

COMPUTER VISION University of Freiburg

Multi-view 3D Models from Single Images with a Convolutional Network

Maxim Tatarchenko University of Freiburg

Skoltech - 2nd Christmas Colloquium on Computer Vision

M. Tatarchenko "Multi-view 3D Models From Single Images with a Convolutional Network"

Humans have prior knowledge about 3D

UNI FREIBURG

Humans have prior knowledge about 3D

UNI FREIBURG

Side view?

Humans have prior knowledge about 3D

UNI FREIBURG

Side view?

How can we teach similar 3Dawareness to neural networks?

Convolutional network

*slides partially provided by Alexey Dosovitskiy

Up-convolutional network

Up-convolutions

Up-convolution ↔ Unpooling + Convolution

Generating chairs

Alexey Dosovitskiy

Jost Tobias Springenberg

Thomas Brox

- Chairs from [Aubry et al. 2014]
- Cars and tables from ShapeNet

Training data

- Chairs from [Aubry et al. 2014]
- Cars and tables from ShapeNet

CNN for generating objects

[1] A. Dosovitskiy, J. T. Springenberg and T. Brox "Learning to Generate Chairs with Convolutional Neural Networks", CVPR 2015

[2] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko and T. Brox "Learning to Generate Chairs, Tables and Cars with Convolutional Neural Networks", PAMI 2016

M. Tatarchenko "Multi-view 3D Models From Single Images with a Convolutional Network"

Generated images - transformations

Translation

UNI FREIBURG

Rotation

Zoom

Squeeze

Saturation

Brightness

Color

M. Tatarchenko "Multi-view 3D Models From Single Images with a Convolutional Network"

Style interpolation - chairs

Style interpolation - chairs

Style interpolation - cars

UNI FREIBURG

M. Tatarchenko "Multi-view 3D Models From Single Images with a Convolutional Network"

Style interpolation – chairs to tables

UNI FREIBURG

M. Tatarchenko "Multi-view 3D Models From Single Images with a Convolutional Network"

Chair arithmetic

UNI FREIBURG

- "Source set" : 90% styles, all viewpoints available
- "Target set": 10% styles, only some viewpoints available
- Task: Interpolate missing angles in the target set

15 azimuth angles available

- "Source set" : 90% styles, all viewpoints available
- "Target set": 10% styles, only some viewpoints available
- Task: Interpolate missing angles in the target set

15 azimuth angles available

- "Source set" : 90% styles, all viewpoints available
- "Target set": 10% styles, only some viewpoints available
- Task: Interpolate missing angles in the target set

15 azimuth angles available

UNI FREIBURG

Let's add an inference network!

Novel view prediction

• Adding an inference net

M.Tatarchenko, A. Dosovitskiy, and T. Brox "Multi-view 3D Models from Single Images with a Convolutional Network", ECCV 2016

Performance on synthetic data

Performance on synthetic data

Performance on synthetic data - video

UNI FREIBURG

UNI FREIBURG

Training data

Network predictions

Segmentation - video

Trained on synthetic, works on natural

UNI FREIBURG

Network learns consistent 3D representation

Network learns consistent 3D representation

Network learns consistent 3D representation

3D reconstruction - video

Comparison with IGN

Kulkarni et al., NIPS 2015

Dosovitskiy et al., CVPR 2015

Yang et al., NIPS 2015

Zhou et al., ECCV 2016

FREIBURG

FREIBURG

FREIBURG

Interpolation between cars

Internal representation is invariant

UNI FREIBURG

Internal representation is invariant

UNI FREIBURG

pairwise distances

Internal representation is invariant

UNI FREIBURG

pairwise distances

- High-resolution images can be generated with a convolutional network from a set of high-level parameters
- Network learns meaningful continuous manifolds
- Adding an encoder allows to infer 3D representation from a single image
- Internal 3D representation can be explicitly decoded into a consistent point cloud by fusing multiple output depth maps

UNI FREIBURG

Thank you!

Code availble:

http://lmb.informatik.uni-freiburg.de/resources/software.php

