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Humans have prior knowledge about 3D
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3D-awareness
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How can we teach similar 3D-
awareness to neural networks?
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Convolutional network
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Up-convolutional network
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Up-convolutions
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Up-convolution - Unpooling + Convolution
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Application

Generating chairs

A

Alexey Jost Tobias Thomas
Dosovitskiy Springenberg Brox
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Cats are complicated
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Chairs are simpler
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Training data

* Chairs from [Aubry et al. 2014]
* Cars and tables from ShapeNet
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4 Training data

* Chairs from [Aubry et al. 2014]
* Cars and tables from ShapeNet
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CNN for generating objects
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[1] A. Dosovitskiy, J. T. Springenberg and T. Brox “Learning to Generate Chairs with
Convolutional Neural Networks”, CVPR 2015

[2] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko and T. Brox “Learning to Generate Chairs,
Tables and Cars with Convolutional Neural Networks”, PAMI 2016
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Generated images - transformations
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Style interpolation - chairs
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Style interpolation - chairs
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4 Style interpolation — chairs to tables
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Viewpoint interpolation — transfer learning
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* "Source set” : 90% styles, all viewpoints available

* “Target set” : 10% styles, only some viewpoints
available
* Task: Interpolate missing angles in the target set
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15 azimuth angles available
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Viewpoint interpolation — transfer learning
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Viewpoint interpolation — transfer learning
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Let’s add an inference network!
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Novel view prediction

« Adding an inference net
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M.Tatarchenko, A. Dosovitskiy, and T. Brox “Multi-view 3D Models from Single Images with a
Convolutional Network”, ECCV 2016
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Performance on synthetic data
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Performance on synthetic data
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Performance on synthetic data - video
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Segmentation
Training data
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Segmentation - video
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Trained on synthetic, works on natural
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Network learns consistent 3D representation
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Network learns consistent 3D representation
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Network learns consistent 3D representation
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3D reconstruction - video
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Comparison with IGN
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Kulkarni et al., NIPS 2015
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Comparison with ,,no inference“-network
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Dosovitskiy et al., CVPR 2015
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Comparison with recurrent network
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Comparison with appearance flow
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Zhou et al., ECCV 2016
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Informative inputs lead to better predictions
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Informative inputs lead to better predictions
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Informative inputs lead to better predictions
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Interpolation between cars
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Internal representation is invariant
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Internal representation is invariant
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Internal representation is invariant

UNI
FREIBURG

==
el B ez pairwise
PP (7] distances
1

0.5

M. Tatarchenko “Multi-view 3D Models From Single Images with a Convolutional Network” 37



« High-resolution images can be generated with a
convolutional network from a set of high-level
parameters
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* Network learns meaningful continuous manifolds

« Adding an encoder allows to infer 3D representation
from a single image

* Internal 3D representation can be explicitly decoded

Into a consistent point cloud by fusing multiple output
depth maps
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Thank youl!
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Code avallble:

http:/[iImb.informatik.uni-freiburg.de/resources/software.php
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