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Why combine vision and language?
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Why combine vision and language?
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Applications:

*Social media analysis
*Security and surveillance
Al assistants
*Summarization and retrieval
etc...

LANGUAGE
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It is a bright summer day,
the weather is fine with
picturesque clouds over the
horizon. Sunflowers are
growing in a field under the
beautiful blue sky.




How can we connect vision and language?
Tasks:

. . Hendricks et al, CVPR16
Captioning Rramanishka et al, ACMM16

] Hu et al., CVPR16
Referring Expressions

Person taking a photo?

] Xu and Saenko ECCV16
Question Answering




Encoder-decoder framework
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[Sutskever et al. NIPS'14]

[Donahue et al. CVPR’15]
[Vinyals et al. CVPR’15]

[Venugopalan et. al.
NAACL’15]

[Venugopalan et. al.
ICCV’15]



MSR-VTT dataset
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*1 " HILLARY CLINTON SPEAKS ABOUT CHARLESTON MASSACRE "

1. A black and white horse runs around. 1. A woman giving speech on news channel. 1. A child is cooking in the kitchen.

2. A horse galloping through an open field. 2. Hillary Clinton gives a speech. 2. A girl is putting her finger into a plastic cup containing an egg.
3. A horse is running around in green lush grass. 3. Hillary Clinton is making a speech at the conference of mayors. 3. chjldren boil water and get egg whites ready.

4. There is a horse running on the grassland. 4. A woman is giving a speech on stage. 4. People make food in a kitchen.

5. A horse is riding in the grass. 5. A lady speak some news on TV. 5. A group of people are making food in a kitchen.

1. A white car is drifting.

1. A man and a woman performing a musical. ” 1. A player is putting the basketball into the post from distance.
2. A teenage couple perform in an amateur musical. 2. Cars racing ona road surrounded by lots of people. 2. The player makes a three-pointer.

3. Dancers are playing a routine. 3. Cars are racing down a narrow road. 3. People are playing basketball.

4. People are dancing in a musical. 4.A race car races along a track. 4. A 3 point shot by someone in a basketball race.

5. Some people are acting and singing for 5. A caris drifting in a fast speed. 5. A basketball team is playing in front of speculators.
performance.

Xu et al., CVPR 2016



Video description

1. A child is cooking in the kitchen.

2. A girl is putting her finger into a plastic cup containing an egg.
3. Children boil water and get egg whites ready.

4. People make food in a kitchen.

5. A group of people are making food in a kitchen.

Xu et al., CVPR 2016



Problems to be addressed:

« Temporal development of video
» Capture activities and small motion

« Capture information from audio

« Topic-aware model to capture language nuances
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Challenge 3: Category-specific language ReSNet
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Challenge 4: Capture sound

With audio
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Challenge 4: Capture sound
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Challenge 5: Factor language model Reference descriptions:

“A man is talking about a car”

“A narrator speaks over a promotional
video from a car manufacturer about
the innovations the manufacturer has
made to cars”

CIDEr

CNN 0.400

+C3D 0.411

“A grill that attaches to the back of a car is

+category | 0.418
shown”

+audio 0.442

experts 0.465

Network of experts



audio 0.184
categories | 0.236
C3D 0.389
CNN 0.400
+C3D 0.411
+category | 0.418
+audio 0.442

experts

0.465

Summary

« Temporal development of video
-> Encoder — Decoder approach (S2VT)

« Capture activities and motion
-> C3D representation extracted from 16 frame batches

« Capture sound and audio
-> MFCC as audio features

« Topic-aware model to capture language differences
-> Network of experts



ACM MM 2016 Video Description Challenge

Human evaluation

Rank Team Organization Coherence Relevance Helpful for blind
1 Aalto Aalto University 3.263 3.104 3.244
2 v2t_navigator RUC & CMU 3.261 3.091 3.154
3 VideoLAB UML & Berkeley & UT-Austin~ 3.237 3.109 3.143

21



ACM MM 2016 Video Description Challenge

Automatic evaluation

Rank Team Organization

1 v2t_navigator RUC & CMU

2 Aalto Aalto University

3 VideoLAB UML & Berkeley & UT-Austin

21

BLEU@4 Meteor

0.408
0.398
0.391

0.282
0.269
0.277

CIDEr-D
0.448
0.457
0.441

ROUGE-L
0.609
0.598
0.606



Visual Saliency

Predicted sentence: A woman is cutting a piece of meat




Approach
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Spatial localization (almost) for free
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Spatiotemporal saliency

Predicted sentence: A woman is cutting a piece of meat

woman cutting piece meat



woman

Spatiotemporal saliency

a man is talking about a phone

a woman is skating on the snow




Image captioning with the same architecture
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Image captioning with the same architecture

Input query: A man in a jacket is standing at the slot machine




Flickr30OkEntities
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A man with pierced ears is wearing glasses and an orange hat. A couple in their wedding attire stand behind

A man with glasses is wearing a beer can crotched hat. with a wedding cake and flowers.

A man with gauges and glasses is wearing a Blitz hat. A bride and groom are standing in front of their wedding
A man in an orange hat starring at something. cake at their reception.

A man wears an orange hat and glasses. A bride and groom smile as they view their wedding

cake at a reception.
A couple stands behind their wedding cake.
Man and woman cutting wedding cake. Plummer et al" ICCV 2015



Flickr3OkEntities

An elderly man sleeps sitting up on the end of a red couch
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An old man is sitting alone on a couch and sleeping .

W et | iAnoKd mat & couch

An elderly man the end of a red couch

Old man wearing a hat and coat sleeping sitting up on a sofa .
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Flickr30OkEntities
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Video summarization: predicted sentence

a man is driving a «car



Video summarization: arbitrary query

a car Is driven by the



Video summarization: arbitrary query

a car on the sand



Video summarization: arbitrary query

sky over “horizon with
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