
Adversarial Generator-Encoder Networks

Dmitry Ulyanov 1 2 Andrea Vedaldi 3 Victor Lempitsky 1

Abstract
We present a new autoencoder-type architecture,
that is trainable in an unsupervised mode, sus-
tains both generation and inference, and has the
quality of conditional and unconditional samples
boosted by adversarial learning. Unlike previ-
ous hybrids of autoencoders and adversarial net-
works, the adversarial game in our approach is
set up directly between the encoder and the gen-
erator, and no external mappings are trained in
the process of learning. The game objective com-
pares the divergences of each of the real and
the generated data distributions with the canon-
ical distribution in the latent space. We show
that direct generator-vs-encoder game leads to a
tight coupling of the two components, resulting
in samples and reconstructions of a comparable
quality to some recently-proposed more complex
architectures.

1. Introduction
Deep architectures such as autoencoders (Bengio, 2009)
and their variational counterparts (VAE) (Rezende et al.,
2014; Kingma & Welling, 2013) can learn in an unsuper-
vised manner a bidirectional mapping between data charac-
terised by a complex distribution, such as natural images,
and a much simpler latent space. Sampling an image re-
duces then to drawing a sample in the latent space, which is
easy, and then mapping the latter to a data sample by apply-
ing the learned generator function to it. Unfortunately, the
perceptual quality of the generated samples remains rela-
tively low. This is usually not a limitation of the neural net-
work per-se, but rather of the simplistic loss functions used
to train it. In particular, simple losses are unable to properly
account for reconstruction ambiguities and result in blurry
samples (regression to the mean). By contrast, Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014)
can learn complex loss functions as a part of the learning

1Skolkovo Institute of Science and Technology, Russia
2Yandex, Russia 3University of Oxford, UK. Correspondence to:
Dmitry Ulyanov <dmitry.ulyanov.msu@gmail.com>.

Source code is available at
https://github.com/DmitryUlyanov/AGE

process, which allows them to generate better quality sam-
ples.

A disadvantage of GANs compared to autoencoders is that,
in their original form, they are unidirectional: a GAN can
only generate a data sample from a latent space sample,
but it cannot reverse this mapping. By contrast, in autoen-
coders this inference process is carried by the encoder func-
tion, which is learned together with the generator function
as part of the model. Therefore, there has been some inter-
est in developing architectures that support both sampling
and inference like autoencoders, while producing samples
of quality comparable to GAN. For example, the adversar-
ial autoencoders of (Makhzani et al., 2015) augment au-
toencoders with adversarial discriminators encouraging the
alignment of distributions in the latent space, but the qual-
ity of the generated samples does not always match GANs.
The approach (Larsen et al., 2015) adds instead an adver-
sarial loss to the reconstruction loss of the variational au-
toencoder, with a sensible improvement in the quality of the
samples. The method of (Zhu et al., 2016) starts by learn-
ing the decoder function as in GAN, and then learns a cor-
responding encoder post-hoc. The adversarially-learned in-
ference (ALI) approach, simultaneously proposed by (Don-
ahue et al., 2016; Dumoulin et al., 2016), consider parallel
learning of encoders and generators, whereas the distribu-
tion of their input-output pairs are matched by an external
discriminator.

All such approaches (Makhzani et al., 2015; Larsen et al.,
2015; Donahue et al., 2016; Dumoulin et al., 2016) add to
the encoder (or inference network) and decoder (or gener-
ator) modules a discriminator module, namely an external
classifier whose goal is to align certain distributions in the
latent or data space, or both.

In this paper, we propose a new approach for training
encoder-generator pairs that uses an adversarial game be-
tween the encoder and the generator, without the need
to add an external discriminator. Our architecture, called
Adversarial Generator-Encoder Network (AGE Network),
thus consists of only two feed-forward mappings (the en-
coder and the generator). At the same time, AGE uses ad-
versarial training to optimize the quality of the generated
samples by matching their higher-level statistics to those of
real data samples. Crucially, we demonstrate that it is pos-
sible to use the encoder itself to extract the required statis-

ar
X

iv
:s

ub
m

it/
18

57
11

4 
 [

cs
.C

V
] 

 7
 A

pr
 2

01
7

https://github.com/DmitryUlyanov/AGE


Adversarial Generator-Encoder Networks

tics.

Adversarial training in AGE works as follows. First, the
encoder is used to map both real and generated data sam-
ples to the latent space, inducing in this space two empiri-
cal data distributions. Since the aim of learning is to make
generated and real data statistically indistinguishable, the
the generator is required to make these two latent distribu-
tions identical. At the same time, the (adversarial) goal of
the encoder is to construct a latent space where any statis-
tical difference that can be discovered between the real and
generated data is emphasized.

Importantly, AGE compares the latent distributions indi-
rectly, by measuring their divergence to a reference canon-
ical distribution (e.g. an i.i.d. uniform or normal vector).
The evaluation of the game objective thus requires esti-
mation of a divergence between distributions represented
by sets of samples and an “easy” tractable distribution, for
which we use a simple parametric or non-parametric esti-
mator. The encoder is required to push the divergence of
the real data down, a goal shared with VAE which makes
the distribution of real data in latent space a simple one.
The generator is also required to push down the divergence
of the latent distribution corresponding to the generated
data; in this manner, the latent statistics of real and gener-
ated data is encouraged to match. However, adversarially,
the encoder is also encouraged to maximise the divergence
of the generated data.

The AGE adversarial game has a learning objective that
is quite different from the objectives used by existing ad-
versarial training approaches. Since our goal is to avoid
introducing a discriminator function, this is partly out of
necessity, since neither generator nor encoder can be used
as binary classifiers. Furthermore, introducing a binary
classifier that classifies individual samples as generated or
real has known pitfalls such as mode collapse (Goodfellow,
2017); instead, the discriminator should look at the statis-
tics of multiple samples (Salimans et al., 2016). Our ap-
proach does so by means of a new multi-sample objective
for adversarial training.

As we show in the experiments, adversarial training with
the new objective is able to learn generators that produces
high-quality samples even without reconstruction losses.
Our new game objective can thus be used for stand-alone
adversarial learning. Our approach is evaluated on a num-
ber of standard datasets. We include comparisons with the
adversarially-learned inference (ALI) system of (Dumoulin
et al., 2016) as well as the base generative adversarial ar-
chitecture (Radford et al., 2015). We show that, for many
different datasets, AGE networks achieve comparable or
better sampling and reconstruction quality than such alter-
natives.

Generator g

Encoder e

Z

g(Z)

e(X)

e(g(Z))
Latent space Data space

X

Figure 1. Our model (AGE network) has only two components:
the generator g and the encoder e. The learning process adjusts
their parameters in order to align a simple distribution Z in the
latent space and the data distribution X . This is done by adver-
sarial training, as updates for the generator aim to minimize the
divergence between e(g(Z)) and Z (aligning green with gray),
while updates for the encoder aim to minimize the divergence be-
tween e(X) (aligning blue with gray) and to maximize the diver-
gence between e(g(Z)) and Z (shrink green “away” from gray).
We demonstrate that such adversarial learning gives rise to high-
quality generators that result in the close match between the real
distribution X and the generated distribution g(Z). Our learning
can also incorporate reconstruction losses to ensure that encoder-
generator acts as autoencoder (section 2.2).

A note about notation: To ease the notation for a distribu-
tion Y and a deterministic mapping f , we use the shorthand
f(Y ) to denote the distribution associated with the random
variable f(y), y ∼ Y .

2. Adversarial Generator-Encoder Networks
Adversarial Generator-Encoder (AGE) networks are com-
posed of two parametric mappings that go in reverse direc-
tions between the data space X and the latent space Z .
The encoder eψ(x) with the learnable parameters ψ maps
data space to latent space, while the generator gθ(z) with
the learnable parameters θ maps latent space to data space.

The goal of the training process for AGE is to align a real
data distributionX with a “fake” distribution gθ(Z) and es-
tablish a reciprocal correspondence betweenX andZ at the
sample level. The real data distributionX is represented by
a sufficiently large number N of samples {x1,x2, ...xN}
that follow this distribution; in the latent space, a simple
distribution Z is chosen, from which samples can be drawn
easily. The training process corresponds to the tuning of the
parameter sets ψ and θ. The process combines adversarial
learning with the traditional minimization of reconstruction
errors in both spaces.

The simple form of the distribution Z allows uncondi-
tional feed-forward sampling from the data distribution us-
ing AGE networks by sampling z ∼ Z and computing
x = gθ(z), exactly as it is done by sampling from a gen-
erator in GANs. In our experiments, we pick the latent
space Z to be an M -dimensional sphere SM , and the la-
tent distribution to be a uniform distribution on that sphere



Adversarial Generator-Encoder Networks

Z = Uniform(SM ). We have also conducted some experi-
ments with the unit Gaussian distribution in the Euclidean
space and have obtained results comparable in quality.

In section 2.1 we introduce a game objective for which each
saddle g delivers alignment g(Z) = X . We then augments
it with additional terms that encourage the reciprocity of e
and g in section 2.2. Section 2.3 describes the details of the
learning process for the introduced game.

2.1. Adversarial distribution alignment

The conventional approach to aligning two distributions is
implemented in existing GAN-based systems via an ad-
versarial game based around ratio estimation (Goodfellow
et al., 2014). The ratio estimation is performed by repeated
fitting of the binary classifier that distinguishes between the
two distributions (corresponding to real and generated sam-
ples). Here, we propose an alternative approach avoiding
some of the pitfalls of the conventional GANs such as mode
collapse.

Our primary goal is to find generators that produce distri-
butions in the data space g(Z) that are close to the true
data distribution X . However, direct matching of the dis-
tributions in a high-dimensional data space can be very
challenging, thus we would like to limit ourself to com-
paring only distributions defined in the latent space. In the
following derivations, we therefore introduce a divergence
measure ∆(P‖Q) between distributions defined in the la-
tent space Z . We only require this divergence to be non-
negative and zero if and only if the distributions are iden-
tical ∆(P‖Q) = 0 ⇐⇒ P = Q (triangle inequality and
symmetry property should not necessarily hold). An en-
coder e maps distributions X and g(Z) in the latent space
to the distributions e(X) and e(g(Z)) in the latent space.
Below, we show how to design an adversarial game be-
tween e and g that ensures the alignment of g(Z) = X
in the data space, while only evaluating divergences in the
latent space.

In the theoretical analysis below, we assume that consid-
ered encoders and decoders span the class of all measur-
able mappings between the corresponding spaces. Such
assumption (often referred to as non-parametric limit) is
justified by universality of neural networks (Hornik et al.,
1989). We further make an assumption that there exists at
least one “perfect” generator that matches the data distribu-
tion, i.e. ∃g0 : g0(Z) = X .

We start by considering a simple game with objective de-
fined as:

max
e

min
g
V1(g, e) = ∆( e(g(Z))‖e(X) ) . (1)

As the following theorem shows, perfect generators form
saddle points (Nash equilibria) of the game (1) and all sad-

dle points of the game (1) are based on perfect generators.

Theorem 1. A pair (g∗, e∗) forms a saddle point of the
game (1) if and only if the generator g∗ matches the data
distribution, i.e. g∗(Z) = X .

The proof of the theorem is given in the appendix.

While the game (1) is sufficient for aligning distributions
in the data space, finding its saddle points is complicated
by the need to compare the two general-form distributions
given in the form of samples. This is aided by redesigning
the game as follows:

max
e

min
g
V2(g, e) = ∆(e(g(Z))‖Y )−∆(e(X)‖Y ). (2)

Here Y is a fixed distribution in the latent space. Im-
portantly, as the following theorem demonstrates, the new
game still retains the connection between generators that
align fake and real distributions and saddle points.

Theorem 2. If a pair (g∗, e∗) is a saddle point of game
(2) then the generator g∗ matches the data distribution, i.e.
g∗(Z) = X . Conversely, if the generator g∗ matches the
data distribution, then for some e∗ the pair (g∗, e∗) is a
saddle point of (2).

The proof is given in the appendix.

The important benefit of the new game formulation (2) is
that the model distributions e(g(Z)) and e(X) are now
compared with a fixed Y . By picking Y suitably, we can
ensure that the new divergence evaluations are more stable
than a direct comparison ∆( e(g(Z))‖e(X) ), as distribu-
tions e(g(Z)) and e(X) are defined implicitly (we do not
have access to the distributions directly, but can only sam-
ple from them).

Conveniently, one can pick the target distribution Y to co-
incide with the “canonical”(source) distribution Z, and we
do so in all our experiments and further derivations. With
Y = Z the game objective (2) can be upgraded with recon-
struction losses and permits convenient stochastic approxi-
mation as described in section 2.3.

One could also interpret the game (2) as the comparison
between the two distributions in the data space via compar-
ison of certain statistics extracted by the encoders. Sim-
ilarly to conventional GANs, these statistics are not fixed
but evolve in the process of the game. In our approach the
statistics have the form F (Q) = ∆(e(Q)‖Y ) for a given
distribution Q in the data space and a fixed distribution Y
in the latent space. The statistics thus map a data space
distribution into the latent space and then measure its di-
vergence with the distribution Y .

We note that even away from the saddle point, the mini-
mization ming V2(g, e) for some fixed e does not have a



Adversarial Generator-Encoder Networks

(a) Real (b) DCGAN (c) Ours (game 2) (d) Ours (full)

Figure 2. We compare CIFAR10 samples from DCGAN (Radford et al., 2015) (b) to the samples generated using our ablated model
trained without reconstruction terms in (). The model, trained with the reconstruction terms is still able to produce diverse samples (d),
but also allows inference (Figure 3).

(a) Ours. (b) ALI (Dumoulin et al., 2016).

Figure 3. Comparison in reconstruction quality to ALI (Dumoulin
et al., 2016) for the CIFAR10 dataset. For both figures real ex-
amples are shown in odd columns and their reconstructions are
shown in the even columns. The real examples come from test set
and were never observed by the model during training.

collapsing tendency for many reasonable divergences (e.g.
KL-divergence). Indeed, any collapsed distribution would
inevitably lead to a very high value of the first term in (2).
Thus, unlike GANs, our approach can optimize the gener-
ator for a fixed adversary till convergence and obtain non-
degenerate solution. On the other hand, the maximization
maxe V2(g, e) for some fixed g can lead to +∞ score for
some divergences.

2.2. Reconstruction losses

While the previous derivation demonstrates that X and
g(Z) can get aligned by adversarial learning, such align-
ment does not necessarily entails reciprocity of the e and g
mappings at the level of individual samples. Such sample-
level reciprocity is not needed if we only need highly-
realistic samples from the generator, however it is desirable
if good reconstructions from the composition of encoder
and generator are sought.

The sample-level reciprocity can be measured either in the
latent space or in the data space. This gives rise to the two
loss functions:

LX (gθ, eψ) = Ex∼X‖x− gθ
(
eψ(x)

)
‖2 , (3)

LZ(gθ, eψ) = Ez∼Z‖z− eψ
(
gθ(z)

)
‖2 . (4)

Both losses (3) and (4) thus measure the reconstruction er-
ror and their minimization ensures the reciprocity of the
two mappings. The loss (3) is the traditional loss used
within autoencoders.

As we aim to improve game (2), we may want to under-
stand if both losses (3) and (4) should be used or one of
them would be sufficient in theory. The answer is given by
the following statement:

Theorem 3. Let the two distributions W and Q be
aligned by the mapping f (i.e. f(W ) = Q) and let
Ew∼W ‖w − h

(
f(w)

)
‖2 = 0. Then, for w ∼ W and

q ∼ Q, we have w = h(f(w)) and q = f(h(q)) almost
certainly, i.e. the mappings f and h invert each other al-
most everywhere on the supports of W and Q. More, Q is
aligned with W by h: h(Q) = W .

The proof is given in the appendix.

Recall that theorem 2 establishes that the solution (saddle
point) of game (2) aligns distributions in the data space.
Then, following theorem 3, adding the latent space loss (4)
to the objective (2) is sufficient to ensure reciprocity.

2.3. Training AGE networks

Based on the theoretical analysis derived in the previous
subsections, we now suggest the approach to the joint train-
ing of the generator in the encoder within the AGE net-
works. As in the case of GAN training, we set up the learn-
ing process for an AGE network as a game with the iterative
updates over the parameters θ and ψ that are driven by the



Adversarial Generator-Encoder Networks

optimization of different objectives. In general, the opti-
mization process combines the maximin game for the func-
tional (2) with the optimization of the reciprocity losses (3)
and (4).

In particular, we use the following game objectives for the
generator and the encoder:

θ̂ = arg min
θ

(
V2(gθ, eψ̄) + λLZ(gθ, eψ̄))

)
, (5)

ψ̂ = arg max
ψ

(V2(gθ̄, eψ)− µLX (gθ̄, eψ))) , (6)

where ψ̄ and θ̄ denote the value of the encoder and genera-
tor parameters at the moment of the optimization and λ, µ
is a user-defined parameter. Note that both objectives (5),
(6) include only one of the reconstruction losses. Specifi-
cally the generator objective includes only the latent space
reconstruction loss. In the experiments, we found that the
omission of the other reconstruction loss (in the data space)
is important to avoid possible blurring of the generator out-
puts that is characteristic to autoencoders. Similarly to
GANs in (5), (6) we perform only several steps toward op-
timum at each iteration, thus alternating between generator
and encoder updates.

By maximizing the difference between ∆(eψ(gθ̄(Z))‖Z)
and ∆(eψ(X)‖Z), the optimization process (6) focuses on
the maximization of the mismatch between the real data
distribution X and the distribution of the samples from the
generator gθ̄(Z). Informally speaking, the optimization (6)
forces the encoder to find the mapping that aligns real data
distribution X with the target distribution Z, while map-
ping non-real (synthesized data) g(Z) away from Z. When
Z is a uniform distribution on a sphere, the goal of the en-
coder would be to uniformly spread the real data over the
sphere, while cramping as much of synthesized data as pos-
sible together assuring non-uniformity of the distribution
eψ
(
gθ̄(Z)

)
.

Any differences (misalignment) between the two distribu-
tions are thus amplified by the optimization process (6) and
forces the optimization process (5) to focus specifically on
removing these differences. Since the misalignment be-
tween X and g(Z) is measured after projecting the two
distributions into the latent space, the maximization of this
misalignment makes the encoder to compute features that
distinguish the two distributions.

3. Experiments
3.1. Implementation details

Network architectures: In our experiments the generator
and the encoder networks have a similar structure to the
generator and the discriminator in DCGAN (Radford et al.,
2015). As our encoder should produce a vector instead of
a single number we modify the DCGAN’s discriminator

accordingly, expanding the last layer output to M dimen-
sions. We also replace the sigmoid at the end with the nor-
malization layer which projects the points onto the sphere.

Divergence measure: We use the following expression to
measure the divergence between a distribution Q in the la-
tent space and the distribution Z (which is the uniform dis-
tribution on the M -dimensional sphere SM ):

∆(Q‖U(SM )) = KL(Q‖N (0, I))− C . (7)

Here,N (0, I) is the zero-mean unit-variance Gaussian dis-
tribution in the embedding space RM , and the constant C
equals C = KL(U(SM )‖N (0, I)). Since the uniform dis-
tribution on the sphere minimizes the KL-divergence with
the unit Gaussian out of all distributions on the sphere, the
expression (7) is valid (is non-negative, and equals zero
only for Q = Z).

To measure the value KL(Q‖N (0, I)) for a mini-batch
of examples, we used a parametric estimator, where a
Gaussian in the embedded space is fitted to the mini-
batch and the KL-divergence between Gaussians is com-
puted analytically. Having a set of M dimensional
samples qi∼Q, i = 1, . . . , N with a component-
wise mean m: mj = 1

N

∑N
i=1 qij and variance s:

sj = 1
N

∑N
i=1(qij −mj)

2, the KL-divergence is approxi-
mated with:

KL(Y ‖N (0, I)) ≈ −M
2

+

M∑
j=1

s2
j +m2

j

2
− log(sj) . (8)

We tried both the parametric version from above and the
non-parametric version based on Kozachenko-Leonenko
estimator (Kozachenko & Leonenko, 1987). Both versions
worked equally well, and we used a simpler parametric es-
timator in the presented experiments.

Controlling the training process: while training the mod-
els we ensure that the generator’s latent distribution stays
as close to uniform on the sphere as possible. It is easiest
to examine component-wise mean and variance of e(g(Z))
for that purpose, as the mean should stay close to zero while
variance should be approximately 1/dim(Z).

Hyper-parameters: We use ADAM (Kingma & Ba, 2014)
optimizer with the learning rate of 0.0002. We perform two
generator updates per one encoder update for all datasets.
For each dataset we tried λ ∈ {500, 1000, 2000} and
picked the best one. We ended up using µ = 10 for all
datasets. The dimensionality M of the latent space was
manually set according to the complexity of the dataset.
We thus used M = 10 for MNIST, M = 64 for CelebA
and SVHN datasets, and M = 128 for the most complex
datasets of Tiny ImageNet and CIFAR.



Adversarial Generator-Encoder Networks

(a) Real images. (b) Ours (samples). (c) Ours reconstructions. (d) ALI reconstructions.

Figure 4. Samples (b) and reconstructions (c) for Tiny ImageNet dataset (top) and SVHN dataset (bottom). The results of ALI (Du-
moulin et al., 2016) on the same datasets are shown in (d). In (c,d) odd columns show real examples and even columns show their
reconstructions. Qualitatively, our method seems to obtain more accurate reconstructions than ALI (Dumoulin et al., 2016), especially
on the Tiny ImageNet dataset, while having samples of similar visual quality.

(a) (b)

Figure 5. Real examples (a) and samples (b) from our model
trained on CelebA dataset.

Figure 6. Latent space interpolation between two images from
CelebA dataset. The original images are presented on the two
sides.

Following the best practices1 we construct different mini-
batches for the real and fake data, which improved conver-
gence.

Efficiency: For all datasets except Tiny ImageNet we train
our models for about two hours on TITAN X Maxwell GPU
while Tiny ImageNet model was trained for 6 hours. To the
best of our knowledge it is considerably faster than (Du-
moulin et al., 2016), which takes more than 8 hours to train
on CelebA database.

3.2. Results

To evaluate our model, we provide a large number of sam-
ples for different datasets. All samples were drawn ran-
domly (without replacement), while the results for (Du-
moulin et al., 2016) are either reproduced with their code
or copied from their paper.

We start by showing that the generated data distribution
becomes aligned with the data distribution by using the
proposed adversarial alignment procedure without the re-
construction losses. Figure 2 compares a DCGAN out-
put (Radford et al., 2015)2 to the proposed model trained

1https://github.com/soumith/ganhacks
2We used PyTorch implementation from https:

//github.com/pytorch/examples/tree/master/
dcgan

https://github.com/soumith/ganhacks
https://github.com/pytorch/examples/tree/master/dcgan
https://github.com/pytorch/examples/tree/master/dcgan
https://github.com/pytorch/examples/tree/master/dcgan


Adversarial Generator-Encoder Networks

Orig. AGE ALI VAE Orig. AGE ALI VAE Orig. AGE ALI VAE Orig. AGE ALI VAE

Figure 7. Reconstruction quality comparison of our method with ALI (Dumoulin et al., 2016) and VAE (Kingma & Welling, 2013).
The first column in each set shows examples from the test set of CelebA dataset. In the other columns the reconstructions for different
methods are presented: column two for ours method, three for ALI and four for VAE.

(a) (b)

(c)

Figure 8. Samples (a) and reconstructions (b) for the MNIST
dataset. In (b) odd columns show real examples and even columns
show their reconstructions. In (c) we show a simple example of
restoration with our model. The corrupted images (first row) are
mapped to the latent space by the encoder and are then decoded
with the generator (second row).

using adversarial distribution alignment loss alone. The
samples from our model turn out to be diverse and visu-
ally resemble DCGAN’s in quality and diversity. While the
samples are comparable, our model can be augmented with
the reconstruction enabling inference without harming the
generation quality Figure 2(d).

We further test the reconstruction capabilities of the model
on the standard datasets, presenting randomly sampled re-
construction examples alongside the results of (Dumoulin
et al., 2016) for some of the datasets. The follow-
ing datasets are considered: MNIST (LeCun & Cortes,
2010), CIFAR10 (Krizhevsky & Hinton, 2009), Tiny Ima-
geNet (Russakovsky et al., 2015), CelebA faces (Liu et al.,
2015), SVHN (Netzer et al., 2011) (Figures 3, 4, 8, 7, 5).
Since our model uses the reconstruction loss in the image
space we used holdout or test images for evaluation. We
observe that our model captures color and shape, while pre-
serving sharp edges. Similarly to (Dumoulin et al., 2016)
the person identity may be completely changed when re-
constructing CelebA samples, however overall our recon-
structions seem to have higher fidelity to the input than
in the case of (Dumoulin et al., 2016) across a number of
datasets. For the MNIST dataset in Figure 8, we show a
simple restoration example, which highlights the resilience
of the encoder to severe degradations.

As discussed above, the generator in our method is never



Adversarial Generator-Encoder Networks

supervised by the reconstruction loss (3), which is used
solely for the encoder updates. To demonstrate the effect of
the data reconstruction loss, we show the results obtained
with a model trained with this loss being used by the gen-
erator updates Figure 9. As expected, the reconstructions
become blurry, as if they were produced using (variational)
autoencoder.

Our model can be further validated for overfitting by ex-
amining walks in its latent space. We followed a stan-
dard approach sampling pairs of examples x1, x2 from a
CelebA holdout dataset and obtaining their latent represen-
tations z1 = e(x1), z2 = e(x2). We then move along
the sphere interpolating between the latent codes and de-
coding the resulting representations with the generator. We
observe (Figure 6) smooth interpolation with every inter-
mediate image being plausible, which can serve as an indi-
cator that the model does not suffer from strong overfitting
to the train set.

Semi-supervised learning: finally, similarly to (Dumoulin
et al., 2016; Donahue et al., 2016; Radford et al., 2015) we
investigated whether the learned features are useful for dis-
criminative tasks. We reproduced the evaluation pipeline
from (Dumoulin et al., 2016) for SVHN dataset and ob-
tained 23.7% error rate in the unsupervised feature learning
protocol with our model, while their result is 19.14%. At
the moment, it is unclear to us why AGE networks under-
perform ALI at this task.

4. Related work
As discussed in the introduction, joint learning of inference
and generation is a hot topic of research. The methods
that combine adversarial training with such simultaneous
training, include approaches adversarially learned infer-
ence (adversarial feature learning) (Dumoulin et al., 2016;
Donahue et al., 2016), the approach (Larsen et al., 2015),
and adversarial autoencoders (Makhzani et al., 2015). Ar-
guably, our approach has more similarity with (Dumoulin
et al., 2016; Donahue et al., 2016), as in their case, the
alignment involves the latent space distribution, and the
generators are also involved into the adversarial learning
game. Also, (Dumoulin et al., 2016) provides most exten-
sive evaluation for the image sampling and reconstruction
process, hence we make their method our main reference
for comparisons.

Perhaps, the main novelty of our architecture is the new
game objective for adversarial learning that is computed at
batch level (rather than for individual samples). Recently,
(Salimans et al., 2016) proposed to use batch-level informa-
tion for adversarial training was first proposed in to prevent
mode collapse. Their discriminator still performs individ-
ual sample classification, but admixes the descriptor based

Figure 9. While we do not use data space reconstruction loss (3)
to update generator during training, we found using it immedi-
ately leads to blurry, autoencoder-like results. These results are
presented at this figure: odd columns correspond to real images
and even to reconstructions.

on distances to other samples in the batch into the individ-
ual sample feature descriptor. Interestingly, our method can
also uses pairwise distances in a batch for the estimation of
the divergences.

Another avenue for improving the stability of GANs is
the replacement of the classifying discriminator with the
regression-based one as in energy-based GANs (Zhao et al.,
2016) and Wasserstein GANs (Arjovsky et al., 2017). Our
statistics (the divergence from the canonical distribution)
can be seen as a very special form of regression. In this
way, the encoder in our architecture can be seen as a dis-
criminator computing a single number similarly to how it
is done in (Zhao et al., 2016; Arjovsky et al., 2017).

5. Conclusion
We have introduced a new approach for simultaneous learn-
ing of generation and inference networks from unlabeled
data. Crucially, we have demonstrated how to set up such
learning as an adversarial game between generation and in-
ference, which has a different type of objective from tradi-
tional GAN approaches. In particular the objective of the
game considers divergences between distributions rather
than discrimination at the level of individual samples. As
a consequence, the game process is resilient to the collapse
of the generator (although its adversary, the encoder, can
collapse in some parts of the data space with low real data
probability).

We demonstrate that on a range of standard datasets, the
generators obtained by our approach provides high-quality
samples, and that the reconstrunctions of real data samples
passed subsequently through the encoder and the generator
are of better fidelity than in (Dumoulin et al., 2016).

Our approach leaves a lot of room for further experiments.
In particular, a more complex latent space distribution can
be chosen as in (Makhzani et al., 2015), and other diver-
gence measures between distributions can be easily tried.



Adversarial Generator-Encoder Networks

References
Arjovsky, Martı́n, Chintala, Soumith, and Bottou, Léon.

Wasserstein GAN. CoRR, abs/1701.07875, 2017.

Bengio, Yoshua. Learning deep architectures for AI. Foun-
dations and Trends in Machine Learning, 2(1):1–127,
2009.

Donahue, Jeff, Krähenbühl, Philipp, and Darrell, Trevor.
Adversarial feature learning. CoRR, abs/1605.09782,
2016.

Dumoulin, Vincent, Belghazi, Ishmael, Poole, Ben, Lamb,
Alex, Arjovsky, Martı́n, Mastropietro, Olivier, and
Courville, Aaron C. Adversarially learned inference.
CoRR, abs/1606.00704, 2016.

Goodfellow, Ian J. NIPS 2016 tutorial: Generative adver-
sarial networks. CoRR, abs/1701.00160, 2017. URL
http://arxiv.org/abs/1701.00160.

Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi,
Xu, Bing, Warde-Farley, David, Ozair, Sherjil,
Courville, Aaron C., and Bengio, Yoshua. Generative
adversarial nets. In Proc. NIPS, pp. 2672–2680, 2014.

Hornik, Kurt, Stinchcombe, Maxwell, and White,
Halbert. Multilayer feedforward networks are
universal approximators. Neural Networks, 2
(5):359 – 366, 1989. ISSN 0893-6080. doi:
http://dx.doi.org/10.1016/0893-6080(89)90020-8. URL
http://www.sciencedirect.com/science/
article/pii/0893608089900208.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

Kingma, Diederik P. and Welling, Max. Auto-encoding
variational bayes. CoRR, abs/1312.6114, 2013.

Kozachenko, L. F. and Leonenko, N. N. Sample estimate
of the entropy of a random vector. Probl. Inf. Transm.,
23(1-2):95–101, 1987.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple
layers of features from tiny images. 2009.

Larsen, Anders Boesen Lindbo, Sønderby, Søren Kaae,
and Winther, Ole. Autoencoding beyond pixels using a
learned similarity metric. CoRR, abs/1512.09300, 2015.

LeCun, Yann and Cortes, Corinna. MNIST handwritten
digit database. 2010. URL http://yann.lecun.
com/exdb/mnist/.

Liu, Ziwei, Luo, Ping, Wang, Xiaogang, and Tang, Xiaoou.
Deep learning face attributes in the wild. In ICCV, pp.
3730–3738. IEEE Computer Society, 2015.

Makhzani, Alireza, Shlens, Jonathon, Jaitly, Navdeep, and
Goodfellow, Ian J. Adversarial autoencoders. CoRR,
abs/1511.05644, 2015. URL http://arxiv.org/
abs/1511.05644.

Marzouk, Youssef, Moselhy, Tarek, Parno, Matthew, and
Spantini, Alessio. An introduction to sampling via mea-
sure transport. arXiv preprint arXiv:1602.05023, 2016.

Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco,
Alessandro, Wu, Bo, and Ng, Andrew Y. Reading digits
in natural images with unsupervised feature learning.
In NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning 2011, 2011. URL http:
//ufldl.stanford.edu/housenumbers/
nips2011_housenumbers.pdf.

Owen, G. Game Theory. Academic Press, 1982. ISBN
9780125311502. URL https://books.google.
ru/books?id=pusfAQAAIAAJ.

Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsu-
pervised representation learning with deep convolutional
generative adversarial networks. CoRR, abs/1511.06434,
2015.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wier-
stra, Daan. Stochastic backpropagation and approxi-
mate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan,
Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpa-
thy, Andrej, Khosla, Aditya, Bernstein, Michael S.,
Berg, Alexander C., and Li, Fei-Fei. Imagenet large
scale visual recognition challenge. International Jour-
nal of Computer Vision, 115(3):211–252, 2015.

Salimans, Tim, Goodfellow, Ian J., Zaremba, Wojciech,
Cheung, Vicki, Radford, Alec, and Chen, Xi. Improved
techniques for training gans. In Advances in Neural In-
formation Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain, pp. 2226–2234,
2016.

Villani, Cédric. Optimal transport: old and new, volume
338. Springer Science & Business Media, 2008.

Zhao, Junbo Jake, Mathieu, Michaël, and LeCun, Yann.
Energy-based generative adversarial network. CoRR,
abs/1609.03126, 2016. URL http://arxiv.org/
abs/1609.03126.

Zhu, Jun-Yan, Krähenbühl, Philipp, Shechtman, Eli, and
Efros, Alexei A. Generative visual manipulation on the
natural image manifold. In Proceedings of European
Conference on Computer Vision (ECCV), 2016.

http://arxiv.org/abs/1701.00160
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1511.05644
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://books.google.ru/books?id=pusfAQAAIAAJ
https://books.google.ru/books?id=pusfAQAAIAAJ
http://arxiv.org/abs/1609.03126
http://arxiv.org/abs/1609.03126


Adversarial Generator-Encoder Networks

A. Appendix
Let X and Z be distributions defined in the data and the
latent spaces X , Z correspondingly. We assume X and Z
are such, that there exists an invertible almost everywhere
function e which transforms the latent distribution into the
data one g(Z) = X . This assumption is weak, since for
every atomless (i.e. no single point carries a positive mass)
distributionsX , Z such invertible function exists. For a de-
tailed discussion on this topic please refer to (Villani, 2008;
Marzouk et al., 2016). Since Z is up to our choice simply
setting it to Gaussian distribution (forZ = RM ) or uniform
on sphere for (Z = SM ) is good enough.

Lemma A.1. Let X and Y to be two distributions defined
in the same space. The distributions are equal X = Y
if and only if e(X) = e(Y ) holds for for any measurable
function e : X → Z .

Proof. It is obvious, that if X = Y then e(X) = e(Y ) for
any measurable function e.

Now let e(X) = e(Y ) for any measurable e. To show that
X = Y we will assume converse: X 6= Y . Then there
exists a set B ∈ FX , such that 0 < PX(B) 6= PY (B)
and a function e, such that corresponding set C = e(B)
has B as its preimage B = e−1(C). Then we have
PX(B) = Pe(X)(C) = Pe(Y )(C) = PY (B), which con-
tradicts with the previous assumption.

Lemma A.2. Let (g′, e′) and (g∗, e∗) to be two differ-
ent Nash equilibria in a game ming maxe V (g, e). Then
V (g, e) = V (g′, e′).

Proof. See chapter 2 of (Owen, 1982).

Theorem 1. For a game

max
e

min
g
V1(g, e) = ∆( e(g(Z))‖e(X) ) (9)

(g∗, e∗) is a saddle point of (9) if and only if g∗ is such that
g∗(Z) = X .

Proof. First note that V1(g, e) ≥ 0. Consider g such that
g(Z) = X , then for any e: V1(g, e) = 0. We conclude that
(g, e) is a saddle point since V1(g, e) = 0 is a maximum
over e and minimum over g.

Using lemma A.2 for saddle point (g∗, e∗):
V1(g∗, e∗) = 0 = maxe V1(g∗, e), which is only possible
if for all e: V1(g∗, e) = 0 from which immediately follows
g(Z) = X by lemma A.1.

Lemma A.3. Let function e : X → Z be X-almost every-
where invertible, i.e. ∃e−1 : PX({x 6= e−1(e(x))}) = 0.
Then if for a mapping g : Z → X holds e(g(Z)) = e(X),
then g(Z) = X .

Proof. From definition of X-almost everywhere invertibil-
ity follows PX(A) = PX(e−1(e(A))) for any set A ∈ FX .
Then:

PX(A) = PX(e−1(e(A))) = Pe(X)(e(A)) =

= Pe(g(Z))(e(A)) = Pg(Z)(A).

Comparing the expressions on the sides we conclude
g(Z) = X .

Theorem 2. Let Y to be any fixed distribution in the latent
space. Consider a game

max
e

min
g
V2(g, e) = ∆(e(g(Z))‖Y )−∆(e(X)‖Y ) .

(10)

If the pair (g∗, e∗) is a Nash equilibrium of game (10) then
g∗(Z) ∼ X . Conversely, if the fake and real distributions
are aligned g∗(Z) ∼ X then (g∗, e∗) is a saddle point for
some e∗.

Proof.

• As for a generator which aligns distributions
g(Z) = X: V2(g, e) = 0 for any e we conclude by
A.2 that the optimal game value is V2(g∗, e∗) = 0.
For an optimal pair (g∗, e∗) and arbitrary e′ from the
definition of equilibrium:

0 = ∆(e∗(g∗(Z))‖Y )−∆(e∗(X)‖Y ) ≥
≥ ∆(e′(g∗(Z))‖Y )−∆(e′(X)‖Y ) .

(11)

For invertible almost everywhere encoder e′ such
that ∆(e′(X)‖Y ) = 0 the first term is zero
∆(e′(g∗(Z))‖Y ) = 0 since inequality (11) and then
e′(g∗(Z)) = e′(X) = Y . Using result of the lemma
A.3 we conclude, that g∗(Z) = X .

• If g∗(Z) = X then ∀e : e(g∗(Z)) = e(X) and
V2(g∗, e∗) = V2(g∗, e) = 0 = maxe′ V2(g∗, e′).

The corresponding optimal encoder e∗ is such that
g∗ ∈ arg ming ∆(e∗(g(Z))‖Y ).

Note that not for every optimal encoder e∗ the distributions
e∗(X) and e∗(g∗(Z)) are aligned with Y . For example
if e∗ collapses X into two points then for any distribu-
tion X: e∗(X) = e∗(g∗(Z)) = Bernoulli(p). For the
optimal generator g∗ the parameter p is such, that for all
other generators g′ such that e∗(g′(Z)) ∼ Bernoulli(p′):
∆(e∗(g∗(Z))‖Y ) ≤ ∆(e∗(g′(Z))‖Y ).



Adversarial Generator-Encoder Networks

Theorem 3. Let the two distributions W and Q be
aligned by the mapping f (i.e. f(W ) = Q) and let
Ew∼W ‖w − h

(
f(w)

)
‖2 = 0. Then, for w ∼ W and

q ∼ Q, we have w = h(f(w)) and q = f(h(q)) almost
certainly, i.e. the mappings f and h invert each other al-
most everywhere on the supports of W and Q. More, Q is
aligned with W by h: h(Q) = W .

Proof. Since Ew∼W ‖w − h
(
f(w)

)
‖2 = 0, we have

w = h(f(w)) almost certainly for w ∼W . We can substi-
tute h(f(w)) with w under an expectation over W . Using
this and the fact that f(w) ∼ Q for w ∼W we derive:

Eq∼Q‖q− f
(
h(q)

)
‖2 = Ew∼W ‖f(w)− f

(
h(f(w))

)
‖2 =

= Ew∼W ‖f(w)− f(w)‖2 = 0 .

Thus q = f(h(q)) almost certainly for q ∼ Q.

To show alignment h(Q) = W first recall the definition
of alignment. Distributions are aligned f(W ) = Q iff
∀Q̄ ∈ FQ: PQ(Q̄) = PW (f−1(Q̄)). Then ∀W̄ ∈ FW
we have

PW (W̄ ) = PW (h(f(W̄ ))) = PW (f−1(f(W̄ ))) =

= PQ(f(W̄ )) = PQ(h−1(W̄ )) .

Comparing the expressions on the sides we conclude
h(Q) = W .


