Improved Texture Networks: Maximizing Quality and Diversity in
Feed-forward Stylization and Texture Synthesis

Supplementary material

1 Implementation details

Stylization. The StyleNetV2 network is similar to one from Johnson et al. with all batch normalization layers replaced
with instance normalization. The network starts with 512 x 512 image and first pads it using reflection padding to have
592 x 592 resolution. The convolutions are not padded and residuals are added to center-cropped image (to match the
spatial dimensions of residuals) resulting in 512 x 512 output size. The style image is first scaled to 600 x 600 size before
passing through VGG-19 network.

We use Torch7 to implement the proposed method. We train stylization networks for 20000 iterations using Adam
optimizer with learning rate of 0.001, batch size of 3 to fit in the GPU memory. The training process takes about 4 hours
using NVIDIA TITAN X Maxwell.

Texture synthesis. The architecture of TextureNetV2 is presented in table 1. We use samples from uniform distribution
z ~ U(0, 1) as inputs to the generator network. We train it with Adam optimizer for 5000 iterations starting with learning
rate of 0.001 and lowering it down by a factor of 1.5 every 750 iterations. The batch size was set to 8 and image size to
256. The training takes no more than half an hour on NVIDIA TITAN X Maxwell.

# Dim Layer

0 256 Input

1 256 Linear

2 256 Linear

3 16 x4x4 Reshape

4 128 x 8 x 8 FullConvolution 3 x 3 + BN + ReLU

5 128 x 16 x 16 FullConvolution 3 x 3 + BN + ReLU

6 128 x 32 x 32 FullConvolution 3 x 3 + BN + ReLU

7 64 x 64 x 64 | Bilinear UpSampling + Convolution 3 x 3 + BN + ReLU
8 | 32 x 128 x 128 | Bilinear UpSampling + Convolution 3 x 3 + BN + ReLU
9 | 3 x 256 x 256 | Bilinear UpSampling + Convolution 3 x 3 + BN + ReLU

Table 1: TextureNetV?2 architecture. The fully-connected layers at the start ensure huge receptive field.
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Figure 1: Additional examples for Fig.5 of the main paper.



= gym ES
i’ -
"! “ﬁw. ,_uﬁdg

W=

Wi

== 1

U= =00

=)zl =I=]).
T, *»TMEML
e

2

=0

= ==

W=t

W

TextureNetV2 A =0 TextureNetVZ A > 0 (ours) TextureNetVl A =0

Figure 2: Additional examples for Fig.5 of the main paper.
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(a) Content. (b) Ulyanov et al. , BN (c) Johnson et al. , BN
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(d) Style. (e) Ulyanov ef al. , IN (f) Johnson ez al. , IN.

Figure 3: Qualitative comparison of generators proposed in Ulyanov ef al. and Johnson et al. with batch normalization
(BN) and instance normalization (IN). Both architectures benefit from instance normalization.
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(c) Image size 512 x 512. (d) Image size 1080 x 1080.

Figure 4: Processing a content image with StyleNet IN at different resolutions: 512 (c) and 1080 (d).

Figure 5: Content images for next four figures.



Figure 6: StyleNet IN astylization examples, part 1. The content images are given in fig. 5. Style images are shown in the
first row. 6
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Figure 7: StyleNet IN astylization examples, part 2. The content images are given in fig. 5. Style images are shown in the
first row. 7



Figure 8: StyleNet IN astylization examples, part 3. The content images are given in fig. 5. Style images are shown in the
first row. 8



Figure 9: StyleNet IN astylization examples, part 4. The content images are given in fig. 5. Style images are shown in the

first row.



Figure 10: Style (left column) and three stylizations obtained with StyleNet IN trained with diversity loss.

10



Figure 11: An effect from concatenating noise to image. Left: content image, middle: stylization with generator whose
input is formed by concatenating content image and noise, right: use only content image as input. We observe that flat
regions are not stylized with ‘no noise* generator. Style image can be found in fig. 10.
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