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Abstract We present a new optimization based pars-

ing framework for the geometric analysis of a single im-

age coming from a man-made environment. This frame-

work models the scene as a composition of geomet-

ric primitives spanning different layers from low level

(edges) through mid-level (lines segments, lines and van-

ishing points) to high level (the zenith and the horizon).

The inference in such a model thus jointly and simul-

taneously estimates a) the grouping of edges into the

line segments, b) the grouping of line segments into the

straight lines, c) the grouping of lines into parallel fami-

lies, and d) the positioning of the horizon and the zenith

in the image. Such a unified treatment means that the

uncertainty information propagates between the layers

of the model. This is in contrast to most previous ap-

proaches to the same problem, which either ignore the

middle levels (line segments or lines) all together, or use

the bottom-up step-by-step pipeline.
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For the evaluation, we consider a publicly available

York Urban dataset of “Manhattan” scenes, and also

introduce a new, harder dataset of 103 urban outdoor

images containing many non-Manhattan scenes. The

comparative evaluation for the horizon estimation task

demonstrate higher accuracy and robustness attained

by our method when compared to the current state-of-

the-art approaches.

Keywords Geometry estimation · Scene under-

standing · Man-made environment · Vanishing points

estimation

1 Introduction

Recent years have seen a growing interest in the geo-

metric analysis of a scene based on as little as a single

image of this scene. Often the image of interest comes

from a man-made environment, e.g. when the image

is taken indoors or on a city street. In this case, the

image is highly likely to contain a certain number of

straight lines, which can be identified in the edgemap

of the image, and which often can be further grouped

into parallel families. The presence of such lines and

their parallelism are known to be valuable cues for the

geometric analysis.

When a family of parallel lines is projected on the

image, their projections are known to intersect in a sin-

gle point in the image plane called vanishing point. The

vanishing point uniquely characterizes the 3D direction

of those lines (given the camera). When 3D directions

of several families are coplanar, the respective vanish-

ing points belong to the same line. Such situation oc-

curs frequently for man-made environments, as there

often exist several families with different horizontal di-

rections. In this case, the line containing their vanishing
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(a) Edges (b) Line segments (c) Lines

(d) Vanishing points (e) Horizon and zenith

Fig. 1 Geometric primitives of different levels for an example “non-Manhattan” image. (a) – edge pixels, (b) – line segments,
(c) – straight lines, (d) – lines are grouped in parallel families (color indication used), (e) – the horizon and the zenith (shown
with the direction in red). Our framework aims at joint estimation of primitives at the latter four levels given the former one
(edge pixels).

points is called the horizon. Most of the remaining lines

of the scene are typically vertical. As such, they are par-

allel to each other and their projections intersect in the

vanishing point called the zenith1.

The environments where horizontal lines fall into

two orthogonal families, are known as “Manhattan”

worlds. A considerable number of previous works in-
vestigated the Manhattan case, and the particular sim-

plifications that it brings to the geometric analysis.

The parsing framework suggested in this work may be

adapted to the Manhattan case, however our work fo-

cuses on the non-Manhattan case, assuming the pres-

ence of the horizon and the zenith but not the two or-

thogonal horizontal directions. Surprisingly, very few

previous works have paid attention to such scenario

(most notably [29]), although we would argue that such

assumptions about the scene strike a good balance be-

tween the generality and the robustness of the estima-

tion.

In general, several computer vision and image pro-

cessing tasks can benefit from the ability to extract

the geometric information from a single image. E.g.

the knowledge about the location of the horizon may

1 Strictly speaking, when this vanishing point lies below the
horizon, it should be called the nadir. For brevity, we use the
term zenith in this case as well.

be used to rectify the user photograph with inclined

horizon, to facilitate the dense single-view reconstruc-

tion and “auto pop-up” [20,19]; this knowledge may

also greatly improve semantic segmentation, scene un-

derstanding, and object detection [21] as well as video

stabilization [14]. Other geometric primitives can also

be useful for different computer vision tasks. E.g. line

segments, their grouping into parallel families and cor-

responding vanishing points are actively used for 3D

structure analysis of indoor scenes: in [34] this informa-

tion is used for the extraction of depth-ordered planes.

In [24,15] line segments and vanishing points are used

for 3D structure recovery, i.e. finding corners, walls, ceil-

ing and floor. Also [17], [18] and [23] use these geomet-

ric primitives to estimate the box layout of the room,

where the walls the floor and the ceiling are found and

then further employed to solve more difficult tasks such

as localization of objects and their fitting into cuboids.

The abundance of applications thus motivates the re-

search into better method of geometric analysis of single

images leading to more accurate and robust algorithms.

1.1 Related work

Conceptually, the process of line-based geometric anal-

ysis of a single image is well investigated, and typically
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York Urban dataset [12] The new “Eurasian cities” dataset

Fig. 2 While the York Urban dataset [12] contains images of “Manhattan” worlds, our framework uses less restrictive scene
assumptions that are met by non-Manhattan images in the new dataset that we introduce. Our framework is evaluated on
both datasets.

involves several bottom-up steps. The process is gener-

ally initialized with the edge map of an image computed

with some edge detector (a standard Canny detector is

used in this work). Then, the bottom-up pipeline [25,32,

9,3,2,1,33,30] involves grouping edges into lines, group-

ing lines into line families and finding the respective

vanishing points, and, finally, fitting the horizon and

the zenith or the Manhattan directions, depending on

the assumptions about the world.

The problem with the step-by-step approach is, how-

ever, that neither of the steps can be performed with

100% accuracy and reliability. As the edge maps are

always noisy and contaminated with spurious edge pix-

els not coming from straight lines, the line detection

step would miss some of the straight lines and, even

worse, detect some spurious lines that do not exist in

the scene. Due to these errors, the parallel line group-

ing step would often group together lines from differ-

ent families or create groups containing spurious lines

(leading to spurious vanishing points) or split actual

line families into several (reducing the accuracy of the

respective vanishing point estimation). Finally, given

an imperfect set of vanishing point, contaminated with

outliers, horizon and zenith estimation may lead to gross

errors. Also step by steps methods fail to carry over the

uncertainty associated with estimates from the previous

steps to the later steps in a principled fashion.

Previous works address the challenges associated

with each step through several classes of techniques, in-

cluding robust statistical inference [10], clustering [25,

3,22], the RANSAC algorithm [1,28], various kinds of

Hough transforms [32,3,2], stochastic model fitting [27,

30] as well as seeking user supervision [9]. While differ-

ent approaches possess different strengths and weak-

nesses, neither results in perfect accuracy and robust-

ness, leading to the accumulation of errors towards higher

stages of the pipeline.

A group of methods [11,13,29,12] goes beyond this

pipeline paradigm, as they bypass the line extraction

step altogether and directly fit the low-parametric high-

level model of the frame (the Manhattan frame [11,13]

or a set of Manhattan frames [29]) to the low-level edge

map or even to the dense set of image gradients. The

joint optimization nature of these methods is similar to

our philosophy. However, the simplicity of the model

and lack of the edges-to-lines grouping stage limits the

accuracy and robustness of their approach as compared

to a well-engineered full pipeline approach such as [30].

In our preceding conference paper [5] the geomet-

ric parsing was performed by simultaneous line detec-

tion, parallel lines grouping, vanishing point detection,

as well as the zenith and the horizon estimation. At the

same time, several previous works [30], [22] have demon-

strated that it may be beneficial to base the parsing on

finite-length line segments rather than on straight lines

directly. Here, we demonstrate that line segment detec-

tion can be incorporated in our parsing framework in a

form of an additional layer that groups edge pixels into

finite-level line segments. Such line segments are then

grouped into straight lines. The experimental compari-

son with the model from [5] in section Section 4 demon-

strates that incorporating such an additional layer in-

deed improves the parsing accuracy.

1.2 Overview of our method

In this work, we investigate the geometric parsing ap-

proach to the geometric analysis. By geometric parsing

here, we understand the process, when the geometric

elements at different levels of complexity (Figure 1), as

well as the intra-level grouping relations are explicitly

recovered through the joint optimization process. Note,

that the term parsing is used in a similar meaning in

such works as [31], where semantic primitives of differ-

ent levels (e.g. body parts, individual humans, crowd)

as well as the intra-level grouping relations are recov-

ered. In our case, the primitives at different levels are

edge pixels, line segments, lines, horizontal vanishing

points, the zenith and the horizon.
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Our work thus differs from works that employ a sin-

gle bottom-up pass, as the inference in our case is per-

formed jointly, allowing the information from top levels

resolve the ambiguities on the lower levels (and vice

versa). Our work also differs from the works that by-

pass the line detection, as the lines in our method are

detected explicitly. To the best of our knowledge, the

method presented here is the first that integrates line

segment and line detection, vanishing point location,

and higher-level geometric estimation (the horizon and

the zenith in our case) in a single optimization frame-

work.

There are several design choices and assumptions

in our model that are motivated by the applicability

and tractability. Firstly, unlike the majority of previous

works, we do not make a Manhattan-world assumption.

Instead, we consider a less-restrictive non-Manhattan

scenario similar to the “Atlanta world” of [29] that

will be detailed below in Section 2. Regarding the cam-

era parameters, we assume that the principal point is

known (if unknown, we assumed it to be in the center of

the frame); we also assume that pixels are square. This

assumption holds approximately for the vast majority

of cameras in real life, and it makes the inference in our

model much easier. We also do not model radial distor-

tion explicitly, which is perhaps a bigger shortcoming of

our model, although the robust nature of our algorithm

means that considerable distortion might be tolerated

without explicit modeling. Finally, we assume the focal

length unknown. Theoretically, locations of the horizon

and the zenith allow to estimate the focal length of the

camera directly from the results of the parsing, however

the accuracy of such estimation is hindered by the de-

generacy that occurs when the horizon passes near the

principal point, which in practice happens very often.

In a sequel, we detail our energy model in Section 2,

and discuss the optimization procedure in Section 3.

We then perform the experimental validation on two

datasets (Figure 2). The first one is the York Urban

dataset presented in [12], where several approaches were

benchmarked. This dataset has been recently also used

for the evaluation in [30], where improved results have

been reported. The second dataset was collected by

ourselves and, unlike Urban, contains a lot of more

challenging non-Manhattan outdoor scenes. The exper-

imental comparison in Section 4 demonstrates the com-

petitiveness of the parsing approach.

2 The Model for Geometric Parsing

We now explain the energy model of the world within

our method. We assume an image to be defined by the

set of its edge pixels. The main assumptions about the

world are a) that a considerable part of edge pixels may

be explained by a set of line segments, b) that a con-

siderable part of those line segments may be explained

by a set of lines c) that a considerable part of those

lines fall into several parallel line families. It is further

assumed that d) one of these families is a set of ver-

tical (in 3D) lines converging (in the image plane) to

the zenith and e) all other families consist of horizon-

tal (in 3D) lines converging (in the image plane) to a

set of horizontal vanishing points, that all lie close to

a single line in the image plane known as the horizon.

The model thus encompasses the edge pixels, the line

segments, the lines, the zenith, and the horizontal van-

ishing points, as well as the grouping relations of edge

pixels into line segments, line segments into lines as well

as lines into parallel families.

2.1 Energy formulation

We now introduce the notation and the energy model.

The edge pixels are denoted p = {pi}i=1..P . The line

segments and lines present in the scene are denoted

s = {si}i=1..S and l = {li}i=1..L respectively. As the

model involves grouping of lines into parallel families,

we denote with z the vanishing point of the vertical

line family (the zenith) and with h = {hi}i=1..H the

set of vanishing points of the horizontal families. The

points h1, h2 . . . hH thus have to lie close to a line in the

image plane (we will refer to this fact as the horizon

constraint).

The energy function in our model consists of five

parts. The first three parts describe the connection be-

tween different geometric primitives. The first part in-

cludes edges and line segments, the second – line seg-

ments and lines, the third – lines and vanishing points.

The fourth part is responsible for the horizon constraint,

and the fifth imposes MDL (Minimum Description

Length)-like prior. Now we sequentially describe each

part.

The first three parts include the individual energy

terms corresponding to the (pseudo-)likelihood of each

edge pixel, each line segment and each line.

The edge pixel energy term is defined as:

Eedge(p|s) = (1)

min
(
θbg, min

i=1..S
θdist · d(p, si) + θgrad · dangle(p, si)

)
,

where d(p, si) denotes the Euclidean distance in the im-

age plane between the pixel p and the line segment si
(the minimum distance between the edge pixel p and

the line segment si), dangle(p, si) denotes the angular

difference between the local edge direction at pixel p
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and the direction of the line segment si, θbg is the

constant, corresponding to the likelihood of the back-

ground clutter, and θdist and θgrad are the constants

corresponding to the spread of edge pixels generated

by a particular line segment around that line segment.

Thus, the energy term for an edge pixel p is small if

this edge pixel is well explained by some line segment

from the set s and is large otherwise. The largest pos-

sible value is θbg, which corresponds to an edge pixel

generated by the background clutter.

The line segment energy term is defined as:

Esegment(s|l) = (2)

min
(
µbg · length(s), min

i=1..L
µdist · darea(s, li)

)
,

where darea(s, li) denotes the distance in the image

plane between the segment s and the line li, defined

as the area of the figure between the line and the seg-

ment divided by the cosine of the angle dangle(s, li)

between the line and the line segment (Figure 3), in

fact, this formula describes the value of the integral of

the euclidean distance function from line segment to

line along the line segment; µbg is the constant, corre-

sponding to the likelihood of the background clutter,

and µdist is the constant corresponding to the spread

of line segments generated by a particular line around

that line. Thus, the energy term for a line segment s

is small if this segment is well explained by some line

from the set l and is large otherwise. The largest possi-

ble value is µbg · length(s), which corresponds to a line

segment which doesn’t correspond to any lines. Such

description of the energy term gives an explanation of

each line segment as a set of edge pixels, that form this

line segment.

Fig. 3 Distance between line segment s and line l

The line energy terms are defined as

Eline(l|h, z) = (3)

min
(
ηbg, min

i=1..H
(ηdist · φ(l, hi), ηdist · φ(l, z))

)
,

where φ denotes the distance on the Gaussian sphere [6]

between the projection of the line l and projection of the

respective vanishing point (hi or z). ηbg is the constant,

corresponding to the likelihood of lines that are neither

horizontal nor vertical, and ηdist is the constant, corre-

sponding to the spread of lines in their families around

the respective vanishing points. Thus, the energy term

for a line l is small if this line is well explained by (i.e.

passes close to) a vanishing point from the set h ∪ {z}
and is large otherwise. The largest possible value is ηbg,

which corresponds to a line that is neither vertical nor

horizontal.

Fig. 4 Explanation of the horizon constraint. Here u and h
are two horizontal vanishing points

According to horizontal constraint introduced above

all vanishing points except the zenith have to lie close

to a line in the image plane. How can we enforce this

constraint? Should a separate variable for the position

of the horizon be introduced? It turns out [7] that un-

der our assumption about internal camera parameters

(square pixels and known principal point) this is not

necessary. Under these assumptions, the horizon is per-

pendicular to the radius vector between the line L(z)

connecting the zenith and the principal point, and we

enforce this perpendicularity with the following energy

term:

Ehorizon(u, h|z) = κhor · tanψ(u− h, L(z)) (4)

where ψ is the absolute angle between the vector u− h
and a perpendicular to L(z), and κhor is a constant. The

graphical explanation is given on Figure 4. The tan in

(4) was chosen because it imposes significant penalty

(upto +∞) on strong non-orthogonality between the

horizon and L(z).
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The last part of the model describes the MDL prior

Eprior(s, l,h) =λline|l|+ λvp|h|

+ λsegment

∑
i=1..S

length(si) (5)

This term penalizes the number of line segments

|s| = S, the number of lines |l| = L and the number

of horizontal vanishing points |h| = H, thus favouring

simpler explanations of the scene (λsegment, λline and

λvp are the constants regulating the strength of this

prior). For the line segments we also multiply the term

corresponding to each line segment by its length. Such

formulation assigns bigger penalty for longer line seg-

ments in order to balance energy on different layers of

the model: a long line segment can be included to the

model only if there are enough edge pixels that corre-

spond to this segment (the segment is the closest for

these edge pixels).

The final energy is thus defined as:

Etotal(s, l,h, z|p) =
∑

i=1..P

Eedge(pi|s)+

+
∑

i=1..S

Esegment(si|l) +
∑

i=1..L

Eline(li|h, z)

+
∑

1≤i<j≤H

Ehorizon(hi, hj |z) + Eprior(s, l,h),

(6)

The energy (6) thus ties together the different-level

components in the image of a non-Manhattan environ-

ment, and the line-based parsing of such an image may

be performed through the minimization of (6).

2.2 Interpretation of the model

Some of the components of our model may be easily for-

mulated with the language of probabilities. Thus, three

bottom layers of our model related to grouping edges

into line segments, grouping line segments into lines and

grouping lines into parallel families allow probabilistic

interpretation. The energy terms corresponding to each

of these layers Eedge, Esegment and Eline can be viewed

as log-posterior of the probabilistic model derived in [4].

It is unclear, however, if the Ehorizon term in the

equation (4) admits a probabilistic interpretation, as it

apparently involves some overcounting of the orthog-

onality cues. In practice, this non-probabilistic nature

does not present a problem, as we train our model dis-

criminatively by tuning the constants θbg, θdist, θgrad, µbg

, µdist, ηbg, ηdist, κhor, λsegment, λline, λvp on the hold-out

validation set.

Some of existing vanishing points estimation pipelines

allow interpretation in terms of energy minimization

similarly to our work. For example the method [8] can

be viewed as an optimization of the energy function

that consists of a sum of distances from lines to vanish-

ing points. This energy function roughly corresponds to

the term Eline of our energy. However there is no exact

correspondence between the energy functions implicitly

minimized by existing approaches and individual terms

of our model because to the best of our knowledge this

work is the first one to use both line segments and lines.

Another important difference between our energy and

the energy of other pipelines for vanishing points esti-

mation is the soft constraint on the horizon (last term

Ehorizon). This term is in some sense related to the con-

straint used under the Manhattan World assumption

[11] but allows handling a richer class of the scenes.

3 Inference

The minimization of (6) is a hard computation problem

that necessitates the use of approximations. One pos-

sible way would be to minimize it greedily in a layer-

by-layer fashion, first choosing the set of lines segments

given the edges, then choosing the set of lines given

line segments, then choosing the set of vanishing points

given lines, then fitting the horizon and the zenith into

the chosen lines. Such an approach would correspond to

the traditional bottom-up pipeline from previous meth-

ods. Its results might be improved with reiteration of

the process through the EM-algorithm, although in prac-

tice that suffers from the local minima problem and of-

ten gets stuck close to the initial greedy approximation.

3.1 Discretization of the model

A different approach taken in this work is to derive

a discrete approximation to the original energy that is

easier to minimize. To achieve that, we do three steps of

the bottom-up pipeline, namely line segment detection,

line detection and vanishing point detection, with very

low acceptance thresholds, ensuring that an extensive

set of X line segments ŝ1..ŝX , extensive set of Y lines

l̂1..l̂Y and an extensive set of V vanishing points ĥ1..ĥV
are detected. On practice, one may use any approach

that detects line segments, lines and any approach that

detect a set of vanishing points. We detail our choices

in the experimental section (see also Figure 7).

The task of the approximate minimization of (6)

may then be reduced to the minimization of the energy

of discrete variables x = {xi}i=1..X , y = {yi}i=1..Y ,

v = {vi}i=1..V , and z. Here, each variable xi is bi-

nary and decides whether a candidate line segment ŝi is
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Fig. 5 The graphical model for the discrete approximation of the energy (6). The variables x1 . . . xX , y1 . . . yY and v1 . . . vV
are binary and correspond to the existence or the absence of candidate segments, lines and horizontal vanishing points. z
stands for the location of the zenith and takes the value in a precomputed discrete set of 2D points in the image plane. The
unary cliques corresponding to x1 . . . xX , y1 . . . yY and v1 . . . vV are omitted for clarity. The shaded nodes (edge pixels) are
observed both during training and at test time. Please, see text for more details.

present (xi = 1) or absent (xi = 0) in the image. Sim-

ilarly, each variable yi is binary and decides whether a

candidate line l̂i is present (yi = 1) or absent (yi = 0)

in the image and each variable vi is binary and decides

whether a candidate vanishing point ĥi is a horizon-

tal vanishing point that is present (vi = 1) or absent

(vi = 0) in the image. Finally, the variable z is, as de-

fined above, a 2D point in the image plane correspond-

ing to the zenith. The set of its possible locations is

however restricted to discrete set of candidate vanish-

ing points. For computational efficiency, we may further

prune the set of possible locations for z by removing

candidate vanishing points that correspond to the hori-

zon inclinations of more than 7.5 degrees. This can be

regarded as an additional hard prior on z in our original

energy.

The discrete approximation to the energy (6) is then

defined by the requirement:

Ediscrete(x,y,v, z|p) ≡

Etotal({ŝi}i:xi=1, {l̂j}j:yj=1, {ĥk}k:vk=1, z|p).

(7)

In other words, the discrete energy is defined as the

continuous energy of the appropriate subsets of candi-

date line segments, lines and vanishing points. So, all

the candidates, for which the corresponding value of bi-

nary variable is zero, are not included into the discrete

energy.

In more detail, the discrete energy defined in (7) can

be written as:

Ediscrete(x,y,v, z|p) =
∑

i=1..P

Eedge(pi|{ŝj}j:xj=1)

+
∑

i=1..X

xi · Esegment(ŝi|{l̂j}j:yj=1)

+
∑

i=1..Y

yi · Eline(l̂i|{ĥk}k:vk=1, z)

+
∑

1≤i<j≤V

vi · vj · Ehorizon(ĥi, ĥj |z)

+
∑

i=1..X

λsegment · xi · length(ŝi)

+
∑

i=1..Y

λline · yi +
∑

i=1..V

λvp · vi. (8)

Note, that the different-level candidates in our model

are not treated equally. Each edge pixel can exist in two

states: it either belongs to background clutter, then the

value of θbg is added to the energy, or it belongs to a

line segment candidate, then the distance to the closest

line segment is added to the energy. As edge pixels rep-

resent the observed data, there are no binary variables

associated with them and all the edge pixels are always

switched on. Each line segment candidate can exist in

three states: 1) the corresponding binary variable xi
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equals 0, then the line segment candidate is switched off

and it does not affect the energy, 2) the corresponding

binary variable xi equals 1 and the line segment belongs

to the background, then the value of µbg · length(ŝi) is

added to the energy 3) the corresponding binary vari-

able xi equals 1 and the line segment belongs to a line

candidate, then the distance to this line is added to the

energy. Similarly, each line exists in one of the three

states: 1) the corresponding binary variable yi equals

0, then the line candidate is switched off and it does

not affect the energy, 2) the corresponding binary vari-

able yi equals 1 and the line belongs to background,

then the value of ηbg is added to the energy 3) the

corresponding binary variable yi equals 1 and the line

belongs to a vanishing point, then the distance to this

vanishing point is added to the energy. Each vanishing

point candidate can be in two states: 1) the value of vi
equals 0, then it does not affect the energy 2) the value

of vi equals 1, then this vanishing point makes contri-

bution into the horizon constraint term. Also for each

switched on line segment, line and vanishing point we

add an additional term to the energy (MDL prior).

Although, switched off candidates are not penal-

ized in our model, the minimum of the energy is not

achieved, when all values of variables x, y and v are

equal to 0. In that case the energy value is equal to∑
i=1..P

Eedge(pi|{ŝj}j:xj=1) =
∑

i=1..P

θbg

That value obviously can be minimized, if a set of ap-

propriate line segments, lines and vanishing points is

chosen.

The factor graph for the formula (8) is shown in Fig-

ure 5. Note, that due to the truncation effect of the con-

stants θbg and θdist in the definition of Eedge, the con-

nections between the Eedge factors and the line segment

variables as well as between the Esegment factors and

the lines variables and between the Eline factors and

the vanishing points variables are sparse. Each Eedge

factor is connected only to the line segments that pass

nearby that edge pixel and, likewise, each Esegment fac-

tor is connected to the line variables that lie near that

line and each Eline factor is connected to the vanishing

point variables that lie near that line.

Since the values of p are observed, very big effi-

ciency gains may be easily obtained by merging (sum-

ming up) the Eedge factors that are connected to the

same (or nested) sets of line segment variables. Since

Eedge terms constitute the vast majority of terms in

(8), this trick dramatically reduces the number of en-

ergy terms in the model. It permits us to use quite a

simple and brute-force optimization scheme, while still

allowing short optimization runtime of several seconds

for a typical photograph.

In more detail, we exhaustively search through the

zenith candidate set (which typically includes less then

a dozen of candidates). Given a fixed z, we then per-

form optimization over the binary variables x, y and

v through the modified simulated annealing algorithm

with the randomized node visiting order. In the begin-

ning the temperature is set to the value of the param-

eter κhor. We iteratively try to randomly change the

values of variables v, y and x. If the difference between

the new and the old energy values is not bigger than

the current temperature, we accept new values of vari-

ables. As usual with simulated annealing, after each

iteration the temperature is multiplied by a fixed pa-

rameter, which is responsible for the convergence speed.

The process is repeated until the energy difference be-

tween two last iterations falls below the threshold (the

value of the temperature becomes too small). During

our experiments 300 steps were required.

Fig. 6 Constraint on three orthogonal vanishing points: prin-
cipal point should be the orthocenter of the triangle, formed
by these points (in the case when image skew is zero and the
aspect ratio is one [16])

3.2 Manhattan directions detection

For some tasks it is useful to detect three orthogonal

directions on an image. And although our model was

designed to solve more general problem of detecting an

arbitrary number of vanishing points, it can be easily

modified to solve the problem of finding three orthogo-

nal vanishing points.

At first, during the inference we can fix the number

of horizontal points (to one or two). This will lead to

detection of the three points most supported by data,

without any constraint on their orthogonality. Further-

more, we can extend our horizon constraint on vanish-

ing points to a new constraint on the orthogonality of
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three vanishing points, which is represented on Figure 6.

In order to fulfill this constraint we should additionally

penalize the angle between the line, connecting one van-

ishing point h and the zenith, and perpendicular to the

line L(u), connecting principal point and the other van-

ishing point u, and the angle defined in the same way

for the second horizontal vanishing point. In more de-

tails our new orthogonal constraint term can be written

as:

Eortho(u, h|z) = κhor · (tanψ(u− h, L(z))+ (9)

tanψ(h− z, L(u)) + tanψ(u− z, L(h))),

which should be included into the energy function in-

stead of the Ehorizon term.

4 Experiments

4.1 Technical details

In our experiments we used the following strategy for

choosing candidate line segments, candidate lines and

candidate vanishing points.

Candidate line segments were calculated using Line

Segment Detector algorithm [26]. To get an excessive

number of line segments candidates ,we used a pyramid

of images with three different scales and detected line

segments for each scale. In total we usually obtained

around 2000 line segment candidates for each pyramid

of images.

For the line detection the probabilistic version of

Hough transform [4] was used. As [4] provides the confi-

dence measure for each detected line, we fixed the num-

ber of candidates to 500 and for each image took 500

lines with the highest confidence. Figure 7 gives an ex-

ample of what the candidate set typically looks like.

The candidates for vanishing points were chosen

using the J-linkage procedure, described in [30]. This

method is based on random sampling, so we ran it sev-

eral times starting from different random initializations.

Usually we got from 50 to 100 candidates for vanishing

points. The set of candidate vanishing points is divided

into two parts: the zenith candidates and the horizon-

tal vanishing points candidates. Zenith candidates are

chosen according to the two constraints: 1) the absolute

value of the y-coordinate is bigger than the threshold

thry 2) the deviation from the vertical line is not greater

than the threshold thrang. Usually there are less than

10 zenith candidates, whereas all the other points are

treated as horizontal vanishing points candidates. Af-

ter performing the inference in our model we usually

got from 2 to 5 vanishing points and groups of lines

supporting each of them.

In the experiments on York Urban dataset we ex-

ploited the coordinates of principal point provided, in

the experiments on the new dataset we assumed the

principal point to lie in the center of the image frame.

The code was mostly implemented in C++ (com-

piled in MEX functions) and in Matlab. It can be down-

loaded from the project homepage2.

4.2 Training the model

The parameters for our models were tuned on the hold-

out validation set. Fully automatic learning of the pa-

rameters is quite difficult for two reasons. First, stan-

dard approaches for structural learning are not applica-

ble to our energy. Second, with available ground truth

data we can learn parameters to find a good horizon on

the validation set, but even with a good estimation of

the horizon the overall result can be poor, as the output

also includes line segments, lines and vanishing points.

In general learning would require ground truth labeling

of all primitives in the training image dataset.

As each parameter has some intuitive meaning,it is

possible to find a good initial guess of the parameters.

Having an initial guess we can refine them using stan-

dard optimization methods. Below we describe this ap-

proach.

At first, the ratio between layers should be deter-

mined. For this the values of the terms Eedge, Esegment

and Eline should be adjusted accordingly. Parameters

λline, λvp and λsegment help to control the number of

corresponding primitives: the smaller are these param-

eters, the more primitives are found. The parameter

κhor is responsible for the strength of the horizon con-

straint. Then the parameters inside the first three terms

should be adjusted. For example, in the term Eline the

ratio of the parameters ηbg/ηdist = thrline effectively

constitutes a threshold for switching “on” a line. If the

distance to the closest vanishing point for a given line is

greater, than this threshold, then this line is treated as

background clutter, otherwise it is labeled as belonging

to the closest vanishing point. That means, the less this

ratio thrline is, the more lines will be classified as back-

ground clutter. Similar interpretation of the parameters

is possible for the other two terms.

When a good initial estimate is found, the parame-

ters can be further optimized using local optimization

techniques. In this work the matlab implementation of

the version of the Nelder-Mead simplex search algo-

rithm was used (fminsearch) with the objective func-

tion being the area under curve statistics for the hori-

2 http://graphics.cs.msu.ru/en/science/research/
3dreconstruction/geometricparsing
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(a) Input image (b) Edge pixels

(c) Candidate line segments (d) Candidate lines (e) Candidate vanishing points

(f) Result of the parsing(line segments) (g) Result of the parsing(lines) (h) Result of the parsing(horizon and
zenith)

Fig. 7 Sample image from the York Urban dataset: (a) – the input image, (b) – edge pixels, (c) – all candidate line segments
superimposed, (d) – all candidate lines superimposed, (e) – candidate vanishing points (without vertical candidate vanishing
points) (f), (g), (h) – the result of the parsing. On (f) and (g) coloring reflects grouping into parallel families. Black lines are
lines, that are presented on the image, but do not belong to any vanishing point. Coloring of a line segment is the same as the
coloring of the corresponding line. Line segments, which do not lie close to any lines are colored with olive. On (h) pink and
yellow thick lines correspond to the found and the ground truth horizons respectively, cyan line shows the direction to zenith
and the cross corresponds to the principal point position.

zon estimation (see below). The optimization was per-

formed over all parameters. Objectives based on other

geometric primitives can be also used for parameters

tuning, if some additional properties are required. In

general, the parameters should be tuned according to

particular dataset and particular purpose.

As the optimal values of parameters are determined

by the geometric constraints of the perspective projec-

tion, the method should work well with the same val-

ues of parameters on the most pictures of man-made

environments. The values of the parameters tuned us-

ing this approach are shown below3. Note that they are

very close for both datasets. This fact confirms that

similar values of parameters can be used for different

pictures of man-made environments.

3 Through the validation, the parameters for our method
for York/Eurasian cities were set to: θbg = 6.82×10−4/6.82×
10−4, θdist = 5.4×10−4/5.4×10−4, θgrad = 5.4×10−4/5.4×
10−4, µbg = 4.1×10−4/4.1×10−4, µdist = 4.1×10−7/4.1×
10−7, ηbg = 1.2×10−2/9.6×10−3, ηdist = 0.56/0.65, κhor =
4.65/4.65, λsegment = 7.0 × 10−5/2.3 × 10−6, λline = 4.5 ×
10−3/3.5 × 10−3, λvp = 2.3 × 10−2/3.5 × 10−2 All angular
differences were measured in radians.
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4.3 Datasets

Our approach is evaluated on two datasets (Figure 2):

1. The York Urban dataset [12] contains 102 images

of outdoor and indoor scenes taken within the same lo-

cation with the same camera. Most of the scenes meet

the Manhattan world assumption, as the lines available

in the scene mostly fall into the three orthogonal fami-

lies.

2. The Eurasian cities 4 dataset is a new set of 103

outdoor urban images. The images come from the cities

of different cultures, hence with different line statistics.

They were also taken with different cameras. The main

difference of the dataset is the abundance of scenes that

fit poorly the Manhattan assumption. During the an-

notation, we manually specified several most distinctive

lines per each distinctive parallel line family in each im-

age (with the interactive tool similar to that of [12]).

This allows to estimate the horizon with good accuracy

and we use it as ground truth in the comparative eval-

uation. For each image we provided several families of

parallel line segments, a vanishing point for each fam-

ily (calculated using function introduced in [30]) and a

horizon (calculated using least square fit over horizontal

vanishing points).

4.4 Competing methods

We have compared our approach against the two pre-

viously published methods:

1. The method of Tardif [30] is a pipeline approach

which reported the top performance on the York Ur-

ban dataset. For the experiments on the York Urban

dataset we used the author code (with the exception

of the EM process that was not published and that we

reimplemented by carefully following the text of [30]).

For York Urban dataset in cases where more than 3

vanishing points were detected, we chose 3 most or-

thogonal of them as described in the paper [30]. The co-

ordinates of principal point provided by the authors of

the dataset were used during orthogonalization. For the

experiments in the Eurasian Cities we did not choose

most orthogonal points because the dataset contains

non-Manhattan scenes. Parameters of EM were chosen

on the test set.

2. The method of Kosecka and Zhang [22] is an ap-

proach based on the EM-algorithm, alternating between

the two stages: estimation of vanishing point coordi-

nates given distribution of corresponding line segments

4 Available at http://graphics.cs.msu.ru/files/tmp/
EurasianCitiesBase.zip

and re-estimation of distribution of line segments ac-

cording to positions of vanishing points. The process

starts with clustering line segments according to their

orientation which results in excessive number of clus-

ters. During EM the clusters with close vanishing points

are merged together. Also clusters that have little sup-

port are pruned. We took the code from implementation

of the Automatic Photo Pop Up system [19], which uses

that method for vanishing points estimation. Parame-

ters of the method were tuned on the test set.

On top of the edge detection and line segment de-

tection steps that we discuss below, the baseline meth-

ods have one parameter to tune (the parameter of the

EM algorithm, which specifies the minimum number of

line segments in a cluster). In contrast, our method has

11 parameters, which gives it more flexibility compared

to competitors, and potentially allows better adjusting

to a particular dataset. So we adjusted the parameters

for our method on the hold-out validation set for each

dataset. We gave the baseline methods some handicap

by tuning their parameters on the test set, so we report

their best performance over the range of parameters.

Importantly, to put all the methods on an equal

footing, we made sure that all three algorithms are pro-

vided with the same Canny edge map (we used the

parameters suggested by Tardif in [30]). Both baseline

methods use line segments, so we use the line segments

detection implementation by [30] for both of them.

4.5 Horizon estimation

After running each method we obtain the zenith, as

well as a number of vanishing points corresponding to

the parallel families of the line segments (for baseline

methods) or lines (for our method). We use this infor-

mation to estimate the position of the horizon in an

image. The horizon is estimated in the same way for

all methods. Thus, we restrict it to be perpendicular to

the line connecting principal point and zenith. So the

slope of horizon is given by zenith and we estimate only

its position along the 1D axis. To do this last step, we

perform the weighted least squares fit, where the weight

of each detected horizontal vanishing point equals the

number of corresponding lines (or line segments). In the

case when no horizontal vanishing points or zenith were

found, the horizon was drawn strongly horizontally in

the middle of the image. In our approach the case when

no zenith is found is impossible, as zenith is the part of

our model. In contrast, in the other competing meth-

ods the horizontal vanishing points and the zenith are

treated equally.
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York Urban Eurasian Cities

Fig. 8 The results of the comparison of the cumulative statistics for the accuracies of the proposed framework along with
the methods of [30] and [22]. The x-axis corresponds to the horizon estimation error measure (see text for more details). The
y-axis corresponds to the share of the images in the test set that has the error less than the respective x value. In both cases,
the proposed framework obtains higher accuracy than the competitors.

4.6 Accuracy measure

While all the considered approaches essentially output

both low-level and high-level primitives, comparing the

accuracy of the low-level description of the scenes (e.g.

set of lines) is problematic, as the ground truth avail-

able for the datasets do not provide full set of lines and

line segments. Thus, if a line segment or a line or a van-

ishing point is present in the output that is missing in

the ground truth, it is unclear whether this is due to

the error of the algorithm or due to the incompleteness

of the ground truth. Also different low-level geometric

primitives are used in algorithms: some methods take

into account line segments, other methods - only lines,

that makes the comparison of these approaches more

difficult.

We therefore focused on the accuracy of the hori-

zon estimation. Assume that the horizon is given as

a (linear) function H(x) of a pixel x-coordinate. As-

sume that H0(x) and H1(x) are the ground truth and

the estimated horizon. We define the estimation error

as the maximum euclidean distance between the lines

H0(x) and H1(x) within the image domain (0 < x <

image width), divided by the image height. To repre-

sent the error over the dataset, we plot the share of the

images with the error less than τ for each τ .

Different metrics were proposed in literature for Man-

hattan-World images. The first publically available data-

set and metric were presented in [12]. The proposed

metric calculates the average Manhattan-frame orienta-

tion estimation error. Further in [30] two other metrics

were proposed. The first one measures the consistency

of the ground truth line segments with the estimated

vanishing points and the second is the accuracy of the

estimated focal length using the vanishing points. All

these metrics imply the predefined number of vanish-

ing points for each image or detailed marking of line

segments. In contrast, in our work we avoid any con-

straints on the number of points and our method is

able to find an arbitrary number of points. Our metric,

which is based on the accuracy of the horizon estima-

tion, is more suitable for more general, non-Manhattan

case. On the other hand horizon-based metric has some

drawbacks due to the ignorance of the lower-level prim-

itives. For example, it adds no penalty if not all the

vanishing points presented on the image are detected

by the algorithm.

4.7 Results

Quantitative results are given in Figure 8, while in Fig-

ure 7 and Figure 9, we present some qualitative ex-

amples from both datasets for our framework. On Fig-

ure 13 some failure cases are shown. Note that we used

the first 25 images of each dataset as a held-out set

for the parameter validation of our models, and for the

other competing methods test set was used for valida-

tion. During the validation, the area under curve statis-

tics on the validation set was optimized. The accuracy

measures in the plots in Figure 8 thus reflect the best

performance on the test set for methods [30] and [22],

and the performance of our models on the images not

seen during the validation. As the method [30] and our

approach are randomized, these methods were launched

5 times on each image on both datasets.

As can be seen, the method presented in the pa-

per outperforms both competing methods on Eurasian

Cities and York Urban datasets. The latter is all the
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Fig. 9 Sample results of the proposed framework from both datasets. For each we give the input image and the output of the
parsing: line segments and lines, grouped into parallel families, zenith and horizon. The coloring is the same as in Figure 7

more important, given the fact the stronger competing

method [30] makes explicit use of the Manhattan as-

sumption that is very appropriate for the York dataset,

while our method worked with the more general non-

Manhattan world model. At the same time, our cur-

rent implementation is much slower than the compet-

ing methods (approximately half a minute per image

vs. few seconds per image on a modern PC). The time

for our method is dominated by the candidate (line seg-

ments, lines and VPs) generation and graph construc-

tion, and can be reduced significantly if less exhaustive

number of candidates would be considered.

In Figure 10 the comparison between Geometric Par-

sing approach and the method of Tardif [30] on one

of the images from our dataset is presented. For both

methods the cumulative histogram after 15 launches is

shown. As can be seen from this example, the method

of Tardif gives quite unstable results. In the case of

this image it usually wrongly clusters the line segments

coming from wires into a parallel family. Our approach

is also randomized due to several reasons: it uses the

method of Tardif on the candidate calculation step,

and also the simulated annealing algorithm used for

the inference is randomized. But due to the usage of

the model which incorporates the information about

the geometry of the scene, the Geometric Parsing ap-

proach shows more stable performance.

Figure 11 presents a qualitative comparison of line

segment detection performance. Our method provides

better grouping of line segments into parallel families

than Tardif’s method and is better at distinguishing

between line segments that belong to vanishing points
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(a) Input Image (b) Worst Result, Tardif (c) Best Result, Tardif

(d) Cumulative histogram after 15
launches

(e) Worst Result, Geometric Parsing (f) Best Result, Geometric Parsing

Fig. 10 Comparison of our Geometric Parsing approach with the method of Tardif. The best and the worst results for both
methods after 15 launches are shown in the figures (b)-(c) and (e)-(f) as well as the cumulative histogram of the horizon
estimation error. Coloring of line segments and lines reflects grouping into parallel families. Pink and yellow thick lines
correspond to the found and the ground truth horizons respectively, cyan line shows the direction to zenith and the cross
corresponds to the principal point position.

Geometric Parsing without Geometric Parsing Tardif
the horizon constraint

Fig. 11 Comparison of the results in horizon and line segments estimation for our Geometric Parsing approach, modified
Geometric Parsing approach, which does not include the horizon constraint, and the method of Tardif [30]. Coloring of line
segments and lines reflects grouping into parallel families. Pink and yellow thick lines correspond to the found and the ground
truth horizons respectively, cyan line shows the direction to the zenith and the cross corresponds to the principal point position.
In the first and the second columns olive line segments represent line segments that were classified as not belonging to any line.
Black line segments correspond to lines that do not belong to any vanishing points. Tardif’s method classifies more clutter line
segments as belonging to some vanishing point (mostly, line segments on the ground). Omitting the horizon constraint (first
column) results in the incorrect grouping of segments into a parallel family (top - blue family on the ground, bottom - green
family on the walls).
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York Urban Eurasian Cities

Fig. 12 Cumulative plots comparing the full model with the two truncated models: the model without line segment layer [5]
and the model with omitted horizon constraint. The x-axis corresponds to the horizon estimation error measure (see text for
more details). The y-axis corresponds to the share of the images in the test set that has the error less than the respective x
value. For both datasets the full model achieves higher accuracy than the truncated models.

Database
Line Segment
Detection

Line Detection VP Detection Parsing Total

York Urban 1.01 ± 0.19 9.46 ± 2.97 3.72 ± 2.10 3.00 ± 2.30 17.20 ± 6.49

Eurasian Cities 1.19 ± 0.21 12.58 ± 1.82 4.76 ± 2.96 4.00 ± 2.70 22.53 ± 6.41

Table 1 Time required for each step of the geometric parsing approach: geometric primitives candidates detection and parsing
(in sec)

from background clutter. Note how the method [30]

tends to form spurious vanishing points from the back-

ground clutter and attach clutter lines to detected clus-

ters.

In addition to our main error measure (horizon ac-

curacy), we also estimated the error of the zenith es-

timation on York urban dataset (where ground truth

Manhattan geometry allows accurate localization of the

zenith). We measured the errors as the angle between

directions from the principle point to the ground truth

zenith and the estimated zenith (in radians). The er-

ror for our method is (0.0056± 0.0188), for the method

[30] is (0.0052 ± 0.0057) which is smaller than for [22]

(0.0144± 0.0707).

Also in the table 1 we show the mean time and the

standart deviation or each step of our framework5. As

can be seen from this table, candidates calculation steps

constitute the considerable part of the time required. It

can be reduced by the calculation of less candidates or

by the optimization of the code. Also the parameters

of the algorithms can be tuned for faster candidates

detection. In this work we used unoptimized code and

did not focus on time optimization.

5 The program was tested on the computer Intel Core 2
Quad CPU Q8200 2.34GHz, 2,00 GB of RAM

4.8 Modifications of the model

In order to find how the terms of the energy influence

the result, we compared the original model with two

modifications, one of which does not include the hori-

zon constraint term and the other does not include the

layer with line segments, so that the edge pixels layer

is directly connected to the lines layer [5]. The result of

the comparison is shown on Figure 12.

As the experiments show, the usage of the addi-

tional layer and additional relations between geometric

primitives allows more accurate estimation of the hori-

zon. Qualitatively, we observed that the layer of line

segments helps to choose lines more adequately. And as

in our model the inference is performed simultaneously

for the whole model, this layer affects the final choice

of the vanishing points and horizon.

The horizon term directly influences the result of the

horizon estimation. It is especially useful in the case,

when there are groups of lines present in the image,

which are not horizontal. This effect can also be seen in

the qualitative comparison in Figure 11. This constraint

is responsible for more accurate selection of vanishing

points, which all lie on the horizon line, orthogonal to

the line, connecting the zenith and the principal point.
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Input Image Result of the parsing Result of the parsing Result of the parsing
line segments lines horizon and zenith

Fig. 13 Failure cases of the algorithm. The notation of the primitives is the same as on the Figure 7. In the cases when the
input image does not satisfy all the conditions we require (we assume that the buildings consist mostly of straight lines), the
method can fail. For example, on the first image the most part of the elements on the image are not straight, so there is no
strong presence of parallel families of lines. On the second image the method shows good performance according to our horizon
metric, even though not all the vanishing points are detected. Using our metric it is quite difficult to learn the parameters of
the algorithm to detect all the vanishing points.

We have also tested the described modification for

the detection of three orthogonal points (see section

3.2) on York dataset. This modification has not sig-

nificantly improved the performance in horizon esti-

mation as our model already includes strong horizon

constraint, which works well on relatively simple York

dataset. Such modification however may still be use-

ful for the tasks that require the detection of the three

“Manhattan” vanishing points.

5 Summary and Discussion

We formulated the problem of geometric analysis of a

single image in an optimization framework. Given a set

of observed edge pixels, the framework jointly infers

groupings of edge pixels into line segments, line seg-

ments into lines, parallel lines, vanishing points and

geometric concepts such as the zenith and the hori-

zon. The experimental comparison suggests that such a

joint inference results in higher accuracy and robustness
compared to bottom-up estimation.

The current framework ignores appearance informa-

tion from the scene elements. For instance, parallel lines

arising due to a railway track or a road might have sim-

ilar appearance which may provide additional cues for

grouping lines and inferring the location of the zenith

and the horizon. This information can produce better

results and is a topic of a future work. Another inter-

esting direction of work is the incorporation of an un-

certainty measure in the presence of edges.

In general, we have shown that incorporating within

one model different-level geometric primitives can be

beneficial for scene geometry estimation. Similar idea

can be used for other tasks if they allow the extraction

of several layers of elements. In particular, one can treat

detectable objects characteristic to the environment of

interest as primitives. Thus, Hoiem et al. [21] demon-

strated how locating such objects (cars and pedestrians

in their case) jointly with the estimation of geometric

parameters of the scene can benefit both object detec-
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tion and geometry estimation. In the same way, the

candidate detections produced by a conventional object

detector may be added as yet another group of variables

into our model.
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22. Jana Kosecká and Wei Zhang. Video compass. In ECCV
(4), pages 476–490, 2002.

23. D.C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimat-
ing spatial layout of rooms using volumetric reasoning
about objects and surfaces. In NIPS, 2010.

24. D.C. Lee, M. Hebert, and T. Kanade. Geometric reason-
ing for single image structure recovery. In CVPR, 2009.

25. G. F. McLean and D. Kotturi. Vanishing point detection
by line clustering. IEEE Trans. Pattern Anal. Mach.
Intell., 17(11):1090–1095, 1995.

26. J.-M. Morel G. Randall R. Grompone von Gioi,
J. Jakubowicz. Lsd: A fast line segment detector with
a false detection control. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32:722–732, 2008.

27. Carsten Rother. A new approach for vanishing point
detection in architectural environments. In BMVC, 2000.

28. F. Schaffalitzky and A. Zisserman. Planar grouping for
automatic detection of vanishing lines and points. Image
and Vision Computing, 18:647–658, 2000.

29. Grant Schindler and Frank Dellaert. Atlanta world: An
expectation maximization framework for simultaneous
low-level edge grouping and camera calibration in com-
plex man-made environments. In CVPR (1), pages 203–
209, 2004.

30. Jean-Philippe Tardif. Non-iterative approach for fast and
accurate vanishing point detection. In ICCV, 2009.

31. Zhuowen Tu, Xiangrong Chen, Alan L. Yuille, and
Song Chun Zhu. Image parsing: Unifying segmenta-
tion, detection, and recognition. International Journal
of Computer Vision, 63(2):113–140, 2005.

32. Tinne Tuytelaars, Luc J. Van Gool, Marc Proesmans, and
Theo Moons. A cascaded hough transform as an aid in
aerial image interpretation. In ICCV, pages 67–72, 1998.

33. Horst Wildenauer and Markus Vincze. Vanishing point
detection in complex man-made worlds. In ICIAP, pages
615–622, 2007.

34. S. Yu, H. Zhang, and J. Malik. Inferring spatial lay-
out from a single image via depth-ordered grouping. In
POCV, 2008.


