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Some Applications of Multiple View

Structure from Motion

Geometry

Visual SLAM

Bundler (2006)
Visual SFM (2013)
Theia (2015)
COLMAP (2016)

Bundler (N. Snavely et al., 2006)

MonoSLAM (2007)

PTAM (2007)
LSD-SLAM (2014)
ORB-SLAM (2014

ORB-SLAM (Mur et al., 2015)



Features in Multiple View Geometry

e Points the only widely used in Visual SLAM and SfM features

e But we need more...

(TUM-RGBD dataset, image kindly provided by A. Pumarola, IRI-UPC)



Lines Meet ORB-SLAM

(TUM-RGBD dataset, image kindly provided by A. Pumarola, IRI-UPC)



Notation

U - point of R3
u - point of R?
R - matrix



Some Geometric Tasks in Incremental SfM

e Relative pose. Having two or
three 2D images, find their P2t
relative location
(position+orientation) in
space

O3

e Absolute pose. Having 3D
model and 2D image,
estimate camera location
w.r.t. the model




Line Matching Difficulties

e Blue -
detected

e Green -
reprojected

e White -
manually
marked
model
contours




Perspective-n-Point+Lines

World e Points: 3D U and 2D u
Ug P\ E;);if?m e Line segments: 3D P,Q and 2D
e P.q
\f,‘%d e Detected line segment pg, qq, its

reprojection onto 3D line Py, Qq

e model has n, points, n; lines

e 0 - camera pose parameters
Camera .
coordinate encoding R, t

system,

camera pose, 0 e normalized camera (unit focal, zero
center shift)




Perspective-n-Point+Lines

We can construct 3D model using
3 frames with SIFT point
descriptors and SMLSD line
descriptors (we need observation
redundancy to filter outliers)
Dataset: NYU2.




Multiple View
Geometry

in computer vision

Richard Hartley and Andrew Zisserman

Motivating Example

If we wish to solve PnP, we open
a book...

It offers Direct Linear Transform
algorithm. Let's try?
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Motivating Example (2).

DLT vs O

Numerical experiment: we generate 6 points in a box
[—2,2] x [-2,2] x [4,8] in front of the camera, project them with
additive gaussian noise with std.dev. 1 pixel onto usual 60°-wide
camera, generate random R, t, give a rotated by R™! and shifted by
—R~'t model to the methods, willing to get R, t.
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Problem History

XIX- beginning of XX cent. - first projective geometry results,
numerical algorithms for photogrammetry

1960s polynomial system solving developed (Buchberger,
under Groebner's supervision)

1970s-1980s - first PC algorithms, projective resonstruction
methods (DLT)

1990s-2000s - minimal problem methods (P3P, P2P1L, P4Pf,
etc) using Groebner bases

1990s - locally converging iterative algorithms for PnP
2000s - efficient robust algorithms for hundreds of points
2010s - PnP using Groebner bases



P3P Algorithm

(Fischler, Bolles, 1981)

3Cosine theorem for triangles
with vertex L, we get 3 quadratic
equations w.r.t. a, b, ¢, reducable
to 4th order one variable
equation.

At most, 4 solutions.



Direct Linear Transformation (Abdel-Aziz,
Y. et al., 1971)

. ~ X
Homogeneous camera coordinates: X = < 1 > .

Perspective projection with matrix P:

wer(3)

Get rid of \:

For n > 6, we find P.



Euclidean reconstruction with DLT

Having P, R,t - ?

Orthogonal Procrustes
[U,8,V] = SVD(C) = R=UV’.

E HRX,-—i—t—sP<X")]2%min.
- 1 s,t
1



General scheme of PnP method

Having (8, X) - projection function acting on 3D model point X
outputting homogeneous camera projection coordinates X:

) 7(1(0, X)
A&k =7m(0,X)+\&, 7(0,X)=| 3@,X) |, (3)
7(3)(0,X)

where & = < ﬁi > &; - detection noise.
Example

TI'(H,X) :R(Q)X+t, q= (37 b,C,d), HqH =1

2bc + 2ad a?— b+ c?—d? 2cd — 2ab

2+ b2 —c?2—d? 2bc — 2ad 2bd + 2ac
R(q) =
2bd — 2ac 2cd + 2ab ey



General scheme of PnP method (2)

ik = 7(0, X) + N

From eq. 3 express \; and substitute into 1,2:

736, X)x = 7(+2)(0, X). (4)

Get a system of 2n eqs. (4) and solve it in least squares sense:

E, = Z||7r 36, X)x — 712 (0, X)||> — min . (5)



OPnP vs EPnP

p—Z”ﬂ' 36, X)x — 712 (0, X)||? — min.

VoE, = 0.

OPnP - (0, x) - polynomial, dim(@) = 4, solve polynomial
equations

EPnP - m(0,x) - linear, dim(@) = 12, but there are quadratic
constraints on the components of 6. Relinearization.



deg.

Rotation Error,

Comparison of OPnP and EPnP
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Generalization to PnPL

Line equation from the detected segment endpoints:

Algebraic point-to-line distance:
En(8,P 1) = (I "=(6,P'),
Algebraic segment-to-line distance:

E(6,P", Q" 1") = E3(0,P"I') + E3,(6,Q", I').



Efficient PnP

© «w@ o o

&0 © Oc,

P (Lepetit, Moreno-Noguer, Fua,
° o ju 2007; 2009)

(g . .
v R %Cj First O(n) algotithm for PnP.

Choose 4 control points C;, not in one plane.

P;=a;j1C1 + ai2Co + a;3C3 + a2, 4Cs

VR,t: RP;+t= Z ai j(RCj +t)
j

aj j do not change under rotation and translation.



Efficient PnP (2)

WEPnP 9 X Zal,_j (9)

We get 2 equations w.rt. p = (CI;,Cl,,Cl5,Cl,) for a single
3D-2D match, no using all correspondences we form a linear system:

Mp =0, M eR?¥12 (10)

Without noise &; in point detections, M has a null space of
dimension 1. But, in real life, we need to seek for a solution in a
linear subspace of the singular vectors vy, ...,vy M, corresponding
to N = 1,2, 3,4 smallest singular values of M.



Efficient PnP (3)

So, p can be represented as
N
p= B (11)
i=1

To find a unique solution we use invariance of distance between
points under rotation and translation:

ICi—CjlP=rf, ij=1,....4,i#] (12)

Substitute (11) in (12), get quadratic system of 6 equations w.r.t.

/817"'75N'

We solve it using relinearization, defining 3;3; as new unknowns.



Efficient PnP (4): Relinearization

Denote v, = 3if3j, compose ¥ = (71, - .-, Yn+N(N-1)/2) "
w = (r12,...,r4)" and get a system:

My =w. (13)

Problem: when N > 2 usually system has multiple solutions.
EPnP uses relinearization second time, introducing unknowns
ds = viy; and equations ;y; = k7, which is
(Bi1Bi2)(BizBia) = (BinBiz)(Bi2Bia).



OPnP Algorithm

Constraints are:
AiX = RX; + t.
Divide by avg depth A = 1 3~ \; and denote R = (
2 r1\—1 A' )\7
t=(\)""t, A= e ) ) )
AiX =RX; + t.

Summing up equation triplets, get

>/I

. A |
#3) = n(1 — #J X), xz;Zx,-.

)

(14)

(15)



Algorithm OPnP (2)

Parameterize R using non-unit quaternion q = (a, b, ¢, d)":

P+ b —c?-d? 2bc — 2ad 2bd + 2ac
f(q) = 2bc + 2ad 22— b+ - d? 2cd — 2ab .
2bd — 2ac 2cd + 2ab a2 — b2 —c?+d?

Write equations w.r.t. vectorized rotation matrix #(q) u t(12):

Epoints (P(a), £) = |6pP(a) + Ht?) + ko[ — min,  (16)
for known Gy, Hy, and k.

V(A:|Epoints =0,
vEEpoints =0.



Algorithm OPnP (3)
From ViEpoints = 0:

B (Gop + HpthD + k) =0 = ) =pr4u, (17)

To \—=1(yT Ty \—1pT
P=—(H,Hp) "(H,Gp), u=—(H,Hp) "Hykp. (18)
From VqEpoints = 0, for the derivative w.r.t. first quaternion

component q = (a,...):

or
oyl

da P (Gpf + Hyt M) + k) = 0. (19)

Remains to solve a system of 4 polyomial equations (19) of deg 3.



OPnPL, EPnPL

(a) General case: PnP (np), PnL(ny), PnPL (np, ny)
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Camera pose from points and lines. Accuracy w.r.t. feature
number.



PnPL using NYU2 dataset

OPnP (pt) OPnPL (lin)/(pt+lin) OPnP (pt) OPnPL (lin)/(pt+lin)

(9.3,30.5)/(9.5,28.2) (61.5,605.4) (0.4,6.0)/(0.3,5.7)




Time for big n, PnPL problem
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Conclusion

Thank you for coming!
Thanks for this wonderful opportunity, and Happy New Year!
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