
Improved Texture Networks: Maximizing Quality and Diversity in
Feed-forward Stylization and Texture Synthesis

Supplementary material

1 Implementation details
Stylization. The StyleNetV2 network is similar to one from Johnson et al. with all batch normalization layers replaced
with instance normalization. The network starts with 512 × 512 image and first pads it using reflection padding to have
592 × 592 resolution. The convolutions are not padded and residuals are added to center-cropped image (to match the
spatial dimensions of residuals) resulting in 512×512 output size. The style image is first scaled to 600×600 size before
passing through VGG-19 network.

We use Torch7 to implement the proposed method. We train stylization networks for 20000 iterations using Adam
optimizer with learning rate of 0.001, batch size of 3 to fit in the GPU memory. The training process takes about 4 hours
using NVIDIA TITAN X Maxwell.

Texture synthesis. The architecture of TextureNetV2 is presented in table 1. We use samples from uniform distribution
z ∼ U(0, 1) as inputs to the generator network. We train it with Adam optimizer for 5000 iterations starting with learning
rate of 0.001 and lowering it down by a factor of 1.5 every 750 iterations. The batch size was set to 8 and image size to
256. The training takes no more than half an hour on NVIDIA TITAN X Maxwell.

Dim Layer
0 256 Input
1 256 Linear
2 256 Linear
3 16× 4× 4 Reshape
4 128× 8× 8 FullConvolution 3× 3 + BN + ReLU
5 128× 16× 16 FullConvolution 3× 3 + BN + ReLU
6 128× 32× 32 FullConvolution 3× 3 + BN + ReLU
7 64× 64× 64 Bilinear UpSampling + Convolution 3× 3 + BN + ReLU
8 32× 128× 128 Bilinear UpSampling + Convolution 3× 3 + BN + ReLU
9 3× 256× 256 Bilinear UpSampling + Convolution 3× 3 + BN + ReLU

Table 1: TextureNetV2 architecture. The fully-connected layers at the start ensure huge receptive field.

1

Input TextureNetV2 λ = 0 TextureNetV2 λ > 0 (ours) TextureNetV1 λ = 0

Figure 1: Additional examples for Fig.5 of the main paper.

2

Input TextureNetV2 λ = 0 TextureNetV2 λ > 0 (ours) TextureNetV1 λ = 0

Figure 2: Additional examples for Fig.5 of the main paper.

3

(a) Content. (b) Ulyanov et al. , BN (c) Johnson et al. , BN

(d) Style. (e) Ulyanov et al. , IN (f) Johnson et al. , IN.

Figure 3: Qualitative comparison of generators proposed in Ulyanov et al. and Johnson et al. with batch normalization
(BN) and instance normalization (IN). Both architectures benefit from instance normalization.

4

(a) Content. (b) Style.

(c) Image size 512× 512. (d) Image size 1080× 1080.

Figure 4: Processing a content image with StyleNet IN at different resolutions: 512 (c) and 1080 (d).

Figure 5: Content images for next four figures.

5

Figure 6: StyleNet IN astylization examples, part 1. The content images are given in fig. 5. Style images are shown in the
first row. 6

Figure 7: StyleNet IN astylization examples, part 2. The content images are given in fig. 5. Style images are shown in the
first row. 7

Figure 8: StyleNet IN astylization examples, part 3. The content images are given in fig. 5. Style images are shown in the
first row. 8

Figure 9: StyleNet IN astylization examples, part 4. The content images are given in fig. 5. Style images are shown in the
first row. 9

Figure 10: Style (left column) and three stylizations obtained with StyleNet IN trained with diversity loss.

10

Figure 11: An effect from concatenating noise to image. Left: content image, middle: stylization with generator whose
input is formed by concatenating content image and noise, right: use only content image as input. We observe that flat
regions are not stylized with ‘no noise‘ generator. Style image can be found in fig. 10.

11

