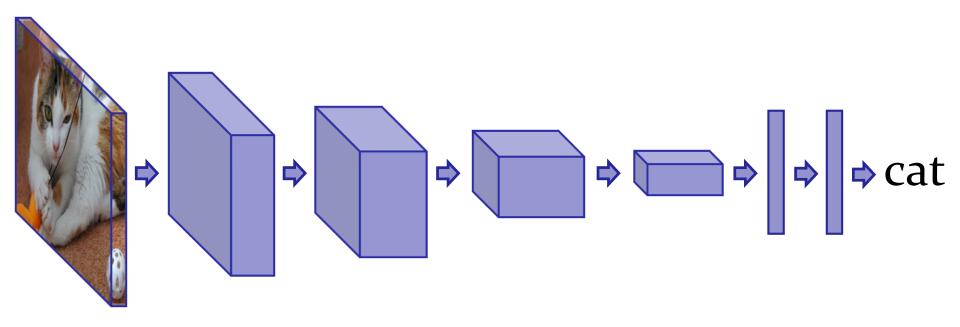
Up-convolutional networks and their applications

Alexey Dosovitskiy

University of Freiburg / Intel Labs

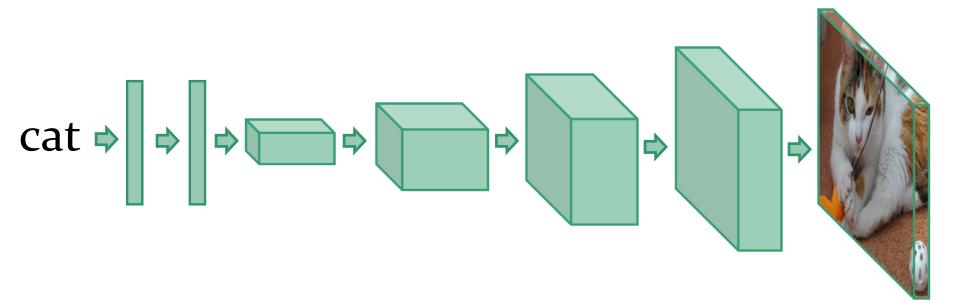
28.12.2016

Convolutional network



Convolutional network

Up-convolutional network



Up-convolutional network (a.k.a. "deconvolutional")

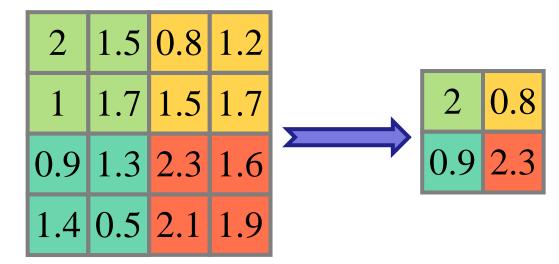
- Up-convolutional networks
- End-to-end estimation of motion and depth
- Inverting ConvNets with perceptual metrics
- Visualizing neurons and generating images

• Learning to play Doom

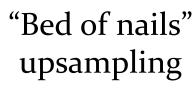
Pooling and unpooling

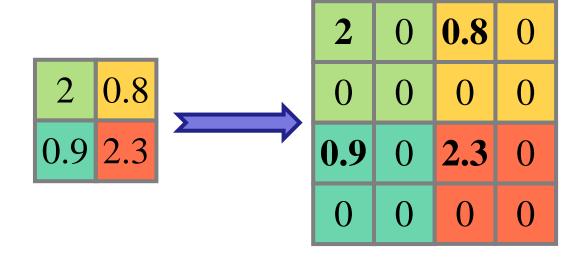
• Pooling = shrinking the feature maps

Convolution with stride



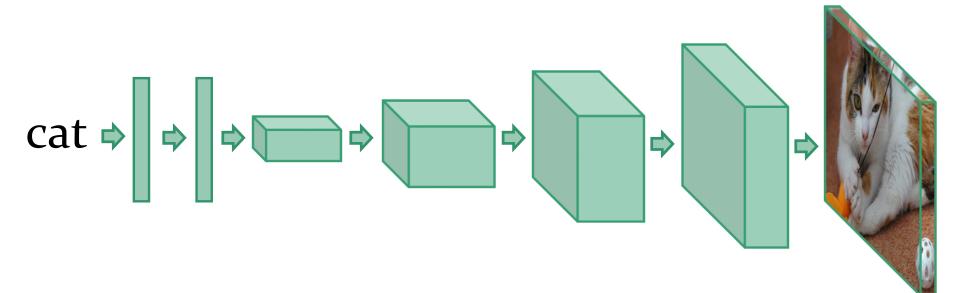
• Unpooling = expanding the feature maps (upscaling)





5

Up-convolutional network



Up-convolutional network (a.k.a. "deconvolutional")

What can we do with this thing?

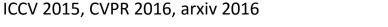
End-to-end estimation of motion and depth

Philipp Fischer

llg

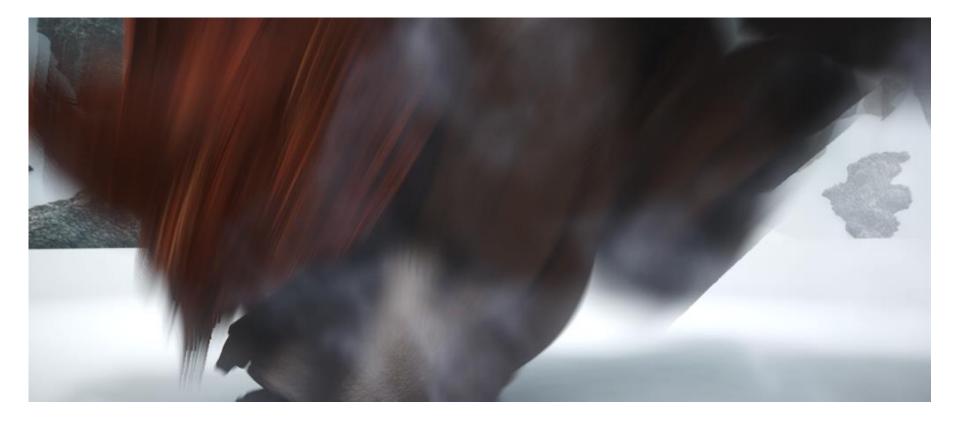
Häusser

Golkov



Joint work with the group of Daniel Cremers

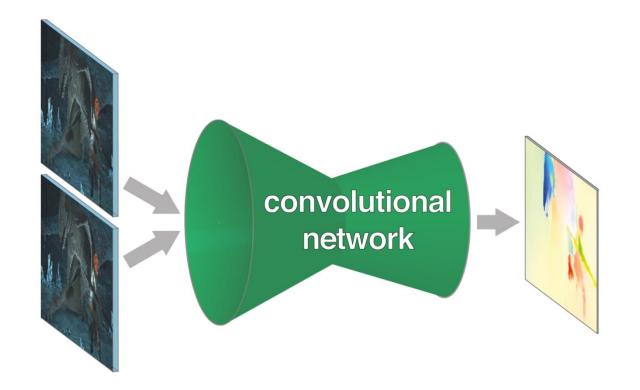
Optical flow estimation is difficult!



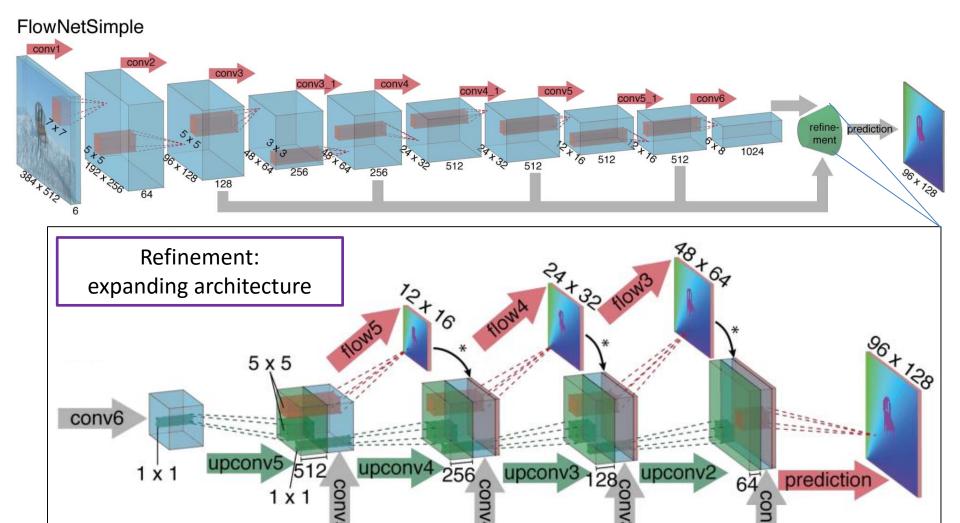
Optical flow estimation is difficult!

End-to-end optical flow

- Standard approach: matching + aggregation
- End to end: two frames in, flow out

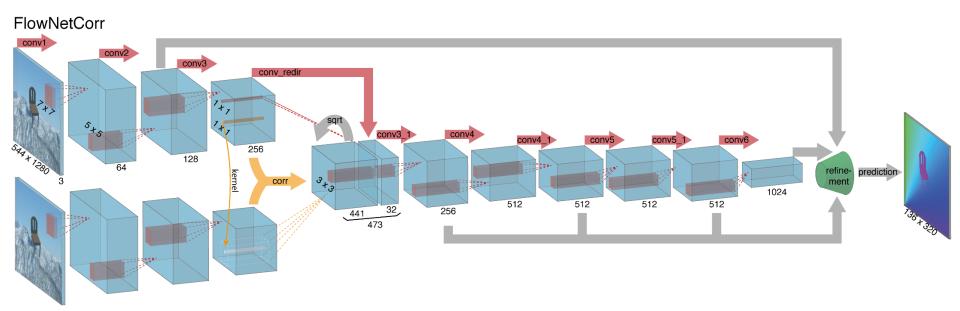


Architecture: FlowNetSimple



*: upconvolved

Architecture: FlowNetCorr



- Of course, supervised!
- Where do we get training data?

The "Flying chairs" dataset



Rendered image

Optical flow

It works on "Flying chairs" !

Input images

Ground truth

EpicFlow (Revaud et al. 2015)

EPE: 3.53

FlowNetCorr

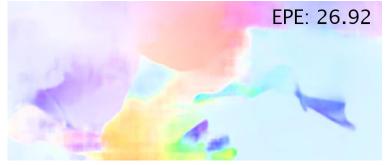
And it generalizes!

Input images

FlowNetSimple

Ground truth

LDOF (Brox-Malik 2011)



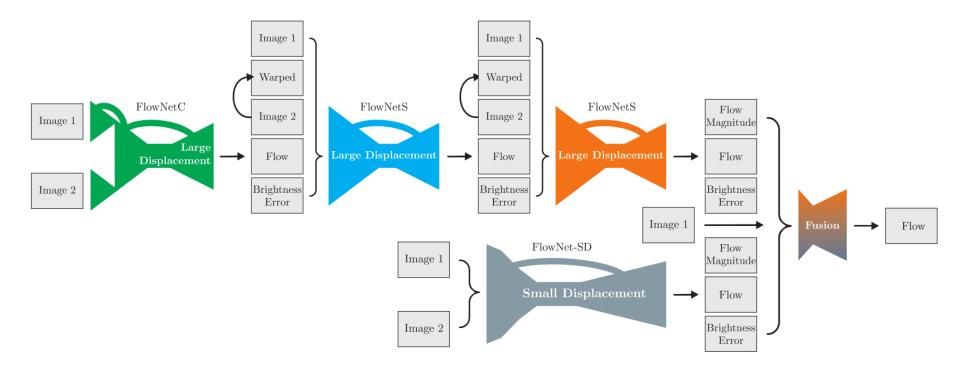
FlowNetCorr

EpicFlow (Revaud et al. 2015)

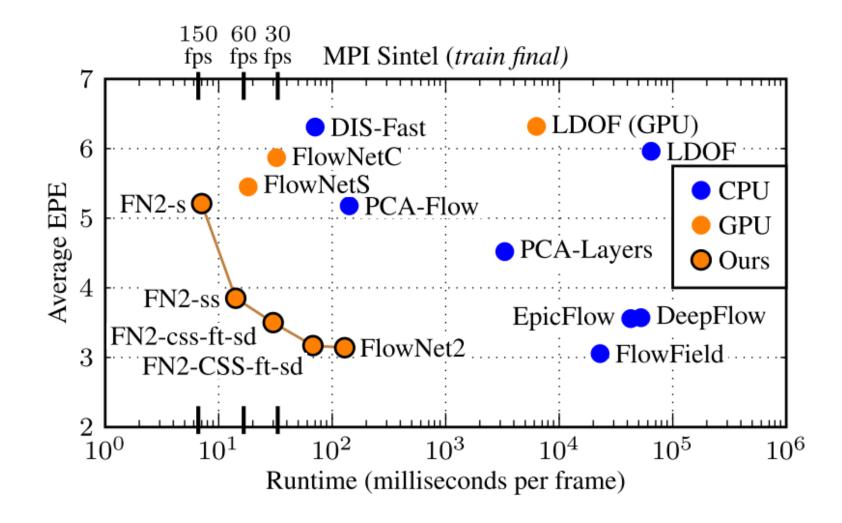
Better dataset: FlyingThings 3D

Better architecture: FlowNet 2.0

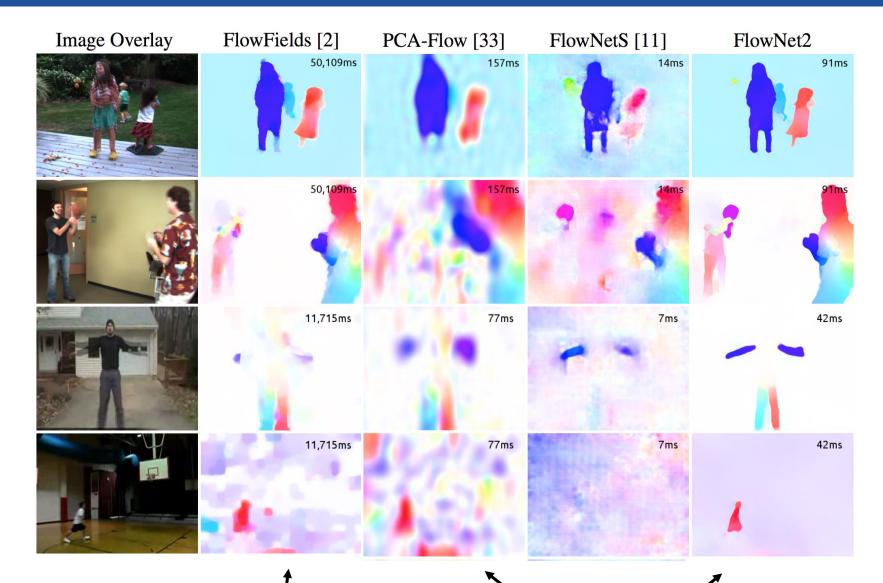
• Stacking and warping



FlowNet 2.0: Sintel



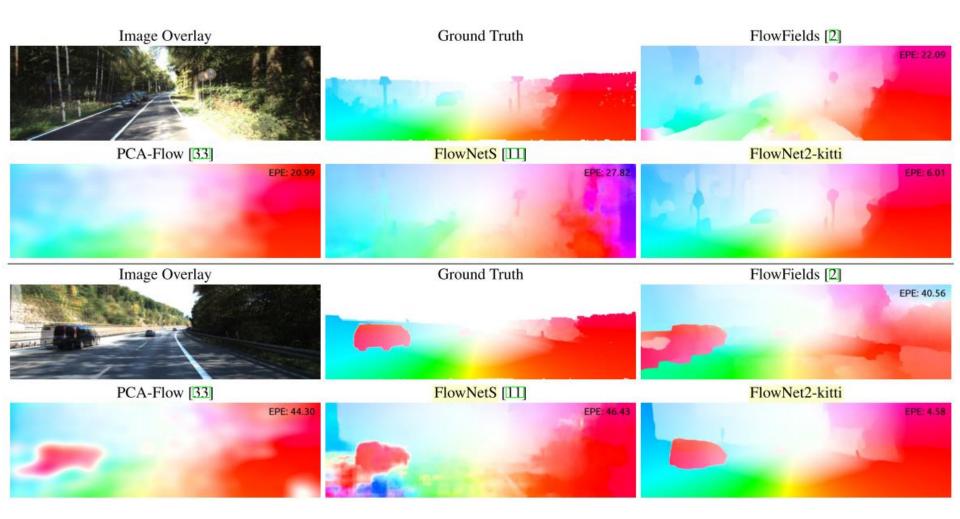
FlowNet 2.0: Real data



0.02-0.1 FPS

10-20 FPS

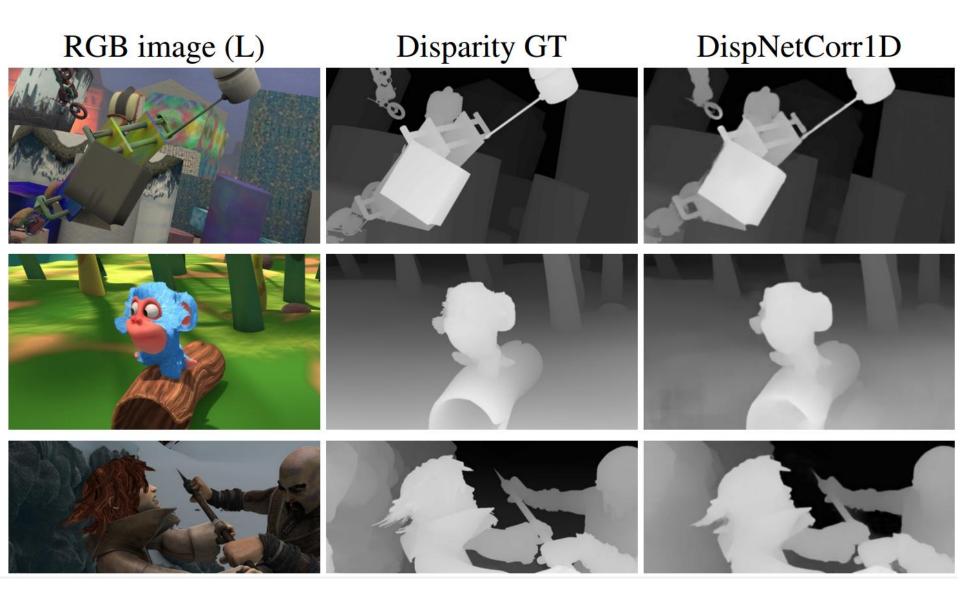
FlowNet 2.0: KITTI



	Method	Setting	Code	Fl-bg	Fl-fg	<u>Fl-all</u>	Density	Runtime
							-	
1	PRSM	ŏŏ 🔗	<u>code</u>	5.33 %	17.02 %	7.28 %	100.00 %	300 s
C. Vog	el, K. Schindler and	IS. Roth: <u>3D Scen</u>	e Flow Est	imation with	a Piecewise Ri	gid Scene Mod	<u>lel</u> . ijcv 2015.	
2	OSF+TC) di B		5.76 %	16.61 %	7.57 %	100.00 %	50 min
3	<u>OSF</u>	Ър	<u>code</u>	5.62 %	22.17 %	8.37 %	100.00 %	50 min
M. Mei	nze and A. Geiger: <u>(</u>	Object Scene Flov	v for Autor	omous Vehicl	l <u>es</u> . Conference	e on Compute	r Vision and Pat	tern Recognitio
4	<u>SSFAV</u>	ХХ		7.10 %	21.22 %	9.45 %	100.00 %	5 min
5	<u>FlowNet2</u>			10.75 %	15.14 %	11.48 %	100.00 %	0.12 s
6	<u>SDF</u>			8.61 %	26.69 %	11.62 %	100.00 %	TBA
M. Bai	*, W. Luo*, K. Kundu	u and R. Urtasun:	Exploiting	Semantic Inf	ormation and [Deep Matching	<u>g for Optical Flo</u>	<u>w</u> . ECCV 2016.
7	FSF+MS	й¥ s		8.48 %	29.62 %	12.00 %	100.00 %	2.7 s
<u>i</u>								
8	CNNF+PMBP			10.08 %	23.18 %	12.26 %	100.00 %	45 min
8	<u>CNNF+PMBP</u> <u>CSF</u>	<u>کم</u>		10.08 % 10.40 %	23.18 % 30.33 %	12.26 % 13.71 %	100.00 % 100.00 %	45 min 80 s

Depth estimation!

Disparity estimation



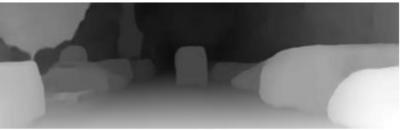
Disparity: KITTI

RGB image (L)

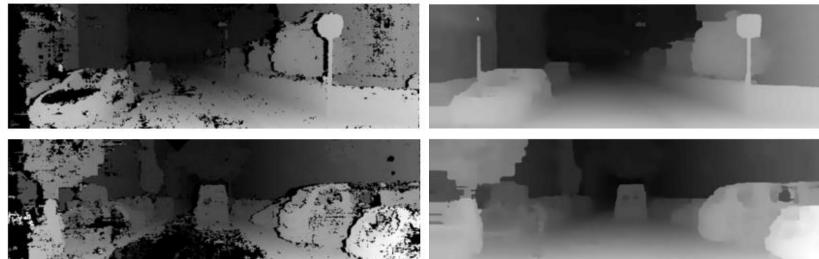
DispNetCorr1D-K



SGM prediction

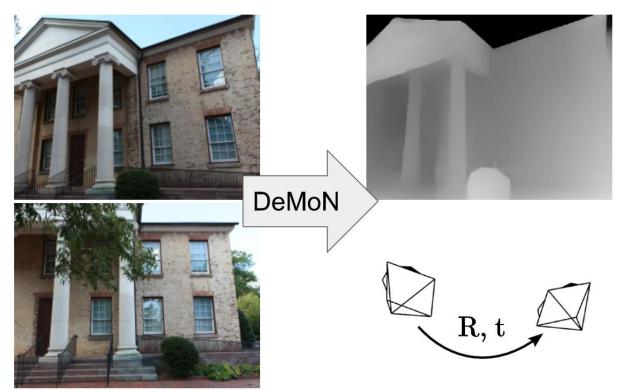


MC-CNN prediction



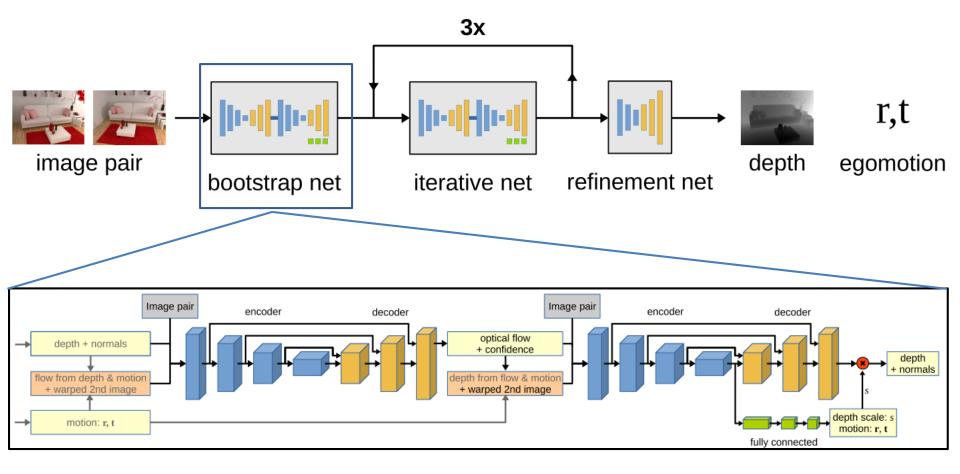
DeMoN: monocular stereo

- **Depth and Motion Network**
 - Two frames in
 - Depth and camera motion out

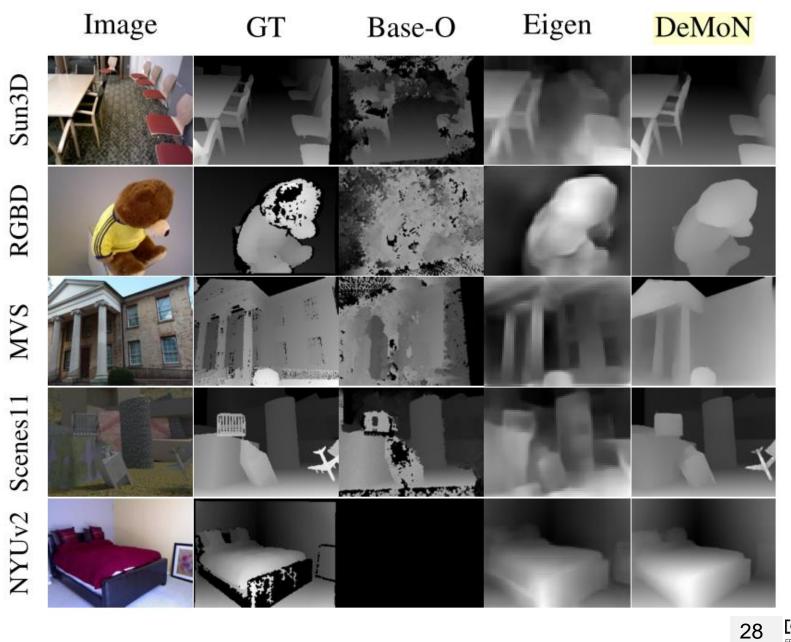


B. <u>Ummenhofer</u>, H. <u>Zhou</u>, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, T. Brox, arxiv 2016

DeMoN: architecture



DeMoN: architecture

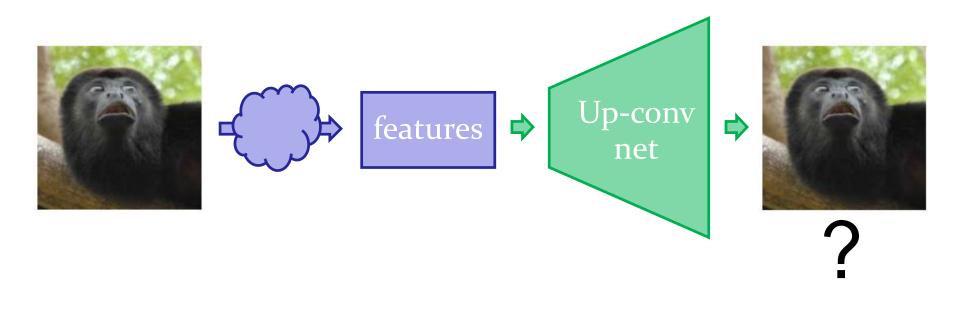


- (Up)ConvNets can estimate motion and depth end to end
- State-of-the-art performance at interactive framerates

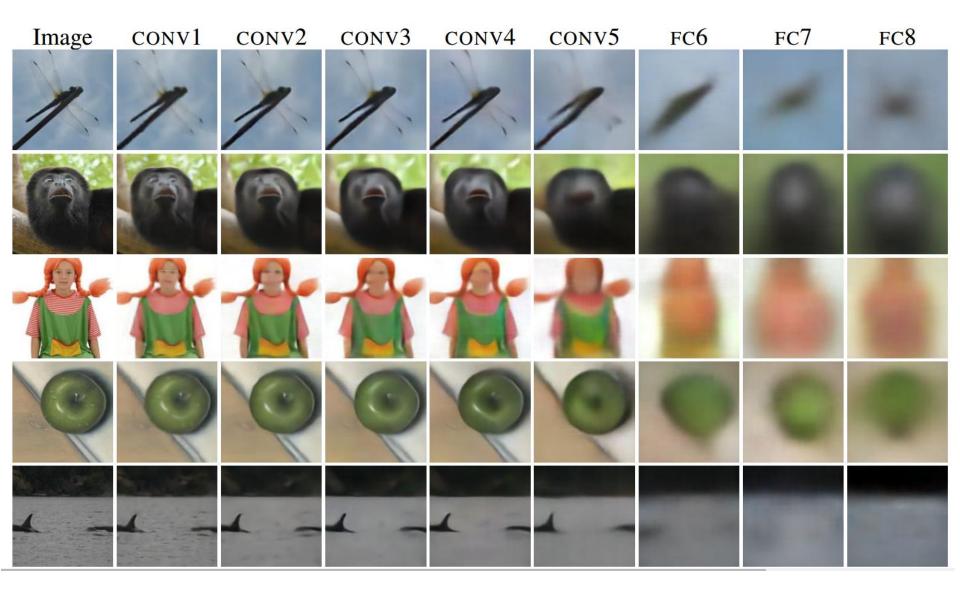
Inverting ConvNets with perceptual metrics

CVPR 2016, NIPS 2016

Inverting representations with ConvNets



Inverting AlexNet



Inverting AlexNet

• Problem: the feature vector does not contain the precise locations of all details

• Solution: with appropriate loss function it need not!

Deep perceptual similarity metric

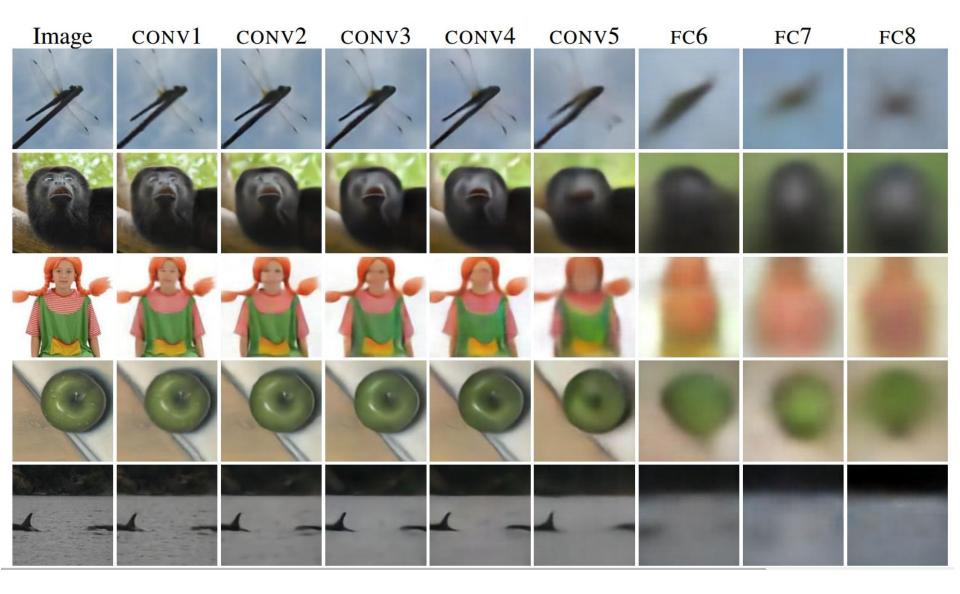
- Want to be sensitive to important properties, but invariant to irrelevant deformations
- Instead of the image space, measure image similarity in the feature space
- Add adversarial loss as a natural image prior

Original Img loss

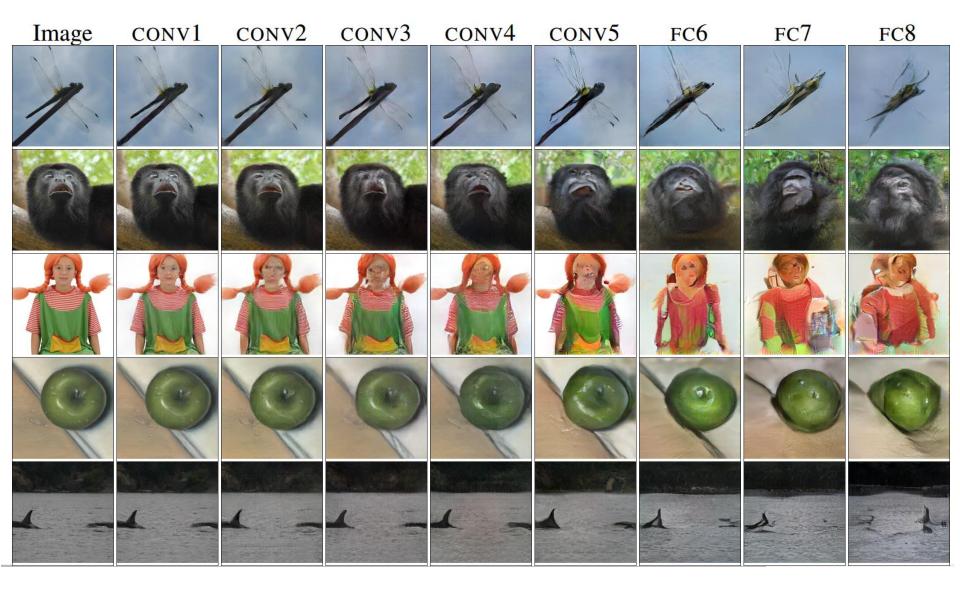
Deep perceptual similarity metric

- Want to be sensitive to important properties, but invariant to irrelevant deformations
- Instead of the image space, measure image similarity in the feature space
- Add adversarial loss as a natural image prior

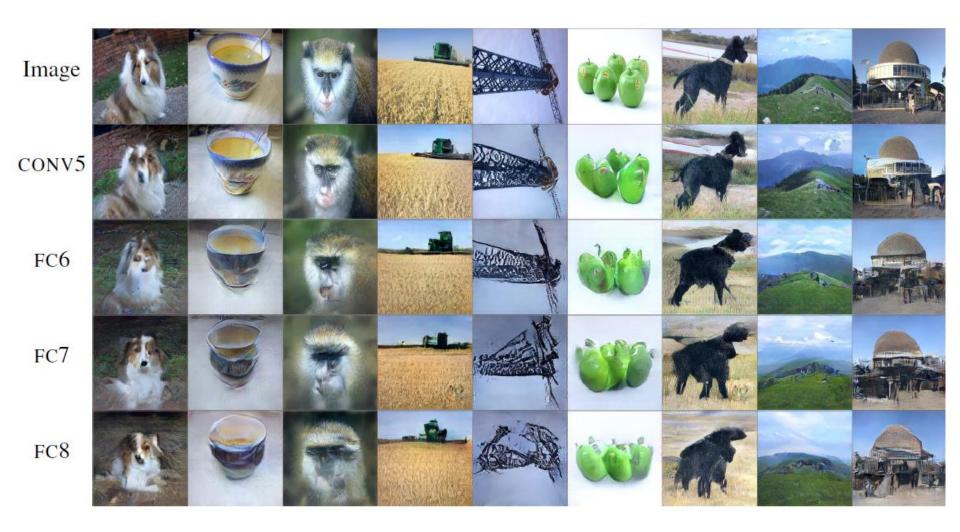
Inverting AlexNet: Euclidean loss



Inverting AlexNet: DeePSiM loss



Inverting AlexNet: more results



- Superresolution [Johnson et al. 2016], [Ledig et al. 2016]
- Image compression
- Denoising
- Analysis of deep networks
- Generative models

Visualizing neurons and generating images

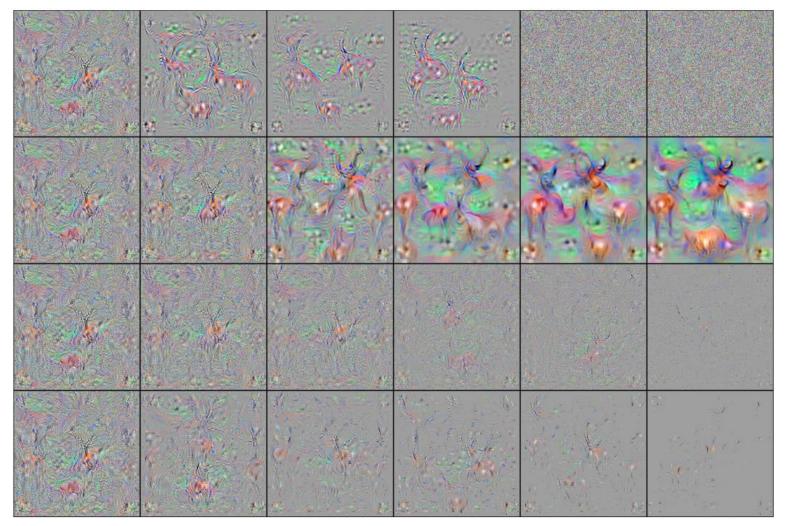
Anh Nguyen

Jason Yosinski

Jeff Clune

NIPS 2016, arxiv 2016

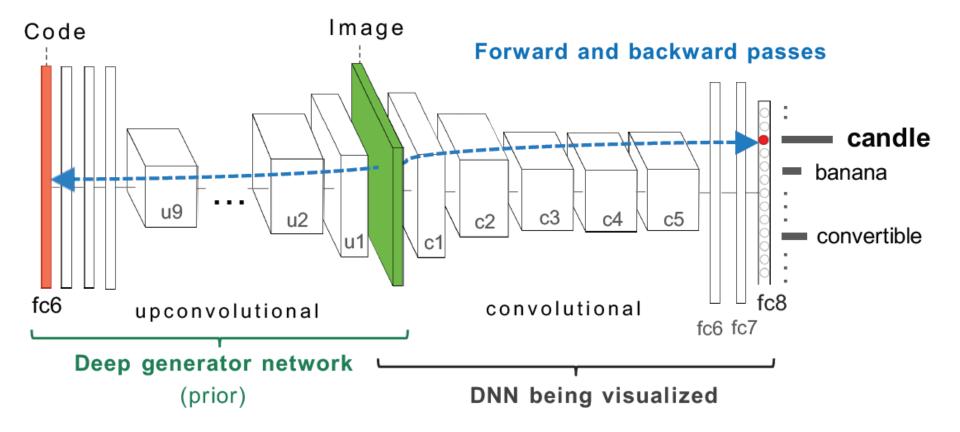
Activation maximization



Yosinski et al. 2015

Hand-crafted priors are not good enough

AM with an UpConvNet prior



43 ON LONG TER VISION UNVERSION OF Preliburg

Activating FC8 neurons: ImageNet

mosque

lipstick

brambling leaf beetle badger

triumphal arch toaster

cloak

library

cheeseburger

swimming trunks barn

table lamp

French loaf

chest

running shoe

planetarium

pool table

cellphone

aircraft carrier entertainment ctr

hen

pillow

ostrich

fire screen

cliff

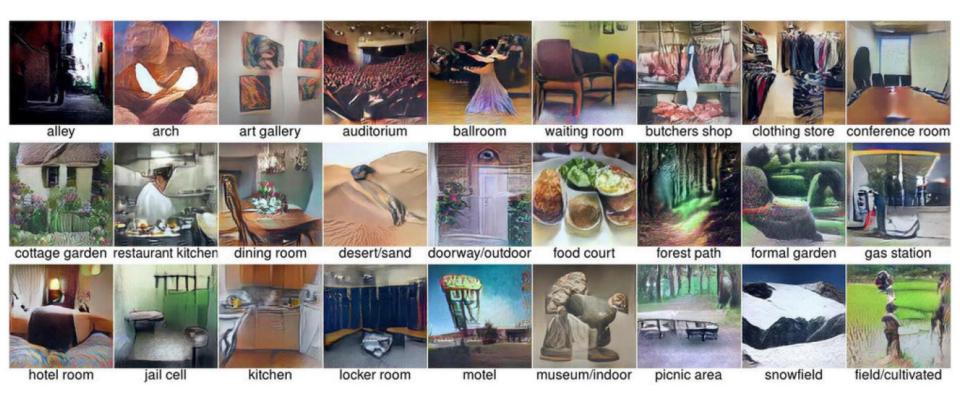
pot

broom

joystick

china cabinet

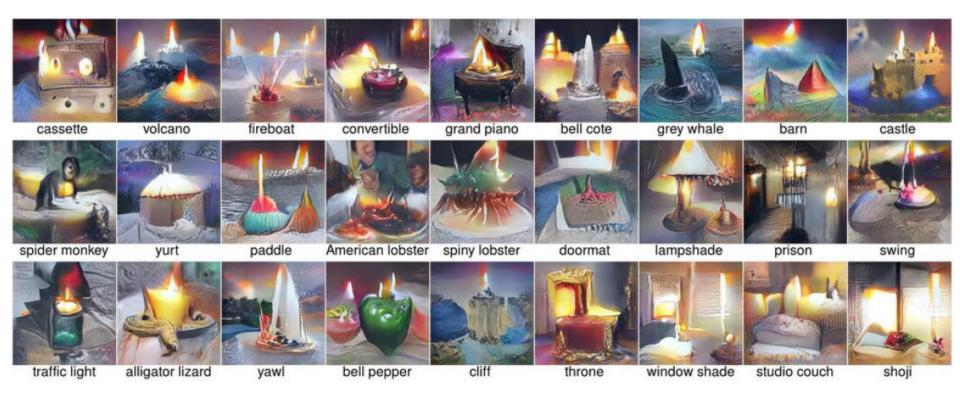
Activating FC8 neurons: Places



45 ONPUTER VISION University of Freiburg

Activating FC8 neurons: 2 classes

Activating FC8 neurons: 2 classes

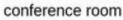


Activating neurons from different layers

auditorium

food court

doorway/outdoor



igloo

[O] Vision 48

• Pictures are nice, but is it a real generative model?

• If we add some noise during optimization, it is!

Plug-and-play generative networks

(a) Real: top 9

(c) Real: random 9

Plug-and-play generative networks

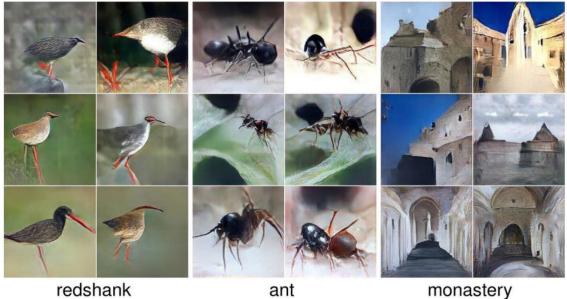
(a) Real: top 9

(b) DGN-AM [36]

(c) Real: random 9

(d) PPGN (this)

Plug-and-play generative networks



redshank

monastery

[O]Vision 52

volcano

PPGN: sentence to image

a blue car parked on the side of a road

a pizza on a plate at a restaurant

a pile of oranges sitting in a wooden crate



oranges on a table next to a liquor bottle

- Perceptual metrics for better image generation
- ConvNets are surprisingly invertible
- Plug-and-play generative networks produce great high resolution images

Sensorimotor control (learning to play Doom)

Vladlen Koltun

arxiv 2017

Reinforcement learning

Single goal

Scalar reward

Maximize returns

Real life

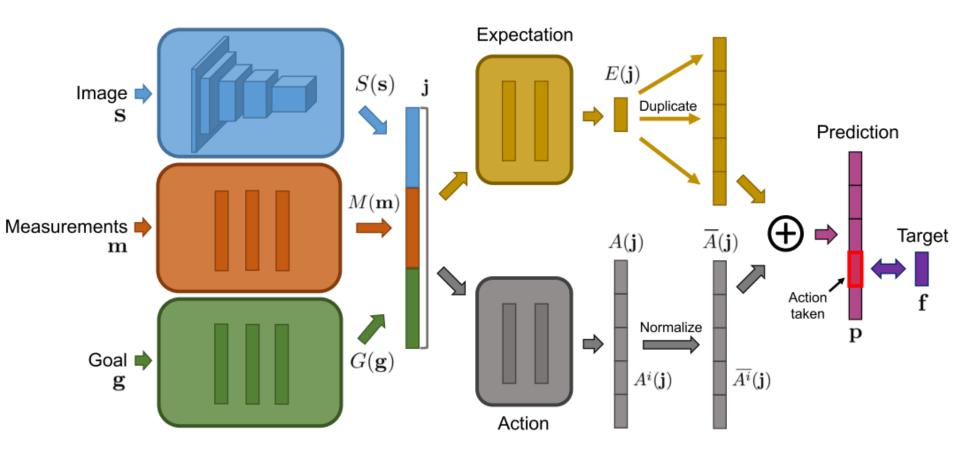
Multitude of goals

Rich sensory stream

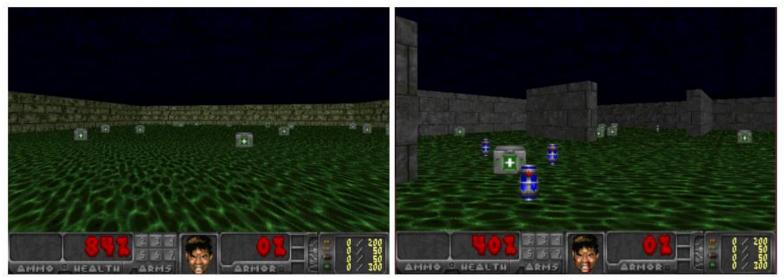
Explore the world

Reinforcement learning vs real life

- Idea: predict future *measurements*
 - Hunger, pain, cold, sleep
 - Health, ammo, frags
- Formulate goals in terms of these
 - Minimize hunger, pain, cold, sleepiness
 - Maximize health, ammo, frags
- Predict with simple supervised training



ViZDoom tasks



D1: Basic

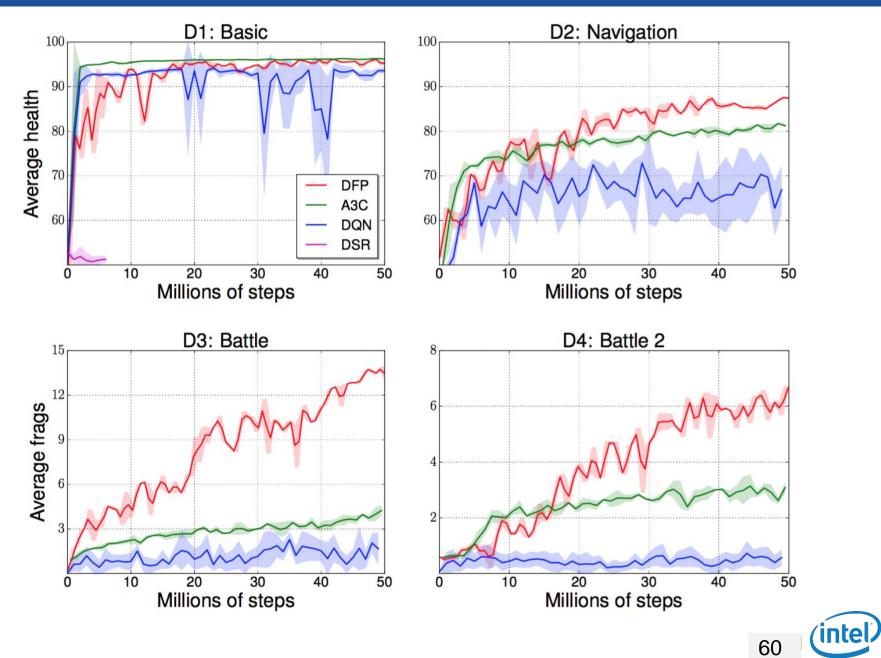
D2: Navigation

D3: Battle

D4: Battle 2

59

ViZDoom results



Learning to Act by Predicting the Future

Alexey Dosovitskiy Vladlen Koltun

ViZDoom competition

Place	Team	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	IntelAct	29	21	23	21	6	11	9	6	30	32	33	35	256
2	The Terminators	22	17	21	15	13	12	6	5	14	13	13	13	164
3	тино	8	11	13	12	0	-1	-1	-4	2	2	6	3	51
4	ColbyCS	2	4	0	1	-1	0	-1	0	3	3	4	3	18
5	5vision	3	0	4	2	1	0	1	0	0	-1	1	1	12
6	Ivomi	3	0	1	0	1	-1	-4	-4	1	1	0	0	-2
7	PotatoesArePrettyOk	0	0	2	0	-1	-3	-1	0	-2	-1	-1	-2	-9

- Deep learning and simulation
- Learning models of environments
 - Future prediction
 - Planning
 - Analysis by synthesis
- Coupled perception and control

Looking for interns! (Munich, Santa Clara)

End-to-end motion and depth estimation

Inverting ConvNets and perceptual metrics

Visualizing neurons and generating images

Sensorimotor control

Looking for interns! (Munich, Santa Clara)

