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Abstract—We propose a new method for strain field estima-

tion in quasi-static ultrasound elastography based on matching

radio frequency (RF) data frames of compressed tissues. The

method benefits from using a handheld force-controlled ultra-

sound probe, which provides the contact force magnitude and

therefore improves repeatability of displacement field estimation.

The displacement field is estimated in a two-phase manner

using triplets of RF data frames consisting of a pre-compression

image and two post-compression images obtained with lower

and higher compression ratios. First, a reliable displacement

field estimate is calculated for the first post-compression frame.

Second, we use this displacement estimate to warp the second

post-compression frame while using linear elasticity to obtain an

initial approximation. Final displacement estimation is refined

using the warped image. The two-phase displacement estimation

allows for higher compression ratios, thus increasing the practical

resolution of the strain estimates. The strain field is computed

from a displacement field using a smoothness-regularized energy

functional, which takes into consideration local displacement esti-

mation quality. The minimization is performed using an efficient

primal-dual hybrid gradient algorithm, which can leverage a

graphical processing unit’s (GPU) architecture. The method is

quantitatively evaluated using finite element (FE) simulations.

We compute strain estimates for tissue-mimicking phantoms

with known elastic properties and finally perform a qualitative

validation using in-vivo patient data.

I. INTRODUCTION

Ultrasound elastography is a technique that estimates the
elastic properties of human tissue based on ultrasound imagery.
This paper is focused on quasi-static elastography and targets
tissue strain reconstruction from a sequence of radio frequency
(RF) data frames.

Generally, there are many different elastography modali-
ties. Common techniques include shear wave elastography,
compression-based strain elastography, and compression-based
quantitative elastography. Strain-based elastography offers ad-
vantages over shear wave elastography. For example, while
shear wave elastography is computationally cheap, shear waves
attenuate significantly in fluids. Thus, shear wave elastography
is inaccurate near fluids, such as blood in an artery. The
method presented in this paper has the advantage that it can
be used even on tissue that appears to be under an artery in an
ultrasound image. Further, the method presented in this paper is
applicable to every existing 1D ultrasound probe; these probes
are common, even in low-budget, underdeveloped areas of the
world. Shear wave elastography requires a different imager and
thus is less easily adoptable throughout the world.

Many compression-based quantitative elastography methods
depend on an excellent estimation of strain in order to obtain

an accurate elastogram. Thus, while the method presented
in this paper can be used for qualitative strain elastography,
the method can also be used to increase the accuracy of the
existing quantitative techniques.

Despite the fact that some elastography techniques are
commercially available, there is significant room for improve-
ment. Given the potential world-wide adoptability of strain-
based elastography, there is a need for improving the imaging
quality and the reproducibility of strain elastography via new
acquisition principles, new hardware designs, and via better
image reconstruction algorithms.

Here, we describe a new strain elastography method that
improves conventional strain elastography in a number of
ways. The main improvement is obtained via the use of the
triplets of RF frames with known ratio of compression levels
(as opposed to pairs of frames matched by the majority of
the proposed methods). The compression ratios are obtained
using a force-controlled ultrasound probe as proposed in [1],
[2]. Such probes were recently created to increase control of
the imaging process. This has particular benefits for elastogra-
phy imaging, which is more operator-dependent compared to
ultrasound imaging. The probe used in our experiments can
apply a prescribed contact force magnitude, and furthermore
can maintain a graduated force range during the acquisition of
image sequences. This hardware setup naturally suggests the
development of multi-frame elastography algorithms employ-
ing contact force values to improve the quality of strain estima-
tion. Alternatively, our approach can be applied to RF triplets
obtained with a conventional non-force-controlled probe, in
which case the force ratio can be estimated algorithmically.
This scenario however requires additional processing time, and
generally makes the success of the approach more dependent
on the operator.

As a part of our approach, we propose a strain reconstruction
algorithm that processes the acquired triplets of RF frames.
During the first stage, the algorithm uses a pair of frames with
small relative deformation to estimate a coarse displacement
field. This displacement field is magnified according to the
estimated force ratio, and is used as an initialization for the
second stage that considers a pair of frames that exhibit larger
relative deformation. This second pass of the algorithm relies
on a new formulation of the functional for strain estimation that
imposes total variation (TV) regularization on the estimated
strain fields and permits graphical processing units (GPU)-
accelerated primal-dual optimization.

We evaluate the proposed approach in the series of exper-
iments with synthetic phantoms, for which the ground truth
displacement fields can be estimated with high accuracy using
finite-element (FE) modeling. We also consider experimental
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gelatin-agar phantoms with known geometry. Based on the ex-
periments, we conclude that our method can compute smooth
strain estimates for up to two times higher tissue compression
ratios compared to the two-frame algorithm leading to an
increase in the spatial resolution. The results are supported
by in-vivo human tissue experiments, which demonstrate that
the method can resolve additional features within the obtained
strain fields, as the application of a greater contact is enabled
by the proposed method. Our results further justify the use
of force-controlled ultrasound probes and demonstrate their
particular utility for strain elastography.

II. BACKGROUND

Most existing methods estimate the strain by computing
the spatial derivatives of the displacements between a pair of
ultrasound frames with different compression levels. A number
of approaches [3], [4] estimate the displacements based on
cross-correlation block matching. In the absence of regulariza-
tion, such methods usually produce noisy displacement fields.
Significant improvement of the block matching algorithm were
proposed in [5] by combining several techniques including
quality determined search, automatic search range and adaptive
block size.

Several published methods are based on discrete optimiza-
tion, where objective functions combine a data fidelity term
with a first-order displacement continuity prior. For example,
the method introduced in [6] is based on a functional with a
first-order smoothness term that is minimized using dynamic
programming (DP). The bias towards constant strain intro-
duced by the binary smoothness term is eliminated by using
refinement based on continuous optimization; however, the
method assumes a limited magnitude of lateral displacements
as a result of using a greedy strategy for lateral displacement
search. Another representative work [7] uses a multi-scale iter-
ative conditional mode (ICM) algorithm to minimize a similar
functional that incorporates a first-order spatial smoothness
prior on the displacement field. The method converges to
a local minimum, and therefore the result depends on the
quality of initial estimate obtained by the unregularized coarse-
scale search. For large compression levels, in our experience,
the method is likely either to find an overly smooth local
minimum that misses important details or to diverge (i.e.
to find a highly non-smooth minimum) as the coarse-to-fine
optimization progresses.

To provide clinically-useful visualization, one has to turn an
estimated displacement field into a strain field, which requires
computing the gradient of noisy data. A classical approach
is to use least-squares robust fitting as proposed in [8]. A
comprehensive overview of existing strain estimation methods
is given in [9] and includes several methods using spline
fitting and wavelet denoising for computing robust derivative
[10], [11]. Strain estimation can also be formulated as an
inverse problem where an anti-differentiation operator is used
to describe the relation between the displacement estimation
and a regularized strain field [12]. Another family of robust
methods estimate strain as a local compression rate and employ
a normalized-cross correlation (NCC) search in the frequency
domain to reduce the computational complexity [13].

The most challenging task in strain estimation is thus to
find a natural, but sufficiently smooth approximation to the
displacement field between two RF data frames. In many
cases, ultrasound images contain significant noise level so that
the conventional block-matching search algorithms are likely
to produce noisy displacement estimates. The quality of the
estimates highly depends on the complexity of tissue structures
and the degree of compression. In practice, it is very hard
to find reliable displacement estimates for most real tissues
undergoing 2-3% compression unless special techniques are
introduced. However, higher compression ratios up to 5% lead
to emergence of additional features in the strain images and
therefore provide greater diagnostic capabilities.

Most of the methods aiming for motion tracking for high
compression rates introduce a spatial smoothness prior for the
displacement field [7], [14]. Thus, the trade-off between the
spatial smoothness and physical relevance of the solutions is
introduced. In a number of cases it is only possible to find
a smooth displacement field at the cost of introducing over-
smoothed non-physical solutions that are favourable for visual
inspection, but may neglect important tissue structures or even
contain information that is not actually represented in the real
tissue.

Arguably, the most promising way to compute a reliable
displacement estimate for higher compression rates is to warp
RF data frames using some smooth initial displacement esti-
mate thus effectively decreasing the compression ratio before
an attempt to use a displacement estimation algorithm. This
technique has been used under the name companding in order
to introduce a two-step coarse-to-fine displacement search
algorithm for two-frame elastography [15]. A related approach
benefits from RF data warping by computing a robust strain
estimate directly as a local compression rate [13]. A coarse
initial displacement estimate is used for warping.

It is possible, however, to improve the quality of the dis-
placement estimation by using more than two images. In [16]
a sequence of RF data frames is used for strain estimation.
Consecutive realignment of the displacement field maintains
a reliable displacement estimate while gradually progressing
from small to large compression rate. Another approach is
to employ three frames and using linear elasticity for an
initial approximation while softly penalising deviations from
linear elasticity using a first-order smoothness prior [14].
However, the explicit bias towards the linear solution might
be undesirable for clinical applications, and is avoided in our
approach that instead uses the linear elasticity assumption
solely for the initialization and for limiting the search range,
while avoiding any explicit biases within the search range.

III. DISPLACEMENT ESTIMATION

There are several main sources of nonlinearity between
contact force and strain in quasi-static elastography. The first is
mechanical i.e. the fact that the strain is underestimated in most
tissues if linear elasticity is assumed. The presence of pressure
sources such as blood vessels and arterial walls represents
another source of non-linearity. Finally, the operator dependent
application of the contact force including spontaneous rotation
and out-of-plane motion of the ultrasound probe often lead to
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non-trivial deformations even for smaller compression rates.
The above-mentioned considerations suggest the development
of a new algorithm that benefits from assuming linear elasticity,
but considers it only as an initial approximation and therefore
has the potential to handle more sophisticated spatial strain
dependencies and motion patterns.

We start the discussion of the algorithm by introducing the
notation. We assume a triplet of RF data frames {I0, I1, I2}
is given. Each data frame has m signals sampled at n points,
i.e. it can be regarded as an m⇥n image. Each pair of RF
frames can be related by a displacement field d(p) = d(x, y) =

(d

a

(x, y), d

l

(x, y)) assigning a 2D displacement field to each
pixel p = (x, y) of the first frame. Thus, it is assumed that
the pixel p in the first frame is matched to the pixel p�d(p)

in the second frame. Here, d
a

and d

l

denote the axial and the
lateral components of the displacement respectively. Our final
goal, however, is to reconstruct a smooth estimate for the in-
plane normal strain field s(x, y) = (s

a

(x, y), s

l

(x, y)). We do
not estimate shear strains and out-of-plane normal strains. The
relation between the two fields of interest is discussed below.

For each post-compression RF data frame, we search for the
values of the displacement vector within a discrete configura-
tion set ⇤ (search window) that is defined for each image as
follows:

⇤ = {0, . . . ,+D

a

}⇥ {�D

l

, . . . ,+D

l

} . (1)

Here D

a

and D

l

are the maximum authorized values of dis-
placement in the axial and in the lateral direction respectively.

We start our algorithm by computing a reliable displacement
field estimate for moderate compression ratio of approximately
1%. A standard block matching architecture followed by the
median filter is used (the median filter step is needed in
order to eliminate spurious matches). The force magnitude
is chosen so that a smooth displacement estimate with the
minimal amount of outliers is produced. Overall, the first block
matching procedure can be summarized with an equation:

d

coarse

= BlockMatch(I0, I1) , (2)

where BlockMatch denotes the block matching displacement
estimation algorithm which takes a pair of RF data frames (pre-
compression and post-compression) as an input and produces
a 2D displacement field as an output, and d

coarse

denotes the
displacement field estimated for the (I0, I1) RF image pair.

As the ultrasound probe we use provides the contact force
values on the fly, we multiply the first displacement estimate
by a value, given by a relative force corresponding to the
compression ratio of the remaining RF image I2 (typically
2-3% percent of compression). Thus we obtain an initial
displacement estimate for the (I0, I2) image pair as f2

f1
d

coarse

.
We then use the obtained estimate to warp the RF data frame
of I2.

Finally, we run the displacement search between I0

and the warped version of I2, which we denote as
Warp(I2,

f2

f1
d

coarse

). Here, we once again use a simple block
matching, but with a very narrow search range. Limiting the
range of the search in this case reduces the probability of
making spurious matches considerably. Overall, the second
matching can be summarized by the following equation:

d

local

= BlockMatch

✓
I0, Warp(I2,

f2

f1
d

coarse

)

◆
(3)

Given d

coarse

and d

local

, the displacement field between I0

and I2 can be estimated using a simple sum:

d

total

=

f2

f1
d

coarse

+ d

local

(4)

The total displacement is given as an input for the strain
estimation algorithm.

In the block matching computations, we use the sum of
squared differences (SSD) as a similarity measure for the
block-matching search. As an additional information that is
passed to the strain estimation, we find the block-matching
quality measure q

ij

that is computed for each pixel after the
displacement field estimation as the normalized SSD difference
measure for the corresponding patches of RF data frames.

Once again, note that we use the linear elasticity assumption
only as an initial approximation as opposed to [14]. We allow
limited deviations from the linear elasticity model, and do not
penalize such deviation.

IV. STRAIN ESTIMATION
A. Energy functional.

One of the challenges of the ultrasound elastography is to
compute a tissue strain estimate given the displacement field
value. The displacement estimation often suffers from high
noise level and significant amount of outliers disabling direct
usage of conventional gradient-based techniques for numerical
differentiation. Although this topic was a subject for extensive
research, there is still a room for adoption of recent advances
in image denoising and inverse problems [17], [18], [19], [20]
which is one of the focuses of this paper.

Since ultrasound images have poor lateral resolution, we do
not perform lateral strain estimation. Following [9] we treat
the axial strain estimation as the inverse problem and consider
the energy functional of the form:

E(s) = ||As� d

a

||+ �⇢(s) (5)

where s is the smooth estimate of the axial strain, ⇢(s) is a
regularization term and � is a regularization parameter. In the
simplest case, the strain field thus equals the spatial derivative
of the displacement field. However, in the presence of noise, a
more numerically stable alternative for this formula is needed.
Towards this end, one can relate the axial strain field to the
axial displacement field using the spatial integration operator
A i.e. the prefix sum along each vertical line:

As+ d

a

(0) =

Z
L

0
s(x)dx+ d

a

(0) = d(L) (6)

Given the fixed displacement estimate, the energy minimiza-
tion over the strain variables is a convex optimization problem,
which yields a global minimum. The quality of the solution
typically depends on the choice of the smoothness prior.



4

 

 

0

5

10

15

20

25

30

35

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.2

0.4

0.6

0.8

1

Displacement field Block matching quality Poorly matched pixels

Fig. 1. Example of SSD block matching quality field computed for human liver tissue (an example provided by the authors of [14]).

We observed that in many cases, estimated displacement
fields still exhibit gross errors, especially at the tissue bound-
aries. Even a small patch of erroneously estimated displace-
ments can result in an incorrect and highly discontinuous strain
estimation. Fortunately, the regions where gross matching mis-
takes are likely to be reflected on the SSD score map q

ij

(see
Figure 1). This allows to discard the matches and reconstruct
strain values in the regions with high SSD score using the
smoothness prior only. We show the example of the SSD
score map aligned with the corresponding binary mask and
the axial displacement field (figure 1). In order to incorporate
this information into the energy functional, we introduce the
diagonal matrix D = diag(w) which discriminates the regions
with high normalized-SSD matching score:

E(s) = ||D(As� d

a

)||+ �⇢(s) (7)

The cost of the evaluation of the product As within (7)
may be excessive since the matrix A has many (about a half
of) non-zero entries. Since the strain estimation is local in its
nature, the computational overhead of the strain integration can
be potentially reduced by limiting the integration interval to
some neighbourhood of the current sample. In our experience,
visually indistinguishable results are obtained for the strain
field if a vertical 100-sample neighbourhood is used and a
finite-difference operator with the same interval is applied to
the axial displacement field prior. However, since optimized
parallel versions for the prefix sum (cumsum) described in the
next section are provided, we keep the original formulation for
the sake of simplicity.

We use a binary weight w for each pixel based on the
thresholded score q

ij

in order to separate the regions of
presumably low and high confidence of the match:

w

ij

=

⇢
1 q

ij

< t

0 otherwise
(8)

Thus, the regions with w

ij

= 0 correspond to pixels,
where the estimated displacement is deemed unreliable, and
where smoothness-based interpolation is used during the strain
reconstruction.

B. Regularization.
Quadratic smoothness prior. One of the conventional

ways to enforce smoothness of the strain field is to explicitly
penalize its spatial variations:

E(s) = ||D(As� d

a

)||2 +
Z �

↵[D

x

s]

2
+ [D

y

s]

2
�
, (9)

where D

x

and D

y

are the first order finite difference operators
for the corresponding coordinate axes. Since the physical
dimensions of each sample in an RF data frame vary by an
order of magnitude for axial and lateral components, we intro-
duce the coefficient ↵ in order to equally penalize the spatial
variations in each direction. The functional is minimized using
the least squares method, which is performed by solving a
sparse linear system.

Anisotropic TV prior. The well-known problem with the
quadratic smoothness prior is the associated blurring of the
boundaries, and Total Variation (TV) regularization is a popu-
lar alternative addressing this problem [21]. When considering
the anisotropic TV-norm as a regularization of choice for the
problem, the energy equals to:

E(s) = ||D(As� d

a

)||2 + �TV

↵

(s) (10)

where the second term is expressed as:

TV

↵

(s) =

Z q
↵[D

x

s]

2
+ [D

y

s]

2 (11)

Using TV-prior allows the preservation of discontinuities
on the boundary between hard and soft tissues. As efficient
primal-dual methods were introduced for the Rudin-Osher-
Fatemi (ROF) model [21], we consider the TV-L2 functional
as a good choice due to faster implementations compared to
affine-preserving generalization of TV introduced in [17], [19].

The dual version of the anisotropic TV-norm is introduced
as follows:

TV

↵

(u) = sup{
Z

u div
↵

v, ||v||1  1} (12)

We then use the anisotropic versions of conjugate divergence
and gradient operators

div
↵

v = ↵

@v1

@x1
+

@v2

@x2
(13)
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r
↵

v =

✓
↵

@v1

@x1
,

@v2

@x2

◆
(14)

These operators are chosen to be adjoint to each other, i.e.
:

( div
↵

)

⇤
= �r

↵

(15)

C. Optimization.
Following [18] we employ the primal-dual algorithm to our

minimization problem. We omit the diagonal matrix D for
the sake of simplicity and rewrite the energy expression as a
convex-concave saddle-point problem:

min

s2S

max

p2P,r2R

hrs, pi+ hAs� d, ri � �

2

||r||22 (16)

Where p and r are the dual variables with respect to s and
the residual (As � d) respectively. The unit balls P and R

associated with these variables, e.g..:

P = {p 2 C

2mn

, ||p||1  1} (17)

We also define the following proximal map:

prox�

2 (r̃) = argmin

r2R

||r � r̃||22
2�

+

�

2

||r||22 =

r̃

1 + ��

(18)

The minimization is performed as follows:

s = 0, p = 0, r = 0, choose ⌧,� > 0 (19)

The update rules [19] in every iteration are given by:

p = proj
P

(p+ �rs) (20)

r = prox�

2 (r + �(As� d)) (21)

s = s+ ⌧(divp�A

⇤
r) (22)

We repeat the procedure until convergence of s. The optimal
choice of the step-size is of great importance for numerical per-
formance of the algorithm. We adopted the strategy described
in [20] and use the rules for computing ⌧ and � for the iteration
n:

�

n

= 0.2 + 0.08n (23)

⌧

n

=

✓
0.5� 5.0

15.0 + n

◆
(24)

It is necessary to use consistent discretizations for the
gradient and divergence operators [17]. We use the following
definition based on the first-order finite differences:

divv = �

x+v1 + �

y+v2 (25)

ru = (�

x�u1, �y�u2) (26)

where the �

x+, �y+ and �

x�, �y� correspond respectively to
the forward and the backward finite-difference operators.

force force relative error
(direct measurement) (indirect measurement)

1.61 1.51 6%
1.68 1.68 0%
1.75 1.86 6%
1.75 1.84 5%
1.80 1.90 6%
1.86 1.76 5%
2.36 2.21 6%

TABLE I. INDIRECT FORCE MEASUREMENT ERROR. THE TABLE
SHOWS COMPARISON OF THE FORCE VALUES OBTAINED IN TWO

DIFFERENT WAYS: THE FIRST COLUMN CONTAINS VALUES PROVIDED THE
FORCE-CONTROLLED PROBE WHEREAS THE SECOND COLUMN CONTAINS
THE ALGORITHMICALLY OBTAINED ESTIMATION. THE RESULTS SUGGEST
AVERAGE 5% ERROR FOR THE ESTIMATED FORCE VALUES CONSIDERING

THE PROBE-PROVIDED VALUES AS REFERENCE.

D. GPU implementation.
The primal-dual algorithm described in the previous section

can be parallelized at the pixel-wise level, since most of the
operations only need the values of the neighbouring pixels
in every iteration. Such algorithms are naturally mapped to
data-parallel GPU architectures that support SIMD (single-
instruction, multiple data) instructions.

Active use of the local memory is among the most important
aspects of the parallel implementation. We developed our own
efficient kernel for dual update that loads small patches of the
frame into local memory, performs one iteration and writes the
patch to the global memory. Fast access to the local memory
is performed block-wise in each iteration.

The bottleneck part of our GPU implementation is the
computation of the prefix sums. The product performed within
the update in (21) is simply computed column-wise whereas
update in (22) requires computing the product with the trans-
posed matrix of this operation. Such an operation is computed
within three steps. The image is flipped vertically, then the
column-wise prefix sum is computed for each vertical column
and finally the product is flipped vertically once again. We
use an optimised implementation of the prefix sum and flip
operations provided by NVIDIA Thrust library [22] to
perform the operation in three steps. Data parallel versions
of floating point vectors from the library are used to compute
pixel-wise linear combinations in the updates in (21) and (22).

The energy computation requires performing parallel gather
operations constituting significant computational burden for
GPU architectures. Therefore it is beneficial to compute energy
only once in 100 iterations reducing the total time required for
practical convergence.

V. EXPERIMENTAL VALIDATION

Below we are reporting the quantitative and the qualitative
performance of the methods in a range of experiments span-
ning from the fully synthetic experiments with known ground
truth to in vivo data, for which only qualitative assessment
is possible. Generally, we restrict our comparison to the axial
strain maps, which have the largest diagnostic value.

Compared methods. In the following section, we compare
five methods. Four of them can be seen as variations of our
approach. They correspond to two types of smoothness priors
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(quadratic and TV) and two types of input data (triplets vs.
pairs). Given a pair of RF images as an input, we simply run
the block matching algorithm discussed above and then use
the obtained displacement map to estimate the strain field (i.e.
we follow the standard pipeline used in a number of previous
approaches [13], [23], [6]).

To compare with the method that is not based on block
matching, we also evaluated a strong baseline based on esti-
mating displacement field using dynamic programming (DP)
and then applying TV-regularized smoothing to its derivative.
The method is therefore similar to several previous works [24],
[25], [6]. While implementing this baseline method, we made
an effort to tune all parameters to obtain optimally looking
results on the test data.

We now discuss the experimental data and protocols, as well
as the obtained results.

Indirect contact force measurement. In general, our
method is applicable for any freehand scans unless signifi-
cant probe rotation is introduced. We conducted a series of
experiments in which we measure the relative value of the
contact force directly and algorithmically. For the purpose
of the latter we find the noisy axial displacement estimate
for eight post-compression frames relative to the same pre-
compression frame. We consider the axial displacement for
the least compressed frame as a unit displacement. The ratio of
each of the seven remaining post-compression frames relative
to the unit value is computed for each pixel. Finally the median
value of the ratio is reported as the force value measured
indirectly. Table I contains values of forces measured directly
and algorithmically compared to each other for a series of 8
scans of a real gelatin-agar phantom.

The relative error introduced by the indirect force measure-
ment is 5% according to our experiments whereas the relative
error for the physical force measurement is reported to be
in the range of 2%. Thus, our method can be used for free-
hand scanning, however the search range for the second block-
matching phase has to be extended, which potentially leads
to the increase in the number of outliers and the decrease in
the quality of the strain estimation. The total computational
complexity of the method in this scenario also increases since
the additional displacement search phase is introduced.

Synthetic phantom experiment.

The commercially available finite element program Abaqus
(Dassault Systmes, France) estimates the displacement fields
corresponding to progressively increasing compression levels
(up to 5 % compression in the axial direction).

In the finite element model, the material is linear elastic
with a Poisson ratio of 0.495. A 2D formulation is used and
the mesh consists of 4-node quadrilateral elements. This paper
uses the common assumption in the elastography literature that
the plane strain assumption is valid. The assumption assumes
that the loading is chiefly within the plane of interest, which
is likely to be approximately accurate because the operator is
pushing vertically. We ignore out of plane forces and torques
applied by the ultrasound probe on the skin surface. The
assumption, as used by many in the literature, also assumes
that out of plane strains are negligibly small. The finite element
analysis uses a large deformation formulation so that the

displacements are not limited to be infinitesimal. Equivalently,
the formulation is geometrically non-linear.

In the finite element analysis, a 63.5 mm (horizontal dimen-
sion) by 48.75 mm (vertical dimension) phantom is simulated.
A vertical displacement is applied at the bottom of the phan-
tom. The nodes on the bottom of the phantom are enforced
to be zero in the horizontal dimension. A stationary, rigid, 40
mm long ultrasound probe is centered upon and touches the
top of the phantom. The center top node is constrained in both
dimensions, while the nodes touching the probe are allowed to
move horizontally. The nodes on the top of the phantom that
are not touching the probe are free. The left and right sides
of the phantom are free. No forcing is applied in the finite
element model; the source of deformation is the prescribed
displacement described above. The resulting deformation is
such that the tissue near the ultrasound probe does not move
vertically, and the tissue at the bottom of the phantom has the
largest displacement; this is consistent with how an ultrasound
image appears while a tissue is compressed.

In this experiment, we use a virtual phantom with six stiff
inclusions of diameter 6, 4, 2, 1, 0.5, and 0.25 mm placed
on an axes that was parallel to the ultrasound beam and the
compression direction. In the six inclusion phantom, the inclu-
sions have an elastic modulus of 30 kPa and the background
material has an elastic modulus of 15 kPa. The nature of
vertically aligned inclusions dictates that each inclusion will
see a different amount of displacement. For the normal strains
considered here, the axial strain can be thought of as the
derivative of axial displacement in the axial direction. For
this reason, the strain encountered by each inclusion should
be similar. These displacement fields (and the corresponding
strain maps obtained by differentiation) serve as the ground
truth in our experiment. Using the virtual phantom and the
obtained displacement fields, we use a popular ultrasound
image simulation software Field-II [26], [27] to obtain a
simulated RF data frames of resolution 3400⇥ 128.

As one of the target applications in elastography is tumour
detection, we measure the suitability of the obtained strain
maps for tumour delineation. To measure such suitability, we
consider the simplest segmentation algorithm i.e. thresholding,
in order to extract the regions of low strain that potentially rep-
resent hard inclusions. Following the thresholding, a connected
component that has the largest overlap with the ground truth
tumour shape is considered, and the standard Jaccard similarity
measure between the ground truth shape and the shape of the
picked connected component is evaluated:

J(A,B) =

|A \B|
|A [B|

Since only the largest three inclusions are detected by the
considered methods, we report the three Jaccard indices corre-
sponding to the those three inclusions (Table II). The optimal
threshold value is chosen independently for each method and
for each of the inclusions (to maximize the Jaccard measure).
The segmentation results for the synthetic phantom are shown
in figure 3. After experimenting with different compression
levels, we found that for the methods based on pairs of frame,
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Fig. 2. Strain estimation for the virtual phantom with hard spherical 6 inclusions: (a) ground truth, (b) quadratic smoothness prior (2 frames), (c) quadratic
smoothness prior (3 frames), (d) TV prior (2 frames), (e) TV prior (3 frames), (f) DP baseline. The strain profiles demonstrate benefit of using triplet-based
displacement estimation algorithm. The proposed method demonstrates better performance compared to DP baseline when using both variants of the smoothness
prior.
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Method 6 mm 4 mm 2 mm
DP baseline 81.1% 66.2% 57.0%
TV prior (2 frames) 77.7% 77.8% 84.0%
TV prior (3 frames) 80.4% 81.4% 86.0%
quadratic smoothness prior (2 frames) 78.5% 75.5% 69.9%
quadratic smoothness prior (3 frames) 80.9% 78.5% 87.2%

TABLE II. JACCARD INDEX FOR THREE HARD INCLUSIONS.
TRIPLET-BASED MATCHING GIVES SUPERIOR RESULTS.

compressing the second frame by 1% is nearly optimal, while
for triplet-based estimation we further added a third frame
compressed by 3%.

The results suggest that the triplet-based estimation outper-
forms the pair-based estimation and the DP baseline (figure 2).
Thus, the results are improved when more distant frames (3%
compression ratio) are considered and effectively matched.

Set of synthetic phantoms with random geometry As
human tissue exhibits a layered structure (e.g. layers of muscle,
fat or skin), one of the important aspect of elastography
methods is to detect tumours, i.e. soft and hard inclusions,
located within layers of different stiffness or on the boundary
between two layers. In order to measure relative performance
of the considered methods, we simulated a set of 7 phantoms
with 4 circular inclusions each (three are shown on figure 4).

Each layer has a random thickness, constrained in a 44.45
mm height phantom. The coordinates of the inclusions are
also random, constrained to not overlap with boundaries of
the phantom. Each phantom consists of a 5 kPa layer, a 10
kPa layer, a 50 kPa layer, and a 120 kPa layer, each assigned
to a randomly selected layer. Inclusions are circular, 2 mm
in diameter and have an elastic modulus of 30 kPa. Each
layer is simulated as an area of finite elements that have a
different elastic modulus than the surrounding material. The
mesh is consistent throughout the entire domain and nodes at
the boundary between layers are part of elements in both of
the surrounding layers.

First, we computed the strain estimates using pairs of pre-
compression and 1% compressed RF data frames. We refer to
these results as ’2 frames’ in the remaining part of this section.
Second, we computed the strain estimates using triplets of
pre-compression, 0.5% compression and 3.0% compression
images, these results are referred as ’3 frames’.

In the following table we report two error measures for the
set of 7 phantoms (28 inclusions total): the average Jaccard
index (same as above) and the average L2 error of the strain
value for a square of 2.5 mm size surrounding each of the
circular inclusions (Table III). We also show the cumulative
error histogram, i.e. the fraction of the inclusions having error
less than a certain value for both measures (Figure 6).

Overall, in the experiments with known ground truth, we
observed a clear advantage of the triplet-based estimation with
the proposed algorithm over the pair-based estimation. Both
triplet-based estimation and pair-based estimation performed
considerably better in all measures than the DP baseline.

According to quantitative measures, there was no advantage
in using TV-smoothness prior over a simpler quadratic prior.

Method average Jaccard index average L2 error
TV prior (2 frames) 31.0% 7.0 · 10�2

TV prior (3 frames) 40.5% 5.9 · 10�2

DP baseline 25.6% 27.6 · 10�2

quadratic smoothness prior (2 frames) 34.6% 6.4 · 10�2

quadratic smoothness prior (3 frames) 41.0% 5.5 · 10�2

TABLE III. QUANTITATIVE COMPARISON OF DIFFERENT METHODS
FOR THE SET OF 7 SIMULATED PHANTOMS CONTAINING STIFF INCLUSIONS

WITHIN LAYERED TISSUES.

Qualitatively, however, it can be observed that TV-smoothness
results in sharper boundaries (figure 5), which can lead to a
better delineation of stiff inclusions.

Real gelatin-agar phantoms. Our next set of experiments
were performed using real phantoms. Gelatin (300 bloom,
Porcine skin, Type A, Sigma-Aldrich, MO USA) and agar
(Alfa-Aesar, MA USA) were used to make the phantoms using
a process similar to that described in [28]. Graphite particles
(crystalline, -300 mesh, 99%, Alfa Aesar, MA USA) were used
as scatterers1.

A Terason 3000t ultrasound system was used with a Terason
7L3-V ultrasound probe at 5 MHz during the phantom tests.
The Terason Software Development Kit (SDK) captures radio
frequency (RF) data from the probe and an attachment to the
probe measures and records the force applied by the probe on
the phantom [29].

The results of the evaluated methods (Figure 7) demonstrate
the ability to visualize soft inclusions of a size down to
4 mm with a high degree of confidence using a standard
approach based on two RF data frames with the TV prior
on the strain field and the compression rate of 1%. Using
the proposed triplet-based matching algorithm allows to in-
crease the compression rate range from 1% to 2% whereas
a direct computation of the displacement field between the
uncompressed and the 2%-compressed image in such cases
would introduce severe artifacts on the strain field (figure 7-
bottom). As a result of using higher compression rates, the
method allows to detect lesions of 2 mm size which would
not be feasible with the pair-based variant of our algorithm.

In-vivo human tissue experiment. The RF data used in the
experiment is acquired for a patient with liver cancer before
ablation using an Antares Siemens system (Issaquah, WA)
ultrasound machine. The sequence of images shows the tumor
and was acquired by applying the contact force at a frequency
of approximately 1 compression per 2 sec. The compression
levels of 1.5% and 3.0% were used for the triple-based strain
estimation method. The data that was first used in [14] was
kindly provided by Dr. Hasan Rivaz. The relative forces values
were measured algorithmically demonstrating the suitability of
our method for images obtained with standard probes.

1Cylindrical phantom molds, with diameter of 94.45 mm, were machined
using aluminum. A small cylindrical rod was used as a placeholder for the
inclusion. By increasing the diameter of the rod, the diameter of the inclusion
could be increased. The bulk material was poured into the mold and was
allowed to solidify. Next, the small cylindrical rod was pulled out of the
phantom and the resulting void was filled with the inclusion material. The
resulting phantom had a height of approximately 55 mm. Experimental tests
were carried out within 24 hours of phantom solidification.
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Fig. 3. Segmentation results for the virtual phantom with hard circular 6 inclusions: (a) ground truth, (b) quadratic smoothness prior (2 frames), (c) quadratic
smoothness prior (3 frames), (d) TV prior (2 frames), (e) TV prior (3 frames), (f) DP baseline. The results confirm the benefit of using the triplet-based strain
reconstruction. The proposed method achieves better segmentation quality compared to the baseline. Quadratic smoothness prior demonstrates slightly better
results compared to TV prior for circular inclusions and both produce better results when the triplet-based algorithm is used.
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Fig. 4. Strain estimates for three synthetic phantoms with random geometry. Columns from the left to the right: (a) ground truth, (b) DP baseline, (c) TV prior
(3 frames), (d) quadratic smoothness prior (3 frames)
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quadratic smoothness prior TV prior

Fig. 5. Quadratic smoothness prior versus TV prior (for the in vivo patient data). Using TV prior allows to obtain strain estimation which have sharper
boundaries within the regions of high strain variation.
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Fig. 6. Cumulative error plot for Jaccard index. Each of the graphs plots the fraction of the total inclusions number having the error measure i.e. L2 error and
Jaccard index error less than the corresponding X-axis value. All four proposed methods significantly outperform the DP baseline, while triple-based methods
perform better then their pair-based variations. The smoothness priors we consider demonstrate comparable quality according to the metrics of choice.

As it is seen from figure 8, the proposed triplet-based match-
ing method produces the strain estimates with significantly
higher effective contrast enabled by using greater compression
ratios. Several additional soft and hard regions emerge on the
strain map due to the utilization of the three-image algorithm.
In addition, using a TV-prior effectively preserves the sharp
boundaries on the strain image at the cost of introducing slight
staircase effect that does not affect the diagnostic capabilities.

Computational performance. The computational time of
the proposed method is composed of the block-matching
search, which is executed twice, and the strain estimation
algorithm. We use blocks of 100x4 pixels for the block-
matching search and apply 9x7 median filter. The first stage of
the block-matching algorithm is performed within 1% range of
compression and second stage is performed with the reduced
search range. From these considerations, we leave the efficient
implementation of the block-matching algorithm beyond the
scope of the current paper as it is currently performed in

real-time in ultrasound elastography [30] (our serial MATLAB
implementation currently takes approximately 3.5 sec in total
to perform two block matching search procedures for the
considered RF data dimensions).

The GPU implementation of the strain estimation algorithm
was tested on a workstation with NVIDIA GTX 690 using
CUDA 5.5 and takes 0.54 sec to compute the strain estimate
for RF data frame of size 450x256 (1800x256 displacement
map after 4:1 vertical down-sampling). Utilizing the mobile
version NVIDIA GeForce GT 650M with CUDA 6.0 allows
to compute the strain estimate in 0.98 sec for the considered
image dimensions. The computational performance of the
method enables potential clinical use as the image triplets
themseleves typically take several seconds to be obtained for
the hand-held probe.
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Fig. 7. Strain images for gelatin-agar phantoms with inclusions of 6,4,2 mm size (from the left to the right). First row: B-mode images, second row: the
triplet-based method based on 2 frames with TV prior, third row: our method based on 3 frames with TV prior, fourth row: strain fields for the displacements
computed directly for the second post-compression frame without using the triplet-based algorithm.

VI. CONCLUSION

A new method for strain estimation in quasi-static ultra-
sound elastography from RF data is proposed. We use force-
controlled ultrasound probe in our setup. Within the triplet-
based algorithm, the less compressed frame effectively serves
as a “stepping stone” that enables matching between the
uncompressed and the more compressed frame. Smoothness-
regularized (either TV or quadratic) energy functional is pro-
posed for strain estimation. As a result, triplets of RF data
frames are used to compute displacement estimates for 2-
3% compression, which is unachievable using standard direct

matching of frame pairs.

Our experiments thus demonstrate better performance of
strain elastography when using triplets of RF data frames.
This is supported by the quantitative measure of segmentation
quality reported along with the L2 error for the set of simulated
phantoms of stiff inclusion. The triplet-based matching shows
a visible improvement for three real gelatine-agar phantoms of
2,4 and 6 mm size. Finally, we also observe better visibility
of tumour in liver imaged before ablation when using triplets
of RF data frames.



12

10 20 30 40

5

10

15

20

25

30

10 20 30 40

5

10

15

20

25

30

B-mode image 3% compression (2 frames)

10 20 30 40

5

10

15

20

25

30

10 20 30 40

5

10

15

20

25

30

1.5% compression (2 frames) 3% compression (3 frames)
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