
LogCut - Efficient Graph Cut Optimization for Markov Random Fields

Victor Lempitsky
Moscow State University

victorlempitsky@gmail.com

Carsten Rother
Microsoft Research Cambridge

carrot@microsoft.com

Andrew Blake
Microsoft Research Cambridge

ablake@microsoft.com

Abstract

Markov Random Fields (MRFs) are ubiquitous in low-
level computer vision. In this paper, we propose a new ap-
proach to the optimization of multi-labeled MRFs. Simi-
larly to α-expansion it is based on iterative application of
binary graph cut. However, the number of binary graph
cuts required to compute a labelling grows only logarith-
mically with the size of label space, instead of linearly. We
demonstrate that for applications such as optical flow, im-
age restoration, and high resolution stereo, this gives an
order of magnitude speed-up, for comparable energies. It-
erations are performed by “fusion” of solutions, done with
QPBO which is related to graph cut but can deal with non-
submodularity. At convergence, the method achieves optima
on a par with the best competitors, and sometimes even ex-
ceeds them.

1. Introduction

Markov Random Fields (MRFs) are ubiquitous in low-
level computer vision, finding applications in image restora-
tion, stereo matching, texture analysis, segmentation and
elsewhere. Here we are concerned with energy minimiza-
tion in multi-label problems, such as stereo where the labels
represent disparities, or image restoration where the labels
are discrete intensity levels. A powerful technique for op-
timization with binary labels is graph cut [5] and this can
be extended approximately to multi-label problems, using
so-called α-expansion [3]. Unfortunately, α-expansion has
intrinsically linear time-complexity, since it visits labels ex-
haustively. On the other hand, in numerical optimization it
is common to exploit the regularity of simple energy func-
tions to avoid exhaustive search of label space — e.g. binary
subdivision in one-dimension. This suggests that MRF en-
ergies might be optimized in better than linear time, once
the label space has some structure.

The LogCut algorithm proposed here deals with the label
space by binary subdivision rather than label by label. In-
stead of applying graph cut once for each possible value of
the labels, it is applied at successive bit-levels, starting with

200 400 600 800 1000

2

4

6

8

10

12

14

Number of labels

T
im

e
 f

o
r

o
n

e
 i
te

ra
ti
o

n

Alpha Expansion

TRW−S

LogCut

Figure 1. Each iteration of the LogCut algorithm has logarith-
mic complexity. A single iteration (sweep) of α-expansion has
time-complexity that is linear in the size of the label space, since
each label value must be visited once. Similarly another compet-
itive algorithm, TRW-S, has linear complexity. However for Log-
Cut, because of its divide and conquer approach in label space,
execution time grows much more slowly (nearly logarithmically)
with the size of label space. Results here are averaged over a test
data set for the application of image restoration.

the most significant. Thus the time-complexity of LogCut,
for a single sweep through the labels, is logarithmic in the
size of the label set rather than linear, as figure 1 shows.
Note that, in addition to computation time for graph cut
as shown, it is necessary to prepare by computing the val-
ues of unary potentials in the MRF. For certain models (see
later) this turns out also to incur only logarithmic complex-
ity. Generally, there may be a linear-time overhead but, in
practice, it is typically insignificant compared with the com-
putation time for graph cut.

Importantly, such a binary subdivision process makes
hard decisions about more significant bits before processing
less significant bits. To compensate for this, we propose to
reiterate the LogCut algorithm by using different hierarchi-
cal partitions of the label space, corresponding to different
bit codings of the labels, and leading to different solutions.
These solutions are combined in an optimal way via addi-
tional graph cut operations, which we call fusion moves.

1

To summarize, the paper develops the LogCut algorithm
in terms of three new ideas: binary subdivision of label-
space, learned bitwise approximation of pairwise potentials
and fusion of successive sweeps. The effectiveness of Log-
Cut, especially in reducing computation time and also in
achieving good approximate optimization of MRF energy,
is validated against three important vision problems with
structured label spaces: image restoration, stereo matching
and optic flow computation.

2. Energy Minimization
The form of optimization problem considered here is the

minimization of an energy E, defined over a set of inte-
ger labels x = (x1, . . . , xN) at nodes V = {1, . . . , N}.
The nodes form a graph with a neighbourhood structure
defined by the set of arcs E . Labels take integer values
xm ∈ {1, . . . ,K}. The energy E is assumed decompos-
able into a sum of functions on nodes and edges:

E(x) =
∑
m∈V

fm(xm) +
∑

(m,n)∈E

γm,ngm,n(xm, xn). (1)

Here the regularization parameter γm,n, adjusts the balance
between unary and pairwise terms. In some models the spa-
tial variation of γm,n is data-dependent; alternatively it may
be spatially constant so γm,n = γ. In this paper we con-
sider MRFs with a simple four-connected neighbourhood
system, which is however not a restriction imposed by our
optimization method. Such problems are central to Markov
Random Field (MRF) approaches to key vision problems
such as image restoration [7], stereo matching [3], surface
reconstruction [1] and image segmentation [2]. It is also as-
sumed that while unary potentials are data-dependent, the
pairwise terms may have data-dependence in the γm,n but
not in the gm,n(xm, xn) terms.

We make the following choices of energy functions for
experiments. There is no restriction on the unary fm.
For the pairwise term we use a truncated power law g =
trunc(λ), that is: g(x, x′) = min((x − x′)p/λ, 1) , taking
the quadratic case p = 2. In the particular case λ = 1, we
obtain the well known Potts model. There are now two un-
fixed parameters of the model, γ, λ, against which we will
investigate the performance of our algorithm.

Binary MRF optimization For a binary label space,
xm ∈ {0, 1}, the optimization problem above is solvable
exactly by graph cut [13] provided the energy E is submod-
ular. Submodularity in this case boils down to the condition
that all the pairwise terms are diagonally subdominant, that
is g(0, 1) + g(1, 0) ≥ g(0, 0) + g(1, 1). If the condition is
not met, alternative algorithms are available. For example
truncated graph cut [17] modifies the energy where needed
to ensure that submodularity holds. Alternatively Quadratic
Pseudo-Boolean Optimization (QPBO) [8] gives a solution

which is exact (for boolean optimization), but is not guaran-
teed to give complete solutions — that is, the labelling may
be unknown at certain points on the graph. As we will see
for our applications it usually turns out to be known almost
everywhere.

Multi-label MRF optimization In the more general set-
ting of integer labels xm ∈ {1, . . . ,K}, graph cut does not
apply directly, and exact methods are not available (apart
from very special cases e.g. when pairwise terms are con-
vex [9]). Effective approximate methods are known how-
ever, and they include α-expansion [3], Belief propagation
(BP) [16] and Tree-Reweighted message passing (TRW-S)
[10]. Message passing techniques (BP and TRW-S) apply
to any energy function of the form of (1) but are restricted
to local moves at each of its iterations. TRW-S optimizes
a lower bound on the energy, and for binary label case it
is guaranteed to converge to the global optimum under cer-
tain conditions (see [12]). The α-expansion algorithm [3]
involves global moves based on binary graph cut and typ-
ically converges to low energy solutions in a few sweeps
over label space.

2.1. The α-expansion algorithm

Since the ideas of iterative α-expansion play a cen-
tral role in this paper we review it in more detail.
An α-expansion step takes a suboptimal solution x =
(x1, . . . , xN) to the optimization problem and replaces it
with an improved solution x∗, by either keeping the origi-
nal label or replacing it with a fixed label α, at each pixel
location. The optimization is miny E(x) where xm =
(1− ym)xm + ymα. At each step, the value of E decreases
(or stays the same). By visiting all label values α in some
sequence, and repeating the sequence, E is approximately
optimized. In order for the α-expansion step to be solvable
by graph cut, the binary optimization with respect to y must
meet the submodularity requirement or alternative methods
(see above) must be used. For instance, the Potts model
meets the condition, but the truncated quadratic does not.

2.2. Generalized α-expansion: The fusion move

One new idea of this work is a generalization of α-
expansion to combine two solutions to the optimization
problem. Suppose x′ and x′′ are each trial solutions to the
optimization problem. Then the fusion move is a binary op-
timization that fuses two solutions, giving the combined so-
lution x that minimizes E(x) as before, but where now the
auxiliary binary variables y are:

xm = (1− ym)x′m + ymx′′m, (2)

switching between two solutions x′ and x′′. Note that an α-
expansion move, an α−β swap move and a jump move, are
special cases of a fusion move, e.g. in an α-expansion move

Figure 2. Parallelized α expansion based on fusion move. Stereo matching for the Tsukuba data set. Solutions 1 and 2 are computed by
two α-expansions, done in parallel, on the lower and upper halves of the label space. They are combined by fusion into a solution with an
energy much below either solution 1 or 2, and on a par with α-expansion. (note that QPBO had no unlabelled nodes in in this example.)

Figure 3. Comparing various algorithms with logarithmic com-
plexity. Restoration of images under two different models: trun-
cated quadratic (blue) and near-Potts (red). For each algorithm
(see below for definitions of algorithms), the result of just a sin-
gle iteration is shown. LogCut, as proposed in the paper, performs
close to α-expansion (AExp), and is the only algorithm to do so,
consistently, across both models. (See section 5 for details of the
restoration problem and the two models.)

one of the two solutions is the constant image x′′m = α. One
application of the fusion move is parallelized α-expansion
in which each process deals with a subset of labels, and the
results are then fused. The idea is illustrated in figure 2.

The fusion problem is generally non-submodular, no
matter what the form of the pairwise potentials may be.
Therefore, for the binary optimizer in fusion moves, we use
QPBO. If QPBO returns unlabeled nodes, there are several
available strategies to guarantee that the energy does not go
up. The fastest solution is to take the labels of all unla-
beled nodes from either solution x′ or x′′, whichever has
the lower energy. (as a direct consequence of the “persis-
tency” property [11] the resulting solution is guaranteed to
have an energy less or equal than the energies of x′ and x′′).
In practice, we found that for 4-connected vision MRFs the
number of unlabelled nodes with fusion move is typically
very low (e.g. < 1%).

3. Algorithms with Logarithmic Complexity

Although α-expansion is computationally effective, its
computational complexity is an issue in that it grows lin-
early with the size K of the label space, and this is because
each label k must be visited once in an iteration. A natu-
ral approach to overcome this problem is to deal with label

space hierarchically, via divide-and-conquer. If label-space
is partitioned successively according to values of binary bits
b = 1, . . . , B, with B = log K, starting with the most sig-
nificant, the labelling of a given pixel can be achieved by
executing a tree of binary classification steps. In principle
this should achieve logarithmic computational complexity,
that is a speed-up of order K/ log K, and experimental re-
sults (section 5) will bear this out.

In the following we introduce various algorithms based
on different approximation schemas. The performance of
the different algorithms for one particular test application
(image restoration) is shown in fig 3. The best performing
algorithm — a trained binary subdivision algorithm, intro-
duced in section 3.4, is the algorithm we term LogCut that
is proposed in this paper.

3.1. Simple Binary Subdivision

Logcut achieves log-time complexity by representing the
integer value at each pixel m as a B-bit word:

xm =
B−1∑
b=0

xb
m 2b. (3)

This can be seen as a binary optimization problem with
N log(K) variables, effectively an MRF with large cliques
each of maximum size log(K). This would appear to be in-
tractable to optimization by conventional methods. There-
fore, retaining the original small-clique MRF structure, the
optimization problem is to be solved by iterating over the
bit-array xb = (xb

1, . . . , x
b
m). This starts with the most sig-

nificant bit b = B − 1 and sweeps down to the least signif-
icant, b = 0. At each level, binary optimization could be
solved by graph cut, in principle, though submodularity is
an issue. Then, instead of needing a number of iterations
that grows linearly with N the number of levels, as for α-
expansion, only a logarithmic number of steps is required.

However there is a problem. Consider an intermediate
step, when optimization with respect to bits b+1, . . . , B−1
has been done, and now it is time to optimize with respect
to bit xb

m at each pixel. While this optimization is occur-
ring, to what value should the remaining less significant bits

xb−1
m , . . . x0

m be set? They could simply be set to zero. We
call this simple strategy, when applied repeatedly to succes-
sive bitplanes, Log Expansion (LE). In practice (figure 3),
Log Expansion is far less effective than α-expansion.

3.2. Lower bound approximations

Rather than simply setting less significant bits to zero,
an alternative idea is to use a lower bound. This means
when we optimize over a bit-level b (assuming levels b +
1, . . . , B − 1 were already considered), an approximate en-
ergy Eb is used, defined over the new bit variables, as fol-
lows:

Eb =
∑
m∈V

f b
m(xb:B−1

m)+ γ
∑

(m,n)∈E

gb
m,n(xb:B−1

m , xb:B−1
n),

(4)
where xb1:b2

m denotes (xb1
m , . . . , xb2

m), and

f b
m(xb:B−1

m) = min
x0:b−1

m

fm(xm) subject to xb:B−1
m fixed.

(5)
Note that, in the case that the unaries are a known function,
for example a quadratic of the form (x − d)2 as in image
restoration (see later), the minimization (5) can be done in
constant time, rather than time proportional to 2b. This re-
duces the formal complexity of LogCut from linear to log-
arithmic in label-set size. In practical settings, for general
unaries, the (linear) time to evaluate (5) is in any case dom-
inated by the logarithmic time for graph cut. Similarly, for
the pairwise terms,

gb
m,n(xb:B−1

m , xb:B−1
n) = min

{x0:b−1
m ,x0:b−1

n }
gb

m,n(xm, xn)

(6)
subject to xb:B−1

m , xb:B−1
n being fixed. It is straightforward

to show that this is indeed a lower bound, that is:

min
xb:B−1

Eb(xb:B−1) ≤ min
x

E(x). (7)

It is also clear that as γ → 0 (approaching the trivial prob-
lem in which pairwise terms are switched off) the bound
becomes exact. This is not the case for the earlier strat-
egy of setting lower order bits to zero. However, despite
the intuitive appeal of the lower bound strategy, it performs
substantially worse than the simple LE algorithm above, as
figure 3 shows (columns labelled min). The min operation
used in the definition can be replaced with other operations,
and specifically we consider the mean approximation con-
structed in this way. Figure 3 shows that mean also performs
far worse than α-expansion.

3.3. Least squares approximation

One could argue for various other forms of approxima-
tion, but instead we propose to introduce greater flexibil-
ity by learning the approximation to the pairwise potential.

One approach to learning is to construct a least-squared er-
ror approximation gb

m,n to gm,n at each bit level. Taking
gm,n to be a function of the difference ∆xm,n = xm − xn,
gives the approximations

gb
m,n =

∑
∆xb+1:B−1

P (∆x0:b | ∆xb+1:B−1)gm,n(∆xm,n).

(8)
The expectation is computed from training data consisting
of a separate set of images for which the optimal solution
x has been estimated by a “reference” method, taken here
to be the best algorithm, TRW or α-expansion depending
on energy model. Figure 3 shows (see results labelled LS)
that this form of learned approximation is an improvement
over previous approximations (LE, min, mean) but still not
uniformly as good as α-expansion.

3.4. Trained parametric approximation

Availability of training data also suggests another way
of choosing approximate pairwise potentials gb

m,n. Given a
set of pairwise potentials G = {gb

m,n}b=1..B , the sequen-
tial computation of bit levels on a training data-set, using
these approximate pairwise potentials, produces a solution
x(G). (Training data, for image reconstruction for instance,
typically consists of several training images, to avoid over-
learning.) It is natural to seek for the potential set G that
results in the smallest training energy E(x(G)). In models
used here, where gm,n is a truncated quadratic truncλ, the
approximated, pairwise potentials can be represented in a
similar parametric form:

gb
m,n(.) = µb truncλb , 0 ≤ µb ≤ 1, 0 ≤ λb ≤ λ. (9)

In that way, the set G of approximated potentials
is defined by a vector with 2B elements: G =
{λ1, µ1, λ2, µ2, . . . λB , µB}. To optimize the training en-
ergy E(x(G)), we iterate over bit levels. While visiting bit
level b the vector elements corresponding to all other bit lev-
els are fixed and E(x(G)) is minimized with respect to µb

and λb. (The evaluation of E(x(G)) is done, as previously,
by a single sweep of QPBO through the bit levels.) For the
2D search over (µb, λb) exhaustive search is feasible, given
the limited range of both variables, but the simplex method
[15] is more efficient. Typically, the optimization process
converges after 2 − 3 iterations over all bit levels. Initial
values have to be chosen for G (for example from optimiza-
tion using the “min” approximation above). In practice, we
have found that the value of Etrain(x(G)) achieved after
optimization is largely independent of those initial values.

Details of the performance of LogCut optimization of
test data, using learned pairwise potentials as above, are
given in succeeding sections. For now, note (figure 3)
that its performance is very close to one iteration of α-
expansion. Its computation time however, as we saw in fig-
ure 1, is very much shorter.

4. Iterated LogCut Algorithm
Irrespective of the choise of binary potentials, LogCut

has to make hard desicions about more important bits before
going to bits with lower importance. To make the algorithm
robust to the errors made by these hard desicions, differ-
ent bit codings may be considered, and this is done by the
iterated LogCut algorithm. This algorithm starts with the
solution x0 obtained by applying a single LogCut sweep as
before. Then in each subsequent iteration, a shift s is in-
troduced and applied to label values. The effect is that the
binary coding (3) is now applied to x + s (mod K) rather
than to x, and the result of a single sweep in the shifted la-
bel space is denoted xs. The current solution is then fused
with the xs to give a new solution with decreased energy.

The effectiveness of iterated LogCut depends on the par-
ticular choice of label shifts s. It is in fact quite effective
to select a shift s randomly but results with the following
Maximum Regrouping strategy turn out to be a little more
consistent. Define the regrouping distance between shifts
to be:

rb(s1, s2) =
1
2
−

∣∣∣∣ |s1 − s2| mod 2b

2b
− 1

2

∣∣∣∣ , (10)

which varies between 0 and 1
2 . When rb(s1, s2) = 0, s1 and

s2 differ by a multiple of 2b, and the subdivision of labels at
level b, for each of the two shifts, are identical. Conversely,
the largest possible value rb(s1, s2) = 1

2 implies that the
corresponding groups of labels at level b are offset by half of
the group size, giving maximal regrouping of labels. Total
regrouping distance is naturally defined as a sum over bit
levels:

r(s1, s2) =
B∑

b=1

rb(s1, s2). (11)

Now, at each iteration of LogCut, the shift that is the most
distant from all previous shifts, according to (11), is chosen.
This encourages the maximum diversity amongst the solu-
tions to be fused. These fused iterations prove effective in
optimizing energy further than is possible with just a single
iteration and results are given later in section 5. The entire
iterated LogCut algorithm is summarized in figure 4.

Importantly, iterated LogCut spends most of the time on
obtaining solutions rather than fusing them. Consequently,
the algorithm may be efficiently parallelized: the solutions
for different s may be computed in parallel on different pro-
cessors and fused afterwards.

5. Experiments
In this section we validate experimentally the perfor-

mance of the iterated LogCut algorithm in three differ-
ent domains: image restoration, stereo matching and optic
flow computation. These domains exhibit significant gains
in computational efficiency for LogCut compared with α-
expansion, efficient BP, and TRW-S. The gains become

Training
Define Eb for each bit-level b (4)
with f b (5) and gb trained (sec. 3.4)

Optimization
Initialization
Optimize E using one trained LogCut sweep → x0

Iteration
Run until convergence (i.e. until xt = xt−1):

Pick a shift s (sec. 4)
Obtain labeling x using shift s and

trained LogCut sweep (sec. 3.1)
xt → fuse(xt−1,x) (sec. 2.2) (using QPBO)

xt at convergence is the final solution

Figure 4. A summary of the LogCut algorithm

more marked as the size of label space increases, and so the
highest gains occur for optic flow, where the vector nature
of the labels requires a large (e.g. 10-bit) label space.

Applications and Data Sets. Fig 5 shows typical test and
training images used with LogCut. For image restoration
we have used 10 training and 10 test images from the Corel
database (approx. 240×160 gray scale images) which gives
a label space of 8 bits. As in previous work [19, 6] we
added Gaussian noise to all images and obscured portions
of the image, creating areas where the unary is fixed to 0,
and have therefore effectively to be inpainted. As above, we
used either model 1: λ = 200, γ = 2000 or model 2: λ =
4, γ = 5000. For historical continuity, we also performed
the restoration of the single penguin image, using exactly
the same setup as in [19, 6] (λ = 200, γ = 5000).

For stereo matching, we have used 9 registered datasets
recently introduced in [18]. To obtain good-looking results
without intricate occlusion reasoning, we used a trinocu-
lar setup, where depth maps were recovered for middle im-
ages and the unaries were computed by taking minima of
(sampling-insensitive, truncated SAD) matching costs with
the left and the right images. For pairwise terms, we used
λ = 4, which deals better with slanted surfaces than a pure
Potts model. As is commonly done, we used edge-adaptive
regularisation γm,n in which if the color difference along an
edge is large enough, γm,n = 50, otherwise γm,n = 150.
The experiments were carried either at full resolution (im-
age size = 1390 × 1110, 8-bit label space) or at downsam-
pled resolution (image size = 458× 356, 6-bit label space).
In the former case, the sheer dataset size means that TRW-S
is infeasible, and permits the use of only one training dataset
(4 datasets were used for training at small resolution). Re-
spectively, either 8 or 5 datasets were left for testing.

For the optical flow evaluation, we used a standard
benchmarking Yosemite sequence (version with clouds).
The motion vectors were discretized into 32 × 32 lattice

Figure 5. Data sets. Examples of training (a,d,f) and test (b,c,e,g) images for image restoration (a-c), high (and low) resolution stereo (d,e)
and optical flow (f,g). Black areas in (a-c) mean obscured image portions.

Problem Bits Speed-up
1st iter

Energy diff
1st iter

Energy diff
converg.

Low-res stereo 6 4.9 (1.6) +2.6% -0.3%
High-res stereo 8 9 (2.2) +3.6% -0.2%
Image restor.

model 1
8 12.4 (6.1) +0.5% -2.6%

Image restor.
model 2

8 11 (–) +4.4% +0.3%

Optical flow 10 20.7 (10.3) +2.5% -2.4%

Figure 6. LogCut is substantially faster than α-expansion. The
speed up is given as the ratio of computation times for α-expansion
vs. LogCut, for one iteration. (In brackets we give time ratio based
on running LogCut until its energy matches that after one iteration
of α-expansion.) Energy differences (LogCut minus α-expansion)
are shown after one iteration and at convergence. It is clear that
the speed advantage of LogCut increases with the number of bits
used for label-space.

(with 1/4-pixel step). For the bit coding of labels, we in-
terleave the bits corresponding to the horizontal and the
vertical components. For unaries we used truncated SAD
difference, while for pairwise terms we used 2D truncated
quadratic potential g(v, v′) = min(((vx − v′x)2 + (vy −
v′y)2)/λ, 1) with λ = 16 and edge-adapting γ = 150/300.
A single frame pair from a completely different dataset
(Berkeley ”table tennis”) was used for training.

Overall Performance. We compared LogCut to α-
expansion [3] and TRW-S [10], which are known to be the
best methods for typical vision MRF optimization problems
[19]. For image restoration problems, we also considered
efficient BP [6] (authors’ implementation). All algorithms
were either run until convergence or stopped after a long
runtime. If the size of the label space and images get large,
for high resolution stereo and optical flow, TRW-S was in-
feasible to run due to working memory limitations.

Non-submodular terms during α-expansion were han-
dled by truncated graph cut [17] computed with maxflow
algorithm [4] (QPBO was also tried but the marginal im-
provement in energy did not justify the increased computa-
tional expense). We also used random order of visiting dif-
ferent αs during each iteration of α-expansion as this was
found to be superior over linear order. Note that our com-
parison did not consider the two very recent improvements
of α-expansion [14, 20] ([14] suggested a way to acceler-
ate α-expansion by the exploitation of a dual of the prob-

lem; however, it does not reduce the time required for the
first sweep. [20] proposed a generalization of α-expansion
based on range moves, which is capable of obtaining lower
energy values at a price of longer runtime.)

The comparisons are presented in the form of time-
energy plots (figure 10) and a comparison table (figure 6).
All results are averaged over respective test sets. For a num-
ber of problems, we present selected resuls (figures 7, 8, 9).
Note that the time required for MRF construction step (allo-
cating initial structures, setting values for initial unary and
pairwise terms) was not included in the statistics. As can
be seen, LogCuts outperforms the competitors when ter-
minated early in that, for a given degree of approximation
of energy, LogCut requires substantially less computation
time.

It is well known that α-expansion is especially well
suited to optimizing Potts model energies [19]. This is be-
cause an expansion move proposes a constant label which
attracts zero penalty under the Potts model. Even in the
Potts regime, we see that LogCut is competitive (figure
10b). Away from the Potts regime, where α-expansion is
weaker, LogCut has a substantial advantage (figure 10a,c,f).

The requirement for offline training in LogCut is indeed
an additional burden. In mitigation, however, just a single
training image has often proved sufficient (high-res stereo
and optical flow experiments). In fact we have examined
that for image restoration model 1 and 2, that in the extreme
case of taking just one single training image, the highest
energy on the test set (after one iteration) was only 1.5%
higher than training on all training images. Secondly, train-
ing data does need not be especially similar to test data, so
one set of trained potentials should suffice for a wide range
of test data.

Which binary optimizer? We have chosen to use QPBO
for all binary optimization problems, for the following rea-
son. For the image restoration model 1, for all test im-
ages, the percentage of non-submodular terms was always
below 3% during LogCut sweeps, and below 2% during a
fusion step. For model 2, the percentages are lower still.
For QPBO this always gave less than 0.003% unlabeled
nodes during a LogCut sweep and under 0.4% during fu-
sion. The result is that LogCut with QPBO consistently
achieves lower energies than LogCut with truncated graph
cut in comparable runtime.

LogCut(1 it) LogCut(3 it) Eff.BP(1 it) TRW-S(1 it) α-exp(1 it) LogCut(20 it) TRW-S(40 it)
0.5sec. E=161 1.5sec. E=154 2.1sec. E=266 2.3sec. E=161 4.7sec. E=158 9.6sec. E=152 90sec. E=151

Figure 7. Image restoration of the penguin image. Various result images of different optimization techniques ordered in term of runtime.
LogCut achieves in the shortest runtime a visually pleasing result (second image). Red arrows point out incorrect reconstructions.

Figure 8. High Resolution Stereo. Different results of LogCut and α-expansion. The first result of LogCut recovers the main depth levels
correctly. Running both LogCut and α-expansion for a long time improves results slightly (see pattern of the basket - original image in fig
5). The ground truth is seen from a slight different viewpoint where red pixels could not be computed.

α-exp (6 iter.) LogCut (2 iter.) LogCut (64 iter.) ground truth
390 sec. E = 8773 8.0 sec. E = 8767 150 sec. E = 8469 (sky motion is approximate)

Figure 9. Optical flow fields for the last frame pair of Yosemite sequence (hue = direction, value = magnitude). α-expansion solution is
very slow to compute and has erroneous sharp transitions. As LogCut proceeds, it outperforms final α-expansion result at 2nd iteration.
After convergence it yields a smooth solution with much lower energy.

6. Conclusions and Discussion
The LogCut algorithm has proved to be an efficient algo-

rithm for multi-label energy minimization, reducing time-
complexity from linear in the size of label space to log-
arithmic. In practice this has achieved computation time
reductions of up to an order of magnitude on various key
problems in computer vision, compared with state of the art
algorithms: α-expansion and TRW-S. Further speedup may
be easly obtained by a parallelization of different LogCut it-
erations. In terms of closeness to optimality at convergence,
LogCut is on a par with α-expansion and TRW-S or better,
depending on the nature of the energy model.

In return for the advantage in computationally efficiency,
LogCut requires its additional offline learning step. Firstly,

this requires the provision of suitable training data, and sec-
ondly hits practical limitations on working memory, espe-
cially with larger training sets, and larger label spaces. It is
hoped that future work may shed light on the structure of
the learned pairwise potentials, in order to simplify or even
eliminate the learning procedure.

In the models used in the paper, we have assumed a nat-
ural ordering of labels, in that they are integers representing
physical quantities. It is an open question whether an effec-
tive learning procedure could be developed for unordered
labels. Another area of possible extension is to MRF mod-
els with larger cliques, which are of interest for filter bank
and patch models of images. This would depend on whether
suitable parametric models could be found to represent ap-
proximate, learned potentials over these larger cliques.

0 10 20 30 40 315 325
2.66

2.7

2.74

2.78

time (sec)

m
e

a
n

 e
n

e
rg

y

BP

TRW−S

α−Expansion

LogCut

x107

0 20 40 300

4

5

6

7

m
e

a
n

 e
n

e
rg

y

BP

TRW−S

LogCut

α−Expansion

time (sec)

x107

0 5 10 15 20 25 57 58
1.5

1.65

1.6

1.7

1.55

time (sec)

e
n

e
rg

y

BP

TRW−S

α−Expansion

LogCut

x107

a) image restoration - model 1 b) image restoration - model 2 c) image restoration - penguin

0 20 40 60 80 140
1.9

2

2.1

2.2

time (sec)

m
e

a
n

 e
n

e
rg

y

TRW−S

α−Expansion

LogCut

x106

0 500 1000 1500
1.76

1.8

1.84

1.88
x 10

7

time (sec)

m
e

a
n

 e
n

e
rg

y

α−Expansion

LogCut

0 100 200 300 400
8.6

8.8

9

9.2

9.4
x 10

5

time (sec)

m
e

a
n

 e
n

e
rg

y

α−Expansion

LogCut

d) low resolution stereo e) high resolution stereo f) optical flow
Figure 10. Averaged time-energy plots for different types of problems suggest that LogCut outperforms competitors when terminated
early, requiring substantially less computation time to achieve equivalent energy. For stereo and optical flow, it even outperforms competi-
tors in energy achieved at convergence. (Each marker on curves represents one iteration of optimization.)

References
[1] A. Blake and A. Zisserman. Visual Reconstruction. MIT

Press, Cambridge, USA, 1987.
[2] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal

boundary and region segmentation of objects in N-D images.
In ICCV, pages 105–112, 2001.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. TPAMI, 23(11), 2001.

[4] Y. Boykov and V.Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. TPAMI, 26(9), 2004.

[5] D.M.Greig, B.T.Porteous, and A. Seheult. Exact MAP es-
timation for binary images. J. Royal Statistical Society,
51:271–279, 1989.

[6] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa-
gation for early vision. In CVPR, 2004.

[7] S. Geman and D. Geman. Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. TPAMI,
6(6):721–741, 1984.

[8] P. Hammer, P. Hansen, and B. Simeone. Roof duality, com-
plementation and persistency in quadratic 0-1 optimization.
Mathematical Programming, 28:121–155, 1984.

[9] H. Ishikawa. Exact optimization for Markov Random Fields
with convex priors. TPAMI, 25(10):1333–1336, 2003.

[10] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. TPAMI, 28(10), 2006.

[11] V. Kolmogorov and C. Rother. Minimizing non-submodular
functions with graph cuts — a review. TPAMI, 29(7), 2007.

[12] V. Kolmogorov and M. Wainwright. On the optimality of
tree-reweighted max-product message passing. In Conf. Un-
certainty in AI, 2005.

[13] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? In ECCV, pages 65–81, 2002.

[14] N. Komodakis, G. Tziritas, and N. Paragios. Fast, approxi-
mately optimal solutions for single and dynamic MRFs. In
CVPR, 2007.

[15] J. Nelder and R. Mead. A simplex method for function min-
imization. Computer Journal, 7:308–313, 1964.

[16] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Mor-
gan Kaufmann, Palo Alto, 1988.

[17] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake. Digital
tapestry. In CVPR, 2005.

[18] D. Scharstein and C. Pal. Learning conditional random fields
for stereo. In CVPR, 2007.

[19] S. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother. A com-
parative study of energy minimization algorithms for highly
connected graphs. In ECCV, 2006.

[20] O. Veksler. Graph cut based optimization for MRFs with
truncated convex priors. In CVPR, 2007.

