
Improved Texture Networks: Maximizing Quality and Diversity in
Feed-forward Stylization and Texture Synthesis

Dmitry Ulyanov
Skolkovo Institute of Science and Technology & Yandex

dmitry.ulyanov@skoltech.ru

Andrea Vedaldi
University of Oxford

vedaldi@robots.ox.ac.uk

Victor Lempitsky
Skolkovo Institute of Science and Technology

lempitsky@skoltech.ru

Abstract

The recent work of Gatys et al., who characterized the
style of an image by the statistics of convolutional neural
network filters, ignited a renewed interest in the texture gen-
eration and image stylization problems. While their image
generation technique uses a slow optimization process, re-
cently several authors have proposed to learn generator
neural networks that can produce similar outputs in one
quick forward pass. While generator networks are promis-
ing, they are still inferior in visual quality and diversity
compared to generation-by-optimization. In this work, we
advance them in two significant ways. First, we introduce
an instance normalization module to replace batch normal-
ization with significant improvements to the quality of image
stylization. Second, we improve diversity by introducing
a new learning formulation that encourages generators to
sample unbiasedly from the Julesz texture ensemble, which
is the equivalence class of all images characterized by cer-
tain filter responses. Together, these two improvements take
feed forward texture synthesis and image stylization much
closer to the quality of generation-via-optimization, while
retaining the speed advantage.

1. Introduction
The recent work of Gatys et al. [4, 5], which used deep

neural networks for texture synthesis and image stylization
to a great effect, has created a surge of interest in this area.
Following an eariler work by Portilla and Simoncelli [15],
they generate an image by matching the second order mo-
ments of the response of certain filters applied to a reference
texture image. The innovation of Gatys et al. is to use non-
linear convolutional neural network filters for this purpose.

The source code is available at https://github.com/
DmitryUlyanov/texture_nets

(a) Panda. (b) (c)

(d) Style. (e) (f)

Figure 1: Which panda stylization seems the best to you?
Definitely not the variant (b), which has been produced
by a state-of-the-art algorithm among methods that take no
longer than a second. The (e) picture took several minutes
to generate using an optimization process, but the quality
is worth it, isn’t it? We would be particularly happy if you
chose one from the rightmost two examples, which are com-
puted with our new method that aspires to combine the qual-
ity of the optimization-based method and the speed of the
fast one. Moreover, our method is able to produce diverse
stylizations using a single network.

Despite the excellent results, however, the matching pro-
cess is based on local optimization, and generally requires
a considerable amount of time (tens of seconds to minutes)
in order to generate a single textures or stylized image.

In order to address this shortcoming, Ulyanov et al. [19]
and Johnson et al. [8] suggested to replace the optimiza-
tion process with feed-forward generative convolutional
networks. In particular, [19] introduced texture networks
to generate textures of a certain kind, as in [4], or to apply

1

https://github.com/DmitryUlyanov/texture_nets
https://github.com/DmitryUlyanov/texture_nets

a certain texture style to an arbitrary image, as in [5]. Once
trained, such texture networks operate in a feed-forward
manner, three orders of magnitude faster than the optimiza-
tion methods of [4, 5].

The price to pay for such speed is a reduced perfor-
mance. For texture synthesis, the neural network of [19]
generates good-quality samples, but these are not as di-
verse as the ones obtained from the iterative optimization
method of [4]. For image stylization, the feed-forward re-
sults of [19, 8] are qualitatively and quantitatively worse
than iterative optimization. In this work, we address both
limitations by means of two contributions, both of which
extend beyond the applications considered in this paper.

Our first contribution (section 4) is an architectural
change that significantly improves the generator net-
works. The change is the introduction of an instance-
normalization layer which, particularly for the stylization
problem, greatly improves the performance of the deep net-
work generators. This advance significantly reduces the gap
in stylisation quality between the feed-forward models and
the original iterative optimization method of Gatys et al.,
both quantitatively and qualitatively.

Our second contribution (section 3) addresses the lim-
ited diversity of the samples generated by texture networks.
In order to do so, we introduce a new formulation that
learns generators that uniformly sample the Julesz en-
semble [20]. The latter is the equivalence class of im-
ages that match certain filter statistics. Uniformly sampling
this set guarantees diverse results, but traditionally doing
so required slow Monte Carlo methods [20]; Portilla and
Simoncelli, and hence Gatys et al., cannot sample from
this set, but only find individual points in it, and possibly
just one point. Our formulation minimizes the Kullback-
Leibler divergence between the generated distribution and
a quasi-uniform distribution on the Julesz ensemble. The
learning objective decomposes into a loss term similar to
Gatys et al. minus the entropy of the generated texture sam-
ples, which we estimate in a differentiable manner using a
non-parametric estimator [12].

We validate our contributions by means of extensive
quantitative and qualitative experiments, including com-
paring the feed-forward results with the gold-standard
optimization-based ones (section 5). We show that, com-
bined, these ideas dramatically improve the quality of feed-
forward texture synthesis and image stylization, bringing
them to a level comparable to the optimization-based ap-
proaches.

2. Background and related work
Julesz ensemble. Informally, a texture is a family of vi-
sual patterns, such as checkerboards or slabs of concrete,
that share certain local statistical regularities. The concept
was first studied by Julesz [9], who suggested that the vi-

sual system discriminates between different textures based
on the average responses of certain image filters.

The work of [20] formalized Julesz’ ideas by introduc-
ing the concept of Julesz ensemble. There, an image is
a real function x : Ω → R3 defined on a discrete lat-
tice Ω = {1, . . . ,H} × {1, . . . ,W} and a texture is a
distribution p(x) over such images. The local statistics
of an image are captured by a bank of (non-linear) filters
Fl : X × Ω→ R, l = 1, . . . , L, where Fl(x, u) denotes the
response of filter Fl at location u on image x. The image x
is characterized by the spatial average of the filter responses
µl(x) =

∑
u∈Ω Fl(x, u)/|Ω|. The image is perceived as a

particular texture if these responses match certain charac-
teristic values µ̄l. Formally, given the loss function,

L(x) =

L∑
l=1

(µl(x)− µ̄l)2 (1)

the Julesz ensemble is the set of all texture images

Tε = {x ∈ X : L(x) ≤ ε}

that approximately satisfy such constraints. Since all tex-
tures in the Julesz ensemble are perceptually equivalent, it is
natural to require the texture distribution p(x) to be uniform
over this set. In practice, it is more convenient to consider
the exponential distribution

p(x) =
e−L(x)/T∫
e−L(y)/T dy

, (2)

where T > 0 is a temperature parameter. This choice is mo-
tivated as follows [20]: since statistics are computed from
spatial averages of filter responses, one can show that, in
the limit of infinitely large lattices, the distribution p(x) is
zero outside the Julesz ensemble and uniform inside. In
this manner, eq. (2) can be though as a uniform distribu-
tion over images that have a certain characteristic filter re-
sponses µ̄ = (µ̄1, . . . , µ̄L).

Note also that the texture is completely described by the
filter bank F = (F1, . . . , FL) and their characteristic re-
sponses µ̄. As discussed below, the filter bank is generally
fixed, so in this framework different textures are given by
different characteristics µ̄.

Generation-by-minimization. For any interesting choice
of the filter bankF , sampling from eq. (2) is rather challeng-
ing and classically addressed by Monte Carlo methods [20].
In order to make this framework more practical, Portilla
and Simoncelli [16] proposed instead to heuristically sam-
ple from the Julesz ensemble by the optimization process

x∗ = argmin
x∈X

L(x). (3)

If this optimization problem can be solved, the minimizer
x∗ is by definition a texture image. However, there is no
reason why this process should generate fair samples from
the distribution p(x). In fact, the only reason why eq. (3)
may not simply return always the same image is that the op-
timization algorithm is randomly initialized, the loss func-
tion is highly non-convex, and search is local. Only because
of this eq. (3) may land on different samples x∗ on different
runs.

Deep filter banks. Constructing a Julesz ensemble re-
quires choosing a filter bank F . Originally, researchers con-
sidered the obvious candidates: Gaussian derivative filters,
Gabor filters, wavelets, histograms, and similar [20, 16, 21].
More recently, the work of Gatys et al. [4, 5] demonstrated
that much superior filters are automatically learned by deep
convolutional neural networks (CNNs) even when trained
for apparently unrelated problems, such as image classifi-
cation. In this paper, in particular, we choose for L(x) the
style loss proposed by [4]. The latter is the distance between
the empirical correlation matrices of deep filter responses in
a CNN.1

Stylization. The texture generation method of Gatys et
al. [4] can be considered as a direct extension of the texture
generation-by-minimization technique (3) of Portilla and
Simoncelli [16]. Later, Gatys et al. [5] demonstrated that
the same technique can be used to generate an image that
mixes the statistics of two other images, one used as a tex-
ture template and one used as a content template. Content
is captured by introducing a second loss Lcont.(x, x0) that
compares the responses of deep CNN filters extracted from
the generated image x and a content image x0. Minimizing
the combined loss L(x) + αLcont.(x, x0) yields impressive
artistic images, where a texture µ̄, defining the artistic style,
is fused with the content image x0.

Feed-forward generator networks. For all its simplicity
and efficiency compared to Markov sampling techniques,
generation-by-optimization (3) is still relatively slow, and
certainly too slow for real-time applications. Therefore, in
the past few months several authors [8, 19] have proposed to
learn generator neural networks g(z) that can directly map
random noise samples z ∼ pz = N (0, I) to a local mini-
mizer of eq. (3). Learning the neural network g amounts to
minimizing the objective

g∗ = argmin
g

E
pz
L(g(z)). (4)

While this approach works well in practice, it shares the
same important limitation as the original work of Portilla

1Note that such matrices are obtained by averaging local non-linear
filters: these are the outer products of filters in a certain layer of the nerual
network. Hence, the style loss of Gatys et al. is in the same form as eq. (1).

and Simoncelli: there is no guarantee that samples gener-
ated by g∗ would be fair samples of the texture distribu-
tion (2). In practice, as we show in the paper, such samples
tend in fact to be not diverse enough.

Both [8, 19] have also shown that similar generator net-
works work also for stylization. In this case, the generator
g(x0, z) is a function of the content image x0 and of the
random noise z. The network g is learned to minimize the
sum of texture loss and the content loss:

g∗ = argmin
g

E
px0

,pz
[L(g(x0, z)) + αLcont.(g(x0, z), x0)].

(5)

Alternative neural generator methods. There are many
other techniques for image generation using deep neural
networks.

The Julesz distribution is closely related to the FRAME
maximum entropy model of [21], as well as to the concept
of Maximum Mean Discrepancy (MMD) introduced in [7].
Both FRAME and MMD make the observation that a prob-
ability distribution p(x) can be described by the expected
values µα = Ex∼p(x)[φα(x)] of a sufficiently rich set of
statistics φα(x). Building on these ideas, [14, 3] construct
generator neural networks g with the goal of minimizing the
discrepancy between the statistics averaged over a batch of
generated images

∑N
i=1 φα(g(zi))/N and the statistics av-

eraged over a traning set
∑M
i=1 φα(xi)/M . The resulting

networks g are called Moment Matching Networks (MMN).
An important alternative methodology is based on the

concept of Generative Adversarial Networks (GAN; [6]).
This approach trains, together with the generator network
g(z), a second adversarial network f(·) that attempts to dis-
tinguish between generated samples g(z), z ∼ N (0, I) and
real samples x ∼ pdata(x). The adversarial model f can be
used as a measure of quality of the generated samples and
used to learn a better generator g. GAN are powerful but no-
toriously difficult to train. A lot of research is has recently
focused on improving GAN or extending it. For instance,
LAPGAN [2] combines GAN with a Laplacian pyramid and
DCGAN [17] optimizes GAN for large datasets.

3. Julesz generator networks
This section describes our first contribution, namely a

method to learn networks that draw samples from the Julesz
ensemble modelling a texture (section 2), which is an in-
tractable problem usually addressed by slow Monte Carlo
methods [21, 20]. Generation-by-optimization, popularized
by Portilla and Simoncelli and Gatys et al., is faster, but
can only find one point in the ensemble, not sample from it,
with scarce sample diversity, particularly when used to train
feed-forward generator networks [8, 19].

Here, we propose a new formulation that allows to train
generator networks that sample the Julesz ensemble, gener-

ating images with high visual fidelity as well as high diver-
sity.

A generator network [6] maps an i.i.d. noise vector
z ∼ N (0, I) to an image x = g(z) in such a way that
x is ideally a sample from the desired distribution p(x).
Such generators have been adopted for texture synthesis
in [19], but without guarantees that the learned generator
g(z) would indeed sample a particular distribution.

Here, we would like to sample from the Gibbs distri-
bution (2) defined over the Julesz ensemble. This distri-
bution can be written compactly as p(x) = Z−1e−L(x)/T ,
where Z =

∫
e−L(x)/T dx is an intractable normalization

constant.
Denote by q(x) the distribution induced by a generator

network g. The goal is to make the target distribution p and
the generator distribution q as close as possible by minimiz-
ing their Kullback-Leibler (KL) divergence:

KL(q||p) =

∫
q(x) ln

q(x)Z

p(x)
dx

=
1

T
E

x∼q(x)
L(x) + E

x∼q(x)
ln q(x) + ln(Z)

=
1

T
E

x∼q(x)
L(x)−H(q) + const.

(6)

Hence, the KL divergence is the sum of the expected value
of the style loss L and the negative entropy of the generated
distribution q.

The first term can be estimated by taking the expectation
over generated samples:

E
x∼q(x)

L(x) = E
z∼N (0,I)

L(g(z)). (7)

This is similar to the reparametrization trick of [11] and is
also used in [8, 19] to construct their learning objectives.

The second term, the negative entropy, is harder to es-
timate accurately, but simple estimators exist. One which
is particularly appealing in our scenario is the Kozachenko-
Leonenko estimator [12]. This estimator considers a batch
of N samples x1, . . . , xn ∼ q(x). Then, for each sample
xi, it computes the distance ρi to its nearest neighbour in
the batch:

ρi = min
j 6=i
‖xi − xj‖. (8)

The distances ρi can be used to approximate the entropy as
follows:

H(q) ≈ D

N

N∑
i=1

ln ρi + const. (9)

where D = 3WH is the number of components of the im-
ages x ∈ R3×W×H .

An energy term similar to (6) was recently proposed
in [10] for improving the diversity of a generator network

in a adversarial learning scheme. While the idea is superfi-
cially similar, the application (sampling the Julesz ensem-
ble) and instantiation (the way the entropy term is imple-
mented) are very different.

Learning objective. We are now ready to define an ob-
jective function E(g) to learn the generator network g. This
is given by substituting the expected loss (7) and the en-
tropy estimator (9), computed over a batch of N generated
images, in the KL divergence (6):

E(g) =
1

N

N∑
i=1

[1

T
L(g(zi))

− λ ln min
j 6=i
‖g(zi)− g(zj)‖

]
(10)

The batch itself is obtained by drawing N samples
z1, . . . , zn ∼ N (0, I) from the noise distribution of the
generator. The first term in eq. (10) measures how closely
the generated images g(zi) are to the Julesz ensemble. The
second term quantifies the lack of diversity in the batch by
mutually comparing the generated images.

Learning. The loss function (10) is in a form that al-
lows optimization by means of Stochastic Gradient Descent
(SGD). The algorithm samples a batch z1, . . . , zn at a time
and then descends the gradient:

1

N

N∑
i=1

[dL
dx>

dg(zi)

dθ>

− λ

ρi
(g(zi)− g(zj∗i))>

(
dg(zi)

dθ>
− dg(zj∗i)

dθ>

)]
(11)

where θ is the vector of parameters of the neural network g,
the tensor image x has been implicitly vectorized and j∗i is
the index of the nearest neighbour of image i in the batch.

4. Stylization with instance normalization
The work of [19] showed that it is possible to learn

high-quality texture networks g(z) that generate images in
a Julesz ensemble. They also showed that it is possible to
learn good quality stylization networks g(x0, z) that apply
the style of a fixed texture to an arbitrary content image x0.

Nevertheless, the stylization problem was found to be
harder than the texture generation one. For the stylization
task, they found that learning the model from too many ex-
ample content images x0, say more than 16, yielded poorer
qualitative results than using a smaller number of such ex-
amples. Some of the most significant errors appeared along
the border of the generated images, probably due to padding
and other boundary effects in the generator network. We

conjectured that these are symptoms of a learning problem
too difficult for their choice of neural network architecture.

A simple observation that may make learning simpler is
that the result of stylization should not, in general, depend
on the contrast of the content image but rather should match
the contrast of the texture that is being applied to it. Thus,
the generator network should discard contrast information
in the content image x0. We argue that learning to discard
contrast information by using standard CNN building block
is unnecessarily difficult, and is best done by adding a suit-
able layer to the architecture.

To see why, let x ∈ RN×C×W×H be an input tensor
containing a batch of N images. Let xnijk denote its nijk-
th element, where k and j span spatial dimensions, i is the
feature channel (i.e. the color channel if the tensor is an
RGB image), and n is the index of the image in the batch.
Then, contrast normalization is given by:

ynijk =
xnijk − µni√

σ2
ni + ε

,

µni =
1

HW

W∑
l=1

H∑
m=1

xnilm,

σ2
ni =

1

HW

W∑
l=1

H∑
m=1

(xnilm − µni)2.

(12)

It is unclear how such as function could be implemented as
a sequence of standard operators such as ReLU and convo-
lution.

On the other hand, the generator network of [19] does
contain a normalization layers, and precisely batch normal-
ization (BN) ones. The key difference between eq. (12) and
batch normalization is that the latter applies the normaliza-
tion to a whole batch of images instead of single ones:

ynijk =
xnijk − µi√

σ2
i + ε

,

µi =
1

HWN

N∑
n=1

W∑
l=1

H∑
m=1

xnilm,

σ2
i =

1

HWN

N∑
n=1

W∑
l=1

H∑
m=1

(xnilm − µi)2.

(13)

We argue that, for the purpose of stylization, the normal-
ization operator of eq. (12) is preferable as it can normalize
each individual content image x0.

While some authors call layer eq. (12) contrast normal-
ization, here we refer to it as instance normalization (IN)
since we use it as a drop-in replacement for batch nor-
malization operating on individual instances instead of the
batch as a whole. Note in particular that this means that in-
stance normalization is applied throughout the architecture,

Figure 2: Comparison of normalization techniques in image
stylization. From left to right: BN, cross-channel LRN at
the first layer, IN at the first layer, IN throughout.

0 3000 6000 9000 12000
Iteration

13.0

13.5

14.0

14.5

15.0

15.5

16.0

ln
L(

x
)

Batch

Instance

(a) Feed-forward history.

0 50 100 150 200 250 300
Iteration

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

ln
L(

x
)

Batch

Instance

Random

(b) Finetuning history.

(c) Content. (d) StyleNet IN. (e) IN finetuned.

(f) Style. (g) StyleNet BN. (h) BN finetuned.

Figure 3: (a) learning objective as a function of SGD iter-
ations for StyleNet IN and BN. (b) Direct optimization of
the Gatys et al. for this example image starting from the re-
sult of StyleNet IN and BN. (d,g) Result of StyleNet with
instance (d) and batch normalization (g). (e,h) Result of
finetuning the Gatys et al. energy.

not just at the input image—fig. 2 shows the benefit of doing
so.

Another similarity with BN is that each IN layer is fol-
lowed by a scaling and bias operator s�x+b. A difference
is that the IN layer is applied at test time as well, unchanged,
whereas BN is usually switched to use accumulated mean
and variance instead of computing them over the batch.

IN appears to be similar to the layer normalization
method introduced in [1] for recurrent networks, although
it is not clear how they handle spatial data. Like theirs, IN
is a generic layer, so we tested it in classification problems
as well. In such cases, it still work surprisingly well, but not
as well as batch normalization (e.g. AlexNet [13] IN has 2-
3% worse top-1 accuracy on ILSVRC [18] than AlexNet
BN).

Content StyleNet IN (ours) StyleNet BN Gatys et al. Style
Figure 4: Stylization results obtained by applying different textures (rightmost column) to different content images (leftmost
column). Three methods are compared: StyleNet IN, StyleNet BN, and iterative optimization. StyleNet BN is similar to
[19] and [8] but trained on larger images (512x compared to 256x in [19, 8]) for a fair comparison with StyleNet IN. We
compare to original [19, 8] in supmat.

5. Experiments

In this section, after discussing the technical details of
the method, we evaluate our new texture network architec-
tures using instance normalization, and then investigate the
ability of the new formulation to learn diverse generators.

5.1. Technical details

Network architecture. Among two generator network
architectures, proposed previously in [19, 8], we choose the
residual architecture from [8] for all our style transfer exper-

iments. We also experimented with architecture from [19]
and observed a similar improvement with our method, but
use the one from [8] for convenience. We call it StyleNet
with a postfix BN if it is equipped with batch normalization
or IN for instance normalization.

For texture synthesis we compare two architectures: the
multiscale fully-convolutional architecture from [19] (Tex-
tureNetV1) and the one we design to have a very large re-
ceptive field (TextureNetV2). TextureNetV2 takes a noise
vector of size 256 and first transforms it with two fully-
connected layers. The output is then reshaped to a 4 × 4

Input TextureNetV2 λ = 0 TextureNetV2 λ > 0 (ours) TextureNetV1 λ = 0

Figure 5: The textures generated by the high capacity Texture Net V2 without diversity term (λ = 0 in eq. (10)) are nearly
identical. The low capacity TextureNet V1 of [19] achieves diversity, but has sometimes poor results. TextureNet V2 with
diversity is the best of both worlds.

image and repeatedly upsampled with fractionally-strided
convolutions similar to [17]. More details can be found in
the supplementary material.

Weight parameters. In practice, for the case of λ > 0,
entropy loss and texture loss in eq. (10) should be weighted
properly. As only the value of Tλ is important for opti-
mization we assume λ = 1 and choose T from the set of
three values (5, 10, 20) for texture synthesis (we pick the
higher value among those not leading to artifacts – see our
discussion below). We fix T = 10000 for style transfer ex-
periments. For texture synthesis, similarly to [19], we found
useful to normalize gradient of the texture loss as it passes
back through the VGG-19 network. This allows rapid con-
vergence for stochastic optimization but implicitly alters the
objective function and requires temperature to be adjusted.
We observe that for textures with flat lightning high entropy
weight results in brightness variations over the image fig. 7.
We hypothesize this issue can be solved if either more clever
distance for entropy estimation is used or an image prior in-
troduced.

5.2. Effect of instance normalization

In order to evaluate the impact of replacing batch nor-
malization with instance normalization, we consider first

the problem of stylization, where the goal is to learn a gen-
erator x = g(x0, z) that applies a certain texture style to
the content image x0 using noise z as “random seed”. We
set λ = 0 for which generator is most likely to discard the
noise.

The StyleNet IN and StyleNet BN are compared in fig. 3.
Panel fig. 3.a shows the training objective (5) of the net-
works as a function of the SGD training iteration. The
objective function is the same, but StyleNet IN converges
much faster, suggesting that it can solve the stylization
problem more easily. This is confirmed by the stark dif-
ference in the qualitative results in panels (d) end (g). Since
the StyleNets are trained to minimize in one shot the same
objective as the iterative optimization of Gatys et al., they
can be used to initialize the latter algorithm. Panel (b) shows
the result of applying the Gatys et al. optimization starting
from their random initialization and the output of the two
StyleNets. Clearly both networks start much closer to an
optimum than random noise, and IN closer than BN. The
difference is qualitatively large: panels (e) and (h) show the
change in the StyleNets output after finetuning by iterative
optimization of the loss, which has a small effect for the IN
variant, and a much larger one for the BN one.

Similar results apply in general. Other examples are
shown in fig. 4, where the IN variant is far superior to BN
and much closer to the results obtained by the much slower

Content Style StyleNet λ > 0 StyleNet λ = 0

Figure 6: The StyleNetV2 g(x0, z), trained with diversity λ > 0, generates substantially different stylizations for different
values of the input noise z. With λ = 0 generator tends to ignore noise channels when trained for sufficiently long time thus
producing almost the same stylization for different noise z.

Figure 7: Negative examples. If the diversity term λ is too
high for the learned style, the generator tends to generate
artifacts in which brightness is changed locally (spotting)
instead of (or as well as) changing the structure.

iterative method of Gatys et al. StyleNets are trained on im-
ages of a fixed sized, but since they are convolutional, they
can be applied to arbitrary sizes. In the figure, the top tree
images are processed at 512 × 512 resolution and the bot-
tom two at 1024 × 1024. In general, we found that higher
resolution images yield visually better stylization results.

While instance normalization works much better than
batch normalization for stylization, for texture synthesis the
two normalization methods perform equally well. This is
consistent with our intuition that IN helps in normalizing
the information coming from content image x0, which is
highly variable, whereas it is not important to normalize the
texture information, as each model learns only one texture
style.

5.3. Effect of the diversity term

Having validated the IN-based architecture, we evaluate
now the effect of the entropy-based diversity term in the
objective function (10).

The experiment in fig. 5 starts by considering the
problem of texture generation. We compare the new
high-capacity TextureNetV2 and the low-capacity Tex-
tureNetsV1 texture synthesis networks. The low-capacity
model is the same as [19]. This network was used there
in order to force the network to learn a non-trivial depen-

dency on the input noise, thus generating diverse outputs
even though the learning objective of [19], which is the
same as eq. (10) with diversity coefficient λ = 0, tends to
suppress diversity. The results in fig. 5 are indeed diverse,
but sometimes of low quality. This should be contrasted
with TextureNetV2, the high-capacity model: its visual fi-
delity is much higher, but, by using the same objective func-
tion [19], the network learns to generate a single image, as
expected. TextureNetV2 with the new diversity-inducing
objective (λ > 0) is the best of both worlds, being both
high-quality and diverse.

The experiment in fig. 6 assesses the effect of the diver-
sity term in the stylization problem. The results are similar
to the ones for texture synthesis and the diversity term effec-
tively encourages the network to learn to produce different
results based on the input noise.

One difficultly with texture and stylization networks is
that the entropy loss weight λ must be tuned for each
learned texture model. Choosing λ too small may fail to
learn a diverse generator, and setting it too high may create
artifacts, as shown in fig. 7.

6. Summary

This paper advances feed-forward texture synthesis and
stylization networks in two significant ways. It introduces
instance normalization, an architectural change that makes
training stylization networks easier and allows the training
process to achieve much lower loss levels. It also introduces
a new learning formulation for training generator networks
to sample uniformly from the Julesz ensemble, thus ex-
plicitly encouraging diversity in the generated outputs. We
show that both improvements lead to noticeable improve-
ments of the generated stylized images and textures, while
keeping the generation runtimes intact.

Acknowledgements. VL was supported by the Ministry
of Education and Science of the Russian Federation (grant
14.756.31.0001).

References
[1] L. J. Ba, R. Kiros, and G. E. Hinton. Layer normalization.

CoRR, abs/1607.06450, 2016. 5
[2] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep

generative image models using a laplacian pyramid of adver-
sarial networks. In NIPS, pages 1486–1494, 2015. 3

[3] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training
generative neural networks via maximum mean discrepancy
optimization. In UAI, pages 258–267. AUAI Press, 2015. 3

[4] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis
using convolutional neural networks. In Advances in Neu-
ral Information Processing Systems, NIPS, pages 262–270,
2015. 1, 2, 3

[5] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. CoRR, abs/1508.06576, 2015. 1, 2, 3

[6] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 2672–2680, 2014. 3,
4

[7] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and
A. J. Smola. A kernel method for the two-sample-problem.
In Advances in neural information processing systems,NIPS,
pages 513–520, 2006. 3

[8] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In Computer
Vision - ECCV 2016 - 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings,
Part II, pages 694–711, 2016. 1, 2, 3, 4, 6

[9] B. Julesz. Textons, the elements of texture perception, and
their interactions. Nature, 290(5802):91–97, 1981. 2

[10] T. Kim and Y. Bengio. Deep directed generative models
with energy-based probability estimation. arXiv preprint
arXiv:1606.03439, 2016. 4

[11] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. CoRR, abs/1312.6114, 2013. 4

[12] L. F. Kozachenko and N. N. Leonenko. Sample estimate of
the entropy of a random vector. Probl. Inf. Transm., 23(1-
2):95–101, 1987. 2, 4

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1106–1114, 2012. 5

[14] Y. Li, K. Swersky, and R. S. Zemel. Generative moment
matching networks. In Proc. International Conference on
Machine Learning, ICML, pages 1718–1727, 2015. 3

[15] J. Portilla and E. P. Simoncelli. A parametric texture model
based on joint statistics of complex wavelet coefficients.
IJCV, 40(1):49–70, 2000. 1

[16] J. Portilla and E. P. Simoncelli. A parametric texture model
based on joint statistics of complex wavelet coefficients.
IJCV, 2000. 2, 3

[17] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. CoRR, abs/1511.06434, 2015. 3, 7

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. 5

[19] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky.
Texture networks: Feed-forward synthesis of textures and
stylized images. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, pages 1349–1357, 2016.
1, 2, 3, 4, 5, 6, 7, 8

[20] S. C. Zhu, X. W. Liu, and Y. N. Wu. Exploring texture
ensembles by efficient markov chain monte carlotoward a
atrichromacyo theory of texture. PAMI, 2000. 2, 3

[21] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields
and maximum entropy (FRAME): Towards a unified theory
for texture modeling. IJCV, 27(2), 1998. 3

