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Motivation

Document summarization

Goal: representative sentences selection
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Motivation

Sensor placement

Goal: place sensors to monitor temperature
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Motivation

MAP inference

max
x

p(x |z)

Goal: How find the MAP labeling in discrete graphical models efficiently?

Tatiana Shpakova Parameter Learning for Log-supermodular Distributions 28th December 2016 4 / 18



Submodular optimization

Formalization

All these problems can be considered as an optimization of a set function
F (S), which is defined on subsets of some ground set V .

General problem is very hard

But structure can help!

If F (S) is submodular, we have efficient optimization:

Submodular Minimization is computable in polynomial time.

Effective constant-factor approximation algorithms for Submodular
Maximization exist.
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Submodular optimization

Submodularity

V - ground set. F : 2V → R - set function.

A ⊂ B ⇒ F (A ∪ s)− F (A) ≥ F (B ∪ s)− F (B)

diminishing marginal costs
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Log-supermodular models

From optimization to distributions

Instead of optimization, we take Bayesian approach:

min
x

f (x)⇒ P(x) = exp(−f (x))∑
x∈D

exp(−f (x)) - log-supermodular distribution

x lies in the power set D, e.g., the segmentation of an image.

Figure: Examples of x ∈ {0, 1}200×200

Example: binary pairwise Markov random fields (MRFs)

P(x1, . . . , xn) =
1
Z

∏
i ,j

φi ,j(Xi ,Xj)
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Methodology

Proposed approach

P(x) =
exp(−f (x))∑

x∈D

exp(−f (x))
=

exp(−f (x))
Z (f )

.

Via log-supermodular model we can:
learn parameters
do inference
quantify uncertainty about the solutions of optimization problem

Difficulty: Normalization constant Z (f ) is intractable when |D| is huge.

Solution: We can approximate the normalizer!
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Methodology

Upper bounds of partition function

State-of-the-art

AL−field = min
s∈B(f )

D∑
d=1

log (1+ e−sd ), where B(f ) is a base polyhedron

of f (x), i.e.

B(f ) = {s ∈ RD |s(1) = f (1), ∀x ∈ {0, 1}D : s(x) ≤ f (x)}
The result was obtained by J. Djolonga and A. Krause.

We took an upper bound of the normalizer for an abstract function
f (x) and investigate its properties under the assumption of
submodularity. The bound for general function f (x) was obtained by

T. Hazan and T. Jaakkola: Alogistic = Ez

[
max

y∈{0,1}D
zT y − f (y)

]
,

where z is a random vector consisting of independent logistic
distributed random variables.
We proved the following inequality:

Alogistic ≤ AL−field
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Methodology

Example
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(a) Mean bounds, c = 1
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L−field upper bound

Logistic upper bound

(b) Mean bounds, c = 3

We consider 2 Gaussian clusters and sample n = 50 points from each
cluster. Graphcut function is used as submodular function f (x) .
Conditional distributions are considered:
one for each k = 1, . . . , n, on the events that at least k points from the
first cluster lie on the one side of the cut and at least k points from the
second cluster lie on the other side of the cut.
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Methodology

Learning

We introduce parameters governing the distribution.
Family of submodular functions has the form:

f (x) =
K∑

k=1

αk fk(x)− tT x

and α ∈ RK
+, t ∈ RD , f1, . . . , fK are submodular base functions.

Here some results are listed:
Firstly, we tried to learn using AL−field . Maximizing loglikelihood we
obtain a linear function with constant coefficient:

max
α∈RK

+

K∑
k=1

αk

[
fk

( N∑
n=1

xn

)
−

N∑
n=1

fk(xn)

]
.

We show how to learn using Alogistic on the next slide.
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Methodology

Learning with Alogistic via MaxLogLikelihood
We consider the following optimization problem:

max
t∈RD ,α∈RK

+

−
N∑

n=1

K∑
k=1

(
αk fk(xn)

)
+ tT

N∑
n=1

xn − N · Alogistic(α, t),

where Alogistic = Ez

[
max

y∈{0,1}D
zT y − f (y)

]
.

1 Subgradient Descent
In this case an empirical version of the Alogistic bound is used:

Alogistic ≈
1
M

M∑
m=1

max
ym∈{0,1}D

(zm)T ym − f (ym).

2 Stochastic Gradient Descent
On each iteration of gradient method we sample only one logistic
vector z :

Ah
logistic ≈ max

y∈{0,1}D
zT y − f (y).
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Experiments

Supervised denoising

We consider the train sample of 100 binary images and the test sample of
100 binary images. We add some noise by flipping pixels values
independently with the probability π.

a) original image b) noised image c) denoised image

noise π max-marginals mean-marginals SVM-Struct
1% 0.4% 0.4% 0.6%
5% 1.1% 1.1% 1.5%
10 % 2.1% 2.0% 2.8%
20 % 4.2% 4.1% 6.0%
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Experiments

Unsupervised denoising

As training sample we consider only noisy images z1, . . . , zN . We know a
prior distribution of true images and the conditional distribution of noise:

p(x) =
exp(−f (x , α, t))

Z (α, t)
, p(z i |x i ) =

{
x i ,with p,

x̃ i ,with 1− p.

Let’s consider the marginal loglikelihood of the observed data:

L(α, t, z1, . . . , zn) =
N∑

n=1

log p(zn|α, t) =
N∑

n=1

log
∑
xn

p(xn, zn|α, t) =

N∑
n=1

log
∑
xn

p(xn)p(zn|xn) =
N∑

n=1

log
∑
xn

e−f (xn,α,t)p(zn|xn)− N logZ (α, t)
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Experiments

Experiments. Unsupervised case
We consider N = 100 train data (only noise images). After the learning
procedure, we will be able to denoise train and test images.

(a) original image (b) noisy image (c) denoised image
Figure: Denoising of a horse image. Unsupervised case.

π is fixed π is not fixed
π max-marg mean-marg max-marg mean-marg
1% 0.5% 0.5% 1.0% 1.0%
5% 0.9% 1.0% 3.5% 3.6%
10% 1.9% 2.1% 6.8% 7.0%
20% 5.3% 6.0% 20.0% 20.0%
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Contribution

Our contribution

– We show that the logistic bound formally dominates a
state-of-the-art bound [1].

– We demonstrate an impossibility of parameter learning via the existing
state-of-the-art bound [1].

– We propose an automatic way to learn parameters using the logistic
bound.

– We propose to use a stochastic subgradient technique over our own
randomization during learning phase.

– We illustrate our new results on a set of experiments in binary image
denoising (supervised and unsupervised problems).

This work has been accepted for NIPS 2016!

[1] J. Djolonga and A. Krause. From MAP to Marginals: Variational Inference in
Bayesian Submodular Models. In Adv. NIPS, 2014.
Tatiana Shpakova Parameter Learning for Log-supermodular Distributions 28th December 2016 16 / 18



Future work

Future work

Exploration of larger-scale applications in computer vision:

Foreground / Background segmentation (current work)
Semantic multilabeled segmentation
Interactive segmentation
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Future work

Happy New Year!

Thank you!
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