Improved Texture Networks: Maximizing Quality and Diversity in
Feed-forward Stylization and Texture Synthesis

Supplementary material

1 Implementation details

Stylization. The StyleNetV2 network is similar to one from Johnson et al. with all batch normalization layers replaced
with instance normalization. The network starts with 512 x 512 image and first pads it using reflection padding to have
592 x 592 resolution. The convolutions are not padded and residuals are added to center-cropped image (to match the
spatial dimensions of residuals) resulting in 512 x 512 output size. The style image is first scaled to 600 x 600 size before
passing through VGG-19 network.

We use Torch7 to implement the proposed method. We train stylization networks for 20000 iterations using Adam
optimizer with learning rate of 0.001, batch size of 3 to fit in the GPU memory. The training process takes about 4 hours
using NVIDIA TITAN X Maxwell.

Texture synthesis. The architecture of TextureNetV2 is presented in table 1. We use samples from uniform distribution
z ~ U(0, 1) as inputs to the generator network. We train it with Adam optimizer for 5000 iterations starting with learning
rate of 0.001 and lowering it down by a factor of 1.5 every 750 iterations. The batch size was set to 8 and image size to
256. The training takes no more than half an hour on NVIDIA TITAN X Maxwell.

Dim Layer

0 256 Input

1 256 Linear

2 256 Linear

3 16 x4x4 Reshape

4 128 x 8 x 8 FullConvolution 3 x 3 + BN + ReLU

5 128 x 16 x 16 FullConvolution 3 x 3 + BN + ReLU

6 128 x 32 x 32 FullConvolution 3 x 3 + BN + ReLU

7 64 x 64 x 64 | Bilinear UpSampling + Convolution 3 x 3 + BN + ReLU
8 | 32 x 128 x 128 | Bilinear UpSampling + Convolution 3 x 3 + BN + ReLU
9 | 3 x 256 x 256 | Bilinear UpSampling + Convolution 3 x 3 + BN + ReLU

Table 1: TextureNetV?2 architecture. The fully-connected layers at the start ensure huge receptive field.

o000 00O0COCS
00 00O OOS
o000 00O0OCO
o000 00O0OCO
o000 00O0COCS
00000 0O
o000 00OCOCS
o000 000G
o000 00O OO
o000 000G
o000 000G
o000 0O0OGOSS
o000 0O0OOOO
o000 000G
o000 0O0OGOS
o0 000000
0000000
o000 00O0OCO
o000 000G
o000 000 OO0
000000

°
°
°
°
°
°
°
°
A=

Input TextureNetV2

TextureNetV2 A > 0 (ours) TextureNetVl A =0

Figure 1: Additional examples for Fig.5 of the main paper.

= gym ES
i’ -
"! “ﬁw. ,_uﬁdg

W=

Wi

== 1

U= =00

=)zl =I=]).
T, *»TMEML
e

2

=0

= ==

W=t

W

TextureNetV2 A =0 TextureNetVZ A > 0 (ours) TextureNetVl A =0

Figure 2: Additional examples for Fig.5 of the main paper.

o\

(a) Content. (b) Ulyanov et al. , BN (c) Johnson et al. , BN

/

i
Wi

P

(d) Style. (e) Ulyanov ef al. , IN (f) Johnson ez al. , IN.

Figure 3: Qualitative comparison of generators proposed in Ulyanov ef al. and Johnson et al. with batch normalization
(BN) and instance normalization (IN). Both architectures benefit from instance normalization.

TS ' v i ,‘ahl!g, A, #
(c) Image size 512 x 512. (d) Image size 1080 x 1080.

Figure 4: Processing a content image with StyleNet IN at different resolutions: 512 (c) and 1080 (d).

Figure 5: Content images for next four figures.

Figure 6: StyleNet IN astylization examples, part 1. The content images are given in fig. 5. Style images are shown in the
first row. 6

kB

Figure 7: StyleNet IN astylization examples, part 2. The content images are given in fig. 5. Style images are shown in the
first row. 7

Figure 8: StyleNet IN astylization examples, part 3. The content images are given in fig. 5. Style images are shown in the
first row. 8

Figure 9: StyleNet IN astylization examples, part 4. The content images are given in fig. 5. Style images are shown in the

first row.

Figure 10: Style (left column) and three stylizations obtained with StyleNet IN trained with diversity loss.

10

Figure 11: An effect from concatenating noise to image. Left: content image, middle: stylization with generator whose
input is formed by concatenating content image and noise, right: use only content image as input. We observe that flat
regions are not stylized with ‘no noise* generator. Style image can be found in fig. 10.

11

