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Humans have prior knowledge about 3D



M. Tatarchenko   “Multi-view 3D Models From Single Images with a Convolutional Network” 2

Humans have prior knowledge about 3D

Side 
view?



M. Tatarchenko   “Multi-view 3D Models From Single Images with a Convolutional Network” 2

Humans have prior knowledge about 3D

Side 
view?



M. Tatarchenko   “Multi-view 3D Models From Single Images with a Convolutional Network” 2

Humans have prior knowledge about 3D

Side 
view?



M. Tatarchenko   “Multi-view 3D Models From Single Images with a Convolutional Network” 3

3D-awareness

How can we teach similar 3D-
awareness to neural networks? 
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Convolutional network

cat

*slides partially provided by 
Alexey Dosovitskiy
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Up-convolutional network
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Up-convolutions

2 1.5

1 1.7 2

0.8

1.5

1.2

1.7 0.8

0.9 1.3

1.4 0.5

2.3 1.6

2.1 1.9

0.9 2.3

Pooling ↔ 
shrinking the 
feature maps

Unpooling ↔ 
expanding the 
feature maps

Up-convolution ↔ Unpooling + Convolution
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Application

Generating chairs

Alexey
Dosovitskiy

Thomas
Brox

Jost Tobias
Springenberg
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Cats are complicated
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Chairs are simpler
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Training data

• Chairs from [Aubry et al. 2014]
• Cars and tables from ShapeNet

Figure from 
https://github.com/
dimatura/seeing3d
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Training data
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CNN for generating objects

[1] A. Dosovitskiy, J. T. Springenberg and T. Brox “Learning to Generate Chairs with 
Convolutional Neural Networks”, CVPR 2015

[2] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko and T. Brox “Learning to Generate Chairs, 
Tables and Cars with Convolutional Neural Networks”, PAMI 2016
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Generated images - transformations

Translation

Rotation

Zoom

Squeeze

Saturation

Brightness

Color
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Style interpolation - chairs
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Style interpolation - cars
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Style interpolation – chairs to tables
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Chair arithmetic
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Viewpoint interpolation – transfer learning

• “Source set” : 90% styles, all viewpoints available
• “Target set” : 10% styles, only some viewpoints 

available
• Task: Interpolate missing angles in the target set

15 azimuth angles available
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Viewpoint interpolation – transfer learning

8 azimuths 
available

4 azimuths 
available

2 azimuths 
available

1 azimuth 
available
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Let’s add an inference network!
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Novel view prediction

M.Tatarchenko, A. Dosovitskiy, and T. Brox “Multi-view 3D Models from Single Images with a 
Convolutional Network”, ECCV 2016

● Adding an inference net
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Performance on synthetic data
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Performance on synthetic data
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Performance on synthetic data - video
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Segmentation

+ =
Network predictions

Training data
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Segmentation - video
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Trained on synthetic, works on natural
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Network learns consistent 3D representation
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Network learns consistent 3D representation
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3D reconstruction - video
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Comparison with IGN

Kulkarni et al., NIPS 2015
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Comparison with „no inference“-network

Dosovitskiy et al., CVPR 2015
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Comparison with recurrent network

Yang et al., NIPS 2015
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Comparison with appearance flow

Zhou et al., ECCV 2016
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Informative inputs lead to better predictions
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Informative inputs lead to better predictions
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Interpolation between cars
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Internal representation is invariant
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Internal representation is invariant

pairwise 
distances
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Summary

● High-resolution images can be generated with a 
convolutional network from a set of high-level 
parameters

● Network learns meaningful continuous manifolds

● Adding an encoder allows to infer 3D representation 
from a single image

● Internal 3D representation can be explicitly decoded 
into a consistent point cloud by fusing multiple output 
depth maps



M. Tatarchenko   “Multi-view 3D Models From Single Images with a Convolutional Network” 39

Thank you!

Code availble:

http://lmb.informatik.uni-freiburg.de/resources/software.php
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