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Domain adaptation problem

‘Classical’ single-domain problem:

Multiple domains:
Source domain:
Target domain:

Examples:
● Speech recognition (each subject - single domain)
● Natural language processing
● Computer vision



Domain adaptation problem:
from images to videos
‘Classical’ scenario:
Train date Test data



Domain adaptation problem:
from images to videos
Real world:
Train date Test data
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Goals

● Being able to adjust to multiple domains simultaneously 
without losing performance on previously seen domains 
[unsupervised].

● Improve performance on the similar but unseen domains.

Two key ideas:
● Dynamically adjust number of model parameters as 

more data is seen by the model.
● Use temporal consistency to extract new informative 

samples.



Framework overview



Large Margin Embedding (LME-D)[1]

Minimize:

Inter-class constraints:

Detection constraints:

Similarity:

[1] K. Q. Weinberger and O. Chapelle. Large margin taxonomy embedding for document categorization. 
NIPS 2009



LME extension for online updates

Smooth maximum approximation:

Similarity:



LME extension for online updates

Representativeness constraints:

Discriminativeness constraints:

Detection constraints:

Minimize w.r.t. 



Samples selection

1. Select a confident detection:

3. Score the accept/reject the tube.

2. Propagate in time using optical flow:

4. Select samples based on confidence score



Evaluation
Activities of Daily Living Dataset[1]: 

mwave(*) soap(**) mAP ADL ImageNet

DPM[1] 20.1 2.5 9.35 -

GK[2] 41.19 0.2 17.73 -

LME-A 40.30 0.37 18.36 76.96

LME-D 39.87 0.35 14.78 78.91

IDE-LME 56.69 0.25 21.91 79.23

Model comparison with the baseline in terms of mAP and accuracy on the 
training domain (ImageNet); (*) - best performing class, (**) -worst 
performing class.

[1] Hamed Pirsiavash and Deva Ramanan. Detecting activities of daily living in first-person 
camera views. In CVPR  2012
[2] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain 
adaptation. In CVPR, 2012



Evaluation: detection examples

Examples of the correct detections of IDE-LME.

Projection of the learned 
embedding:



Evaluation
YouTube Objects Dataset[4] (test part):

boat(*) horse(**) mAP YTO ImageNet

DPM[3] 0.97 26.78 24.31 -

GK[2] 24.44 17.75 27.17 -

LME-A 35.20 25.86 30.80 79.91

LME-D 32.39 9.22 23.63 83.16

IDE-LME 42.26 11.83 27.28 83.20

Model comparison with the baseline in terms of CorLoc and accuracy on the 
training domain (ImageNet); (*) - best performing class, (**) -worst performing 
class

[3] V. Kalogeiton, V. Ferrari, and C. Schmid. Analysing domain shift factors between videos and 
images for object detection. Arxiv, 2015
[4] A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors 
from weakly annotated video. In CVPR, June 2012



Discussion and future work

● Easily extendable to fully neural-network-based model.

Z. Li, D. Hoiem “Learning without Forgetting”, ECCV 2016

● Samples selection - how to select the most informative samples 
without introducing drift?

● How to select neighbouring domains?

Takeaway: unlabeled data can be used to increase model 
performance in unsupervised manner.

Future research directions:


