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AI

Why combine vision and language?

Vision Language

Handicapped without 

grounding meaning in 

perception

Handicapped without the 

richness of natural 

language semantics



It is a bright summer day, 

the weather is fine with 

picturesque  clouds over the 

horizon. Sunflowers are 

growing in a field under the 

beautiful blue sky.
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Why combine vision and language?

•Social media analysis

•Security and surveillance

•AI assistants

•Summarization and retrieval

•etc…

Applications:
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What time of year is it?

Question Answering

Answer: summer

Xu and Saenko ECCV16

A crowd of people is looking at 

giraffes in a zoo.

Captioning
Hendricks et al, CVPR16

Ramanishka et al, ACMM16

Tasks:

How can we connect vision and language?

Person taking a photo?

Referring Expressions
Hu et al., CVPR16



Encode

[Donahue et al. CVPR’15]

[Sutskever et al. NIPS’14]

[Vinyals et al. CVPR’15]
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Encoder-decoder framework



MSR-VTT dataset

1. A black and white horse runs around.

2. A horse galloping through an open field.

3. A horse is running around in green lush grass.

4. There is a horse running on the grassland.

5. A horse is riding in the grass.

1. A woman giving speech on news channel.

2. Hillary Clinton gives a speech.

3. Hillary Clinton is making a speech at the conference of mayors.

4. A woman is giving a speech on stage.

5. A lady speak some news on TV.

1. A child is cooking in the kitchen.

2. A girl is putting her finger into a plastic cup containing an egg.

3. Children boil water and get egg whites ready.

4. People make food in a kitchen.

5. A group of people are making food in a kitchen.

1. A man and a woman performing a musical.

2. A teenage couple perform in an amateur musical.

3. Dancers are playing a routine.

4. People are dancing in a musical.

5. Some people are acting and singing for 

performance.

1. A white car is drifting.

2. Cars racing on a road surrounded by lots of people.

3. Cars are racing down a narrow road.

4. A race car races along a track.

5. A car is drifting in a fast speed.

1. A player is putting the basketball into the post from distance.

2. The player makes a three-pointer.

3. People are playing basketball.

4. A 3 point shot by someone in a basketball race.

5. A basketball team is playing in front of speculators.

Xu et al., CVPR 2016



Video description

1. A child is cooking in the kitchen.

2. A girl is putting her finger into a plastic cup containing an egg.

3. Children boil water and get egg whites ready.

4. People make food in a kitchen.

5. A group of people are making food in a kitchen.

Xu et al., CVPR 2016



Problems to be addressed:

• Temporal development of video

• Capture activities and small motion

• Capture information from audio

• Topic-aware model to capture language nuances



Advantages:
• End-to-end trainable
• Allows to capture temporal dynamics
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Challenge 1: Temporal development of video

Venugopalan et al., ICCV 2015
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Challenge 2: Capture activities and motion
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Challenge 3: Category-specific language

Autos:

Showing the latest car model

Sports:

Racing a car
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Challenge 3: Category-specific language
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With audio

Challenge 4: Capture sound
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Challenge 4: Capture sound
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Challenge 5: Factor language model

Science:

Cooking:

“man”, “talking”

“woman”, “cooking”



Network of experts

Challenge 5: Factor language model

Autos

Science

Cooking

CIDEr

CNN 0.400

+C3D 0.411

+category 0.418

+audio 0.442

experts 0.465

…

“A grill that attaches to the back of a car is 

shown”

“A narrator speaks over a promotional 

video from a car manufacturer about 

the innovations the manufacturer has 

made to cars”

“A man is talking about a car”

Reference descriptions:



CIDEr

audio 0.184

categories 0.236

C3D 0.389

CNN 0.400

+C3D 0.411

+category 0.418

+audio 0.442

experts 0.465

Summary

• Temporal development of video

-> Encoder – Decoder approach (S2VT)

• Capture activities and motion

-> C3D representation extracted from 16 frame batches

• Capture sound and audio

-> MFCC as audio features

• Topic-aware model to capture language differences

-> Network of experts



ACM MM 2016 Video Description Challenge

Human evaluation

Rank Team Organization Coherence Relevance Helpful for blind

1 Aalto Aalto University 3.263 3.104 3.244

2 v2t_navigator RUC & CMU 3.261 3.091 3.154

3 VideoLAB UML & Berkeley & UT-Austin 3.237 3.109 3.143

...

21



ACM MM 2016 Video Description Challenge

Automatic evaluation

Rank Team Organization BLEU@4 Meteor CIDEr-D ROUGE-L

1 v2t_navigator RUC & CMU 0.408 0.282 0.448 0.609

2 Aalto Aalto University 0.398 0.269 0.457 0.598

3 VideoLAB UML & Berkeley & UT-Austin 0.391 0.277 0.441 0.606

…

21



Visual Saliency

Predicted sentence: A woman is cutting a piece of meat
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Spatial localization (almost) for free
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Spatiotemporal saliency

Predicted sentence: A woman is cutting a piece of meat



Spatiotemporal saliency
phone woman



Image captioning with the same architecture
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Image captioning with the same architecture

Input query: A man in a jacket is standing at the slot machine



Flickr30kEntities

Plummer et al., ICCV 2015



Flickr30kEntities



Flickr30kEntities



Video summarization: predicted sentence



Video summarization: arbitrary query



Video summarization: arbitrary query



Video summarization: arbitrary query
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