs to the colorization task seems very natural, the only
successful GAN-based colorization results were presented in [11], and we compare to the authors’
implementation of their pix2pix system. We are also aware of several unsuccessful efforts to use
GANs for colorization.

To use AGE for colorization, we work with images in the Lab color space, and we treat the ab color
channels of an image as a data sample x. We then use the lightness channel L of the image as an
input to both the encoder eψ(x|L) and the generator gθ(z|L), effectively conditioning the encoder
and the generator on it. Thus, different latent variables z will result in different colorizations x for
the same grayscale image L. The latent space in these experiments is taken to be three-dimensional.

The particular architecture of the generator takes the input image L, augments it with z variables
expanded to constant maps of the same spatial dimensions as L, and then applies the ResNet type
architecture [9, 12] that computes x (i.e. the ab-channels). The encoder architecture is a convolutional
network that maps the concatenation of L and x (essentially, an image in the Lab-space) to the latent
space. The divergence measure is the same as in the unconditional AGE experiments and is computed
“unconditionally” (i.e. each minibatch passed through the encoder combines multiple images with
different L).
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(a) Colorizations – AGE network (top rows) vs. pix2pix [11] (bottom rows) (b) Color transfer

Figure 4: (a) Each pane shows colorizations of the input grayscale image (emphasized) using
conditional AGE networks (top rows) and pix2pix [11] with added noise maps (bottom rows). AGE
networks produce diverse colorizations, which are hard to obtain using pix2pix. (b) In each row we
show the result of color transfer using the conditional AGE network. The color scheme from the first
image is transferred onto the second image.

We perform the colorization experiments on Stanford Cars dataset [16] with 16,000 training images
of 196 car models, since cars have inherently ambiguous colors and hence their colorization is
particularly prone to the regression-to-mean effect. The images were downsampled to 64×64.

We present colorization results in Figure 4. Crucially, AGE generator is often able to produce
plausible and diverse colorizations for different latent vector inputs. As we wanted to enable pix2pix
GAN-based system of [11] to produce diverse colorizations, we augmented the input to their generator
architecture with three constant-valued maps (same as in our method). We however found that their
system effectively learns to ignore such input augmentation and the diversity of colorizations was
very low (Figure 4a).

To demonstrate the meaningfulness of the latent space learned by the conditional AGE training, we
also demonstrate the color transfer examples, where the latent vector z1 = eψ(x1|L1) obtained by
encoding the image [x1, L1] is then used to colorize the grayscale image L2, i.e. x2 = gθ(z1|L2)
(Figure 4b).

4 Conclusion

We have introduced a new approach for simultaneous learning of generation and inference networks.
We have demonstrated how to set up such learning as an adversarial game between generation and
inference, which has a different type of objective from traditional GAN approaches. In particular the
objective of the game considers divergences between distributions rather than discrimination at the
level of individual samples. As a consequence, our approach does not require training a discriminator
network and enjoys relatively quick convergence.

We demonstrate that on a range of standard datasets, the generators obtained by our approach provides
high-quality samples, and that the reconstrunctions of real data samples passed subsequently through
the encoder and the generator are of better fidelity than in [6]. We have also shown that our approach
is able to generate plausible and diverse colorizations, which is not possible with the GAN-based
system [11].

Our approach leaves a lot of room for further experiments. In particular, a more complex latent space
distribution can be chosen as in [19], and other divergence measures between distributions can be
easily tried.
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5 Appendix

In this supplementary material, we provide proofs for the theorems of the main text (restating these
theorems for convenience of reading). We also show additional qualitative results on several datasets.

A Proofs

Let X and Z be distributions defined in the data and the latent spaces X , Z correspondingly. We
assume X and Z are such, that there exists an invertible almost everywhere function e which
transforms the latent distribution into the data one g(Z) = X . This assumption is weak, since for
every atomless (i.e. no single point carries a positive mass) distributionsX , Z such invertible function
exists. For a detailed discussion on this topic please refer to [20, 27]. Since Z is up to our choice
simply setting it to Gaussian distribution (for Z = RM ) or uniform on sphere for (Z = SM ) is good
enough.
Lemma A.1. Let X and Y to be two distributions defined in the same space. The distributions are
equal X = Y if and only if e(X) = e(Y ) holds for for any measurable function e : X → Z .

Proof. It is obvious, that if X = Y then e(X) = e(Y ) for any measurable function e.

Now let e(X) = e(Y ) for any measurable e. To show that X = Y we will assume converse:
X 6= Y . Then there exists a set B ∈ FX , such that 0 < PX(B) 6= PY (B) and a function
e, such that corresponding set C = e(B) has B as its preimage B = e−1(C). Then we have
PX(B) = Pe(X)(C) = Pe(Y )(C) = PY (B), which contradicts with the previous assumption.

Lemma A.2. Let (g′, e′) and (g∗, e∗) to be two different Nash equilibria in a game
ming maxe V (g, e). Then V (g, e) = V (g′, e′).

Proof. See chapter 2 of [22].

Theorem 1. For a game

max
e

min
g
V1(g, e) = ∆( e(g(Z))‖e(X) ) (8)

(g∗, e∗) is a saddle point of (8) if and only if g∗ is such that g∗(Z) = X .

Proof. First note that V1(g, e) ≥ 0. Consider g such that g(Z) = X , then for any e: V1(g, e) = 0.
We conclude that (g, e) is a saddle point since V1(g, e) = 0 is a maximum over e and minimum over
g.

Using lemma A.2 for saddle point (g∗, e∗): V1(g∗, e∗) = 0 = maxe V1(g∗, e), which is only possible
if for all e: V1(g∗, e) = 0 from which immediately follows g(Z) = X by lemma A.1.

Lemma A.3. Let function e : X → Z be X-almost everywhere invertible, i.e.
∃e−1 : PX({x 6= e−1(e(x))}) = 0. Then if for a mapping g : Z → X holds e(g(Z)) = e(X), then
g(Z) = X .

Proof. From definition of X-almost everywhere invertibility follows PX(A) = PX(e−1(e(A))) for
any set A ∈ FX . Then:

PX(A) = PX(e−1(e(A))) = Pe(X)(e(A)) =

= Pe(g(Z))(e(A)) = Pg(Z)(A).

Comparing the expressions on the sides we conclude g(Z) = X .

Theorem 2. Let Y to be any fixed distribution in the latent space. Consider a game

max
e

min
g
V2(g, e) = ∆(e(g(Z))‖Y )−∆(e(X)‖Y ) . (9)

If the pair (g∗, e∗) is a Nash equilibrium of game (9) then g∗(Z) ∼ X . Conversely, if the fake and
real distributions are aligned g∗(Z) ∼ X then (g∗, e∗) is a saddle point for some e∗.
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Proof.

• As for a generator which aligns distributions g(Z) = X: V2(g, e) = 0 for any e we conclude
by A.2 that the optimal game value is V2(g∗, e∗) = 0. For an optimal pair (g∗, e∗) and
arbitrary e′ from the definition of equilibrium:

0 = ∆(e∗(g∗(Z))‖Y )−∆(e∗(X)‖Y ) ≥
≥ ∆(e′(g∗(Z))‖Y )−∆(e′(X)‖Y ) .

(10)

For invertible almost everywhere encoder e′ such that ∆(e′(X)‖Y ) = 0 the first term is
zero ∆(e′(g∗(Z))‖Y ) = 0 since inequality (10) and then e′(g∗(Z)) = e′(X) = Y . Using
result of the lemma A.3 we conclude, that g∗(Z) = X .

• If g∗(Z) = X then ∀e : e(g∗(Z)) = e(X) and
V2(g∗, e∗) = V2(g∗, e) = 0 = maxe′ V2(g∗, e′).

The corresponding optimal encoder e∗ is such that g∗ ∈ arg ming ∆(e∗(g(Z))‖Y ).

Note that not for every optimal encoder e∗ the distributions e∗(X) and e∗(g∗(Z)) are
aligned with Y . For example if e∗ collapses X into two points then for any distribu-
tion X: e∗(X) = e∗(g∗(Z)) = Bernoulli(p). For the optimal generator g∗ the pa-
rameter p is such, that for all other generators g′ such that e∗(g′(Z)) ∼ Bernoulli(p′):
∆(e∗(g∗(Z))‖Y ) ≤ ∆(e∗(g′(Z))‖Y ).
Theorem 3. Let the two distributions W and Q be aligned by the mapping f (i.e. f(W ) = Q) and
let Ew∼W ‖w − h

(
f(w)

)
‖2 = 0. Then, for w ∼ W and q ∼ Q, we have w = h(f(w)) and

q = f(h(q)) almost certainly, i.e. the mappings f and h invert each other almost everywhere on the
supports of W and Q. More, Q is aligned with W by h: h(Q) = W .

Proof. Since Ew∼W ‖w − h
(
f(w)

)
‖2 = 0, we have w = h(f(w)) almost certainly for w ∼ W .

Using this and the fact that f(w) ∼ Q for w ∼W we derive:

Eq∼Q‖q− f
(
h(q)

)
‖2 = Ew∼W ‖f(w)− f

(
h(f(w))

)
‖2 =

= Ew∼W ‖f(w)− f(w)‖2 = 0 .

Thus q = f(h(q)) almost certainly for q ∼ Q.

To show alignment h(Q) = W first recall the definition of alignment. Distributions are aligned
f(W ) = Q iff ∀Q̄ ∈ FQ: PQ(Q̄) = PW (f−1(Q̄)). Then ∀W̄ ∈ FW we have

PW (W̄ ) = PW (h(f(W̄ ))) = PW (f−1(f(W̄ ))) =

= PQ(f(W̄ )) = PQ(h−1(W̄ )) .

Comparing the expressions on the sides we conclude h(Q) = W .

B Additional qualitative results.

In the figures, we present additional qualitative results and comparisons for various image datasets.
See figure captions for explanations.
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(a) Real (b) DCGAN [23]

(c) AGE (distribution alignment) (d) AGE (full)

Figure 5: We compare CIFAR-10 samples from DCGAN [23] (b) to the samples generated using
our ablated model trained without reconstruction terms in (c) using distribution alignment only. The
model, trained with the reconstruction terms is still able to produce diverse samples (d), but also
allows inference (Figure 6).

(a) [Real, AGE network] (b) [Real, ALI [6]]

Figure 6: Comparison in reconstruction quality to ALI [6] for the CIFAR-10 dataset. For both figures
real examples are shown in odd columns and their reconstructions are shown in even columns. The
real examples come from test set and were never observed by the model during training.
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(a) Real images (b) AGE samples

Figure 7: Real examples (a) and samples (b) from our model trained on CelebA dataset.

Figure 8: Latent space interpolation between two images from CelebA dataset. The original images
are presented on the two sides.

Figure 9: In all experiments except this one, we do not use data space reconstruction loss in the
objective of the generator. These figure demonstrates the degradation occurring when this term is
added. Odd columns correspond to real images and even to reconstructions.
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Figure 10: More color transfer results: in each triplet the color scheme is transferred from the first
image onto the second image using the conditional AGE model.
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