Fast Low-Cost Single Element Ultrasound Reflectivity Tomography Using Angular Distribution Analysis

Andrey Kuzmin¹ Xiang Zhang² Jonathan Fincke² Micha Feigin² Brian Anthony² Victor Lempitsky¹

> ¹SkolTech ²MIT

April 15, 2016

A. Kuzmin et al. (Skoltech, MIT)

Fast Low-Cost Ultrasound Reflectivity Tomography

- 1 Ultrasound reflection tomography
- 2 Traditional back-projection methods
- 3 Angular distribution analysis
- 4 The reconstruction pipeline
- 5 Results
- 6 Conclusion

Ultrasound reflection tomography

- A 2d reflectivity field is recovered based on back-scattered echo
- The reflection amplitude (A-line) is recorded at each location
- Each value in the A-line corresponds to a certain traveltime
- A-lines for multiple locations are stacked into a 2D image

The single element setup

- A single wide fan-out transducer element at 5 MHz
- 1500 locations, acquisition time is approximately 3 seconds
- A limb imaging task for prosthetics fitting is considered
- A potential low-cost alternative to MRI aimed at bone contour detection

The data space and the object space

- The speed of sound is assumed to be constant
- Two coordinate systems are considered: the device coordinate system i.e. *the object space* and the reflection data (*r*,*j*) coordinate system i.e. *the data space*
- A single (r, j) pair corresponds to a circular in the object space
- A single point in the object space corresponds to a sinusoid in the data space

Traditional back-projection methods

- The reflectivity field at each point as estimated as the integral along the corresponding curve in the data space
- The intensity at each sample is spread uniformly across a circular arc

Traditional back-projection methods

- The circular integration paths cause the artifacts
- The recovered images suffer from the overall bluriness
- There are halo-type effects around strongly reflecting surfaces

Angular distribution analysis

- The angular distribution is estimated for each arc in the object space
- Each point of the arc back-projects in a sinusoid line in the data space
- The resulting family of sinusoids naturally intersects yielding the family of directional filters

The dominant orientation estimation

Skoltech

- The full angular distribution can be replace by a delta function i.e. *the dominant orientation*
- Estimated locally based on the image covariance
- A direct mapping exists based on the dominant orientation

A. Kuzmin et al. (Skoltech, MIT) Fast Low-Cost Ultrasound Reflectivity Tomography

Reconstruction pipeline

Angular distribution processing

- Each angular distribution is passed through a *softmax* normalization
- The extreme case ($\alpha \to \infty$) corresponds to the delta function i.e. dominant orientation

Synthetic phantom experiment

- The reconstruction of two-dimensional strongly reflecting boundary is based on the time-domain simulation (first row)
- A white noise of moderate level was added to the data image in order to examine robustness of considered methods (second row)

Skoltech

the uniform distribution

Skoltech

the uniform distribution

he dominant orientation

Skoltech

A. Kuzmin et al. (Skoltech, MIT)

- A new reconstruction method for ultrasound reflectivity tomography
- Back-projection to the device geometry based on angular distribution analysis
- Two specific methods based on the angular distribution are considered
- The method is fast and allows efficient parallelization
- The proposed method outpeforms the traditional methods showing less artifacts and higher level of detail

Thank you for your attention. Questions?