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Abstract

The objective of this paper is the unsupervised segmenta-
tion of image training sets into foreground and background
in order to improve image classification performance. To
this end we introduce a new scalable, alternation-based al-
gorithm for co-segmentation, BiCoS, which is simpler than
many of its predecessors, and yet has superior performance
on standard benchmark image datasets.

We argue that the reason for this success is that the co-
segmentation task is represented at the appropriate levels
– pixels and color distributions for individual images, and
super-pixels with learnable features at the level of sharing
across the image set – together with powerful and efficient
inference algorithms (GrabCut and SVM) for each level.

We assess both the segmentation and classification per-
formance of the algorithm and compare to previous results
on Oxford Flowers 17 & 102, Caltech-UCSD Birds-200, the
Weizmann Horses, Caltech-4 benchmark datasets.

1. Introduction
Co-segmentation of image collections has recently be-

come a topic of active research [16, 19, 25, 31, 37, 38]. Co-
segmentation methods consider sets of images where the
appearance of foreground and/or background share some
similarities, and try to leverage these similarities to ob-
tain accurate foreground-background segmentations either
totally-unsupervised, or with a small amount of interac-
tive supervision [5]. Most of the proposed co-segmentation
methods (with the exception of [19]) assume close similar-
ity of the foreground color histograms essentially requiring
foreground objects to be the same through the image set.

Our goal in this paper is to develop a method for un-
supervised foreground-background co-segmentation of im-
age sets that is scalable to large datasets of thousands of
images. Our research is motivated by the desire to use
unsupervised co-segmentation for the task of background
removal within the training image sets for image classi-
fication systems. There is abundant evidence that accu-
rate foreground-background segmentation can benefit vi-

sual recognition [24]. This is particularly true when image
classification deals with subordinate visual categories, e.g.
flower species [27] or bird species [40]. In this scenario,
background visual features tend to be similar across cate-
gories and typically act as a distraction to statistical learn-
ing rather than as useful context. Removing background at
training time therefore gives a significant boost to the clas-
sification performance.

To this end we introduce a new co-segmentation algo-
rithm which is scalable and operates at two levels of rep-
resentation: at the bottom level, it treats each image sep-
arately and uses the well-known GrabCut algorithm [30]
applied to the RGB values of individual pixels, whereas
at the top level a discriminative classification is performed
on high-dimensional descriptors of superpixels. The top
layer operates on all images jointly and propagates informa-
tion about foreground and background appearances across
the dataset. Fig. 1 illustrates the algorithm schematically.
This simple algorithm, which we term BiCoS for Bi-level
Co-Segmentation, scales linearly with the number of im-
ages. Unlike most co-segmentation algorithms it does not
assume the similarity of either global geometric shape or
foreground color distributions throughout the image set.

Motivated by our ultimate application, we also propose a
multi-task modification of BiCoS for co-segmenting multi-
ple image sets each corresponding to a different class. This
(BiCoS-MT) algorithm solves the co-segmentation tasks
jointly, ensuring the similarity of the background appear-
ances across the classes.

We then evaluate both BiCoS and BiCoS-MT in the con-
text of building an image classification system. The eval-
uation proves convincingly that applying unsupervised co-
segmentation to the training sets can benefit the classifica-
tion accuracies. As an outcome, we report better than state-
of-the-art classification accuracy on the popular Oxford-
17 [27] and Oxford-102 [29] flowers datasets. For these
datasets, we compare BiCoS and BiCoS-MT with Grab-
Cut [30], the state-of-the-art co-segmentation system [19]
as well as with the system of [28] that is designed specifi-
cally for flower segmentation and is trained in a supervised
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Figure 1. The diagram of our method (BiCoS) shown for 2 (out of 15) training images from one class of the Oxford Flowers-17 dataset.
BiCoS starts with GrabCut at the pixel-level applied to each image independently. Each superpixel (superimposed) is then assigned to
foreground or background and mapped to a descriptor space, where the optimal separating hyperplane is found. The pixels in each image
are then assigned values according to the margins of the respective superpixels, and such soft segmentation map is then used to fit color
Gaussian mixtures and apply pixel-level graph cut to each image.

way. Despite their simplicity, the proposed algorithms came
out on top both in terms of the segmentation accuracy and
in terms of the classification accuracy obtained by the vi-
sual classifier trained on the segmented training set. We
then extend the experimental evaluation to the recently in-
troduced Caltech-UCSD bird species dataset [40], which is
very difficult for both segmentation and recognition.

Closely related to co-segmentation algorithms, is the
group of approaches that deal with an unlabeled image set
of an unknown class and aim to simultaneously segment
the images and build a loose geometric model of that class
[3, 4, 22, 34, 41]. These algorithms are typically evaluated
and achieve excellent results on the viewpoint-constrained
datasets (Weizmann Horses [7], Caltech-4 [21]), where their
geometric modeling is very appropriate. In contrast, BiCoS
algorithms do not attempt to build any geometric models
and are therefore applicable to image sets of highly non-
rigid classes under extreme variations of viewpoints (such
as user photographs of flowers taken in unconstrained set-
ting). Nevertheless, we evaluate BiCoS on a number of
viewpoint-constrained datasets, finding out that, despite the
lack of geometric modeling, the performance of BiCoS is
rather competitive with many of the recent geometry-based
methods.

2. Related work
In the next section, we review the GrabCut method of

Rother et al. [30] used at the bottom level of BiCoS. The
discriminative learning in the space of superpixel descrip-
tors used at the top level has been employed within seman-
tic segmentation methods such as [13, 15, 17], which are
trained in a supervised way.

Among the unsupervised co-segmentation algorithms,
discriminative learning on superpixels is used by Joulin
et al. [19]. The optimization framework of [19] simul-
taneously enforces spatial smoothness within each image
as well as finding the foreground-background boundary in

the superpixel space. Unlike [19], BiCoS decouples spatial
smoothness enforcement and classification of superpixels,
so that these two steps are performed consecutively rather
than simultaneously. We demonstrate experimentally that,
despite the sub-optimality that such alternation-based ap-
proach might bring, BiCoS consistently attains higher seg-
mentation accuracies, while being applicable to much larger
image sets than [19].

Alexe et al. [3] is another very recent work closely re-
lated to ours, as their system also uses superpixels to propa-
gate information across multiple images. Such propagation
is however achieved through binary-label Conditional Ran-
dom Field (CRF) with unary potentials derived in a gener-
ative fashion as opposed to discriminative learning (SVM)
used within BiCoS. Despite the use of explicit geometric
modeling within [3], the experimental comparison revealed
that BiCoS is able to achieve similar or higher segmentation
accuracy for several viewpoint-constrained datasets, where
their loose geometric model is appropriate.

Another co-segmentation work that adopts an alternation
strategy similar to the bi-level architecture of BiCoS is Ba-
tra et al. [5]. Their appearance models are however based
purely on color (and hence are too limited for many sce-
narios). Their focus is also on interactive user supervision,
rather than the fully unsupervised scenario used by most
other co-segmentation works, as well as ours.

3. Segmentation methods

We start with a review of GrabCut [30] that works at sin-
gle image level. We then introduce the BiCoS method that
is based on the combination of GrabCut and discriminative
learning in the superpixel descriptor space. After that, we
demonstrate how the proposed method may be modified to
work with a dataset of multiple image sets with shared back-
ground patterns (a scenario typical for image classification
as discussed above).



3.1. Image-level segmentation: GrabCut [30]

The GrabCut algorithm [30] is a popular tool for the
segmentation of single images. It combines two compo-
nents: a binary-label random field defined on image pix-
els, and a generative foreground/background classifier that
takes pixel RGB values as features. GrabCut proceeds by
iterations: starting from some initialization, it alternates
between (1) The (re)estimation of foreground and back-
ground probability densities via Gaussian mixtures given
foreground/background pixel labels [6], and (2) The graph
cut inference of foreground/background labels in the ran-
dom field with unary terms defined according to the evi-
dence from the Gaussian mixtures and the pairwise terms
defined according to local image gradients cues [8].

The assumption behind GrabCut and in particular behind
the step (1) in its alternation scheme, is that the RGB distri-
butions of foreground and background are shared across the
entire image (so-called global color modeling). As demon-
strated in [30] and subsequent evaluations, GrabCut is capa-
ble of producing accurate segmentation even when initial-
ized in a very crude way (e.g. a rectangular mask overlap-
ping the true foreground).

3.2. Class-level co-segmentation

Given a set of images of the same class, co-segmentation
algorithms attempt to improve the segmentation accuracy
by assuming the similarity of the visual appearance of fore-
ground and/or background across the images in the dataset.
A number of approaches [16, 25, 31, 37] work with pixel
RGB values to model and propagate the distributions of vi-
sual appearance. However, in realistic scenarios for the vast
majority of classes, RGB distributions of foreground and
background pixels across the entire set of images overlap
too much for such approaches to be useful. In other words,
the color-based representation which works very well at the
level of individual images is often unsuitable at the dataset
level.

Rather than share a simple descriptor (RGB) at the level
of individual pixels across the dataset, we share a richer de-
scriptor at the level of super-pixels. This richer descriptor (a
high dimensional feature vector) is suitable for discrimina-
tive learning at the dataset level. Thus, each image is parti-
tioned into a set of superpixels (via the graph-based method
[12], preferred for its time efficiency) and described by a
real-valued descriptor (with the dimensionality D = 1076)
stacked from five fairly standard sub-descriptors, represent-
ing the superpixels’ color distribution, SIFT [23] distribu-
tion, size, location within the image and shape (more details
below).

The super-pixels are then classified into foreground and
background using standard linear support vector machine
(SVM) training. Assume that a set {x1,x2 . . .xN} of N
descriptors corresponding to all superpixels are given. Let

also {y1, y2 . . . yN} be the binary labels where yi= + 1
(yi= − 1) corresponds to superpixels with the majority of
pixels assigned to foreground (background). Then, the sep-
arating hyperplane w in the descriptor space may be ob-
tained by solving the standard SVM (convex quadratic) op-
timization program:

1

2
||w||2 + C

N∑
i=1

`(yi ·wTxi) −→ min
w

, (1)

where `(t) = max(0, 1 − t) is the hinge loss function, and
C is the regularization constant set to 10 in all our experi-
ments.

Our co-segmentation method then integrates this dis-
criminative learning step that propagates the information
about appearance distributions across images with GrabCut
steps that propagate the information within images. Overall,
BiCoS has the following steps (Fig. 1 ):

1. Initialization at the image level. BiCoS starts with
GrabCut being applied to each image independently.
GrabCut here is intialized with the rectangle in the cen-
ter (50% of the image size, unless noted otherwise) as-
signed to the foreground and the rest to background.
The output of this step is a pixel level segmentation of
each image.

2. Propagation at the dataset level. Each superpixel is
assigned in each image to either foreground or back-
ground depending on the label of the majority of its
pixels. Given the set of superpixels and their labels
(over all images), the separating hyperplane w is then
learnt using a linear SVM. Each superpixel is then re-
classified according to its sign w.r.t. to the hyperplane
(so that superpixels on the “wrong” side of the hyper-
plane effectively switch label). The output of this step
is a linear classifier and a classification of all super-
pixels across the dataset.

3. Update at the image level. Within each image inde-
pendently, the Gaussian mixture distribution are rees-
timated from the new foreground and background re-
gions using the pixels that belong to superpixels clas-
sified as foreground or background in the previous
step. Each pixel is weighted according to the distance
from the separating hyperplane, i.e. the margin wTxi.
Given the new mixtures, a single graph cut [8] is then
applied with the potentials defined as in GrabCut. The
output of this step is again a pixel level segmentation
of each image.

One can iterate the sequence of steps 2 and 3. For ef-
ficiency reasons, however, we adopted the single-pass ver-
sion of BiCoS for our experiments (unless noted otherwise).
Overall, scalability to large datasets is an attractive property



of the method. Essentially, the scaling is linear in the num-
ber of images: the SVM in step 2 can be trained in linear
time in the number of superpixels [33] and all other steps
are done independently within each image.

We have used a discriminative classifier. Due to the high
dimensionality of superpixel descriptors and obvious inter-
dependencies in their dimensions, generative modeling and
classification of foreground and background distributions
would be problematic, although one can use naive-Bayes
approximation [3] as well as topic models [9, 32].
Implementation details. We use the popular Felzenswalb’s
code for superpixel segmentation [12], with sigma=1,
k=200, minSize=640. Parameter values were chosen on an-
other, but similar, problem, and are used unchanged for all
segmentation experiments. We observe that the system is
not too sensitive to the method of superpixel segmentation
or its parameter settings.

The superpixel descriptor is composed from the fol-
lowing parts: (1) a 200-dimensional color and a 800-
dimensional SIFT histograms that are obtained by vector-
quantizing and pooling the densely-sampled Lab color val-
ues and multi-scaled dense SIFT descriptors respectively.
(2) The size is encoded as a tiny 2 bins-histogram with
the 1 value placed depending on whether the superpixel is
“big” or “small” (the meaning of “big” and “small” is ob-
tained by clustering the sizes of superpixels in the training
set into two clusters). (3) The location in the image is rep-
resented with a 36-D descriptor obtained by linearly down-
sampling the image-size binary mask, indicating pixels be-
longing to the superpixel, to 6 × 6 size. (4) The shape de-
scriptor is obtained in the same way, except that the mask
is cropped with the superpixel bounding box prior to down-
sampling. (5) Finally, two 0/1 values encoding whether the
superpixel contains the center of the image and whether it
touches the boundary of the image. The resulting descriptor
is quite high-dimensional (1076-D), but is relatively cheap
to compute and permits the similarity computation by a sim-
ple dot product (hence no need for the kernelization of the
algorithms). The vector-quantization is done with locally-
constrained linear coding [39].

3.3. Co-segmenting multiple class image sets

The GrabCut algorithm achieves a remarkable accuracy
by making foreground and background regions of an im-
age share appearance distributions. Co-segmentation al-
gorithms including BiCoS are capable of improving seg-
mentations by enforcing the sharing of such distributions
across the images of the same class. In this subsection,
we make one step further and consider the scenario where
one is given a dataset that contains multiple sets of images
S1,S2 . . .SK corresponding to K classes, with each set Sk
containing Nk images (Sk = {I1, I2, . . . INk

}), where Nk

may be as small as 1 and as large as several hundred.

Clearly, such datasets may be segmented by running
co-segmentation algorithm for each set Sk independently.
However, one may attempt to improve the segmentation
even further by enforcing appearance sharing across classes.
As discussed in the introduction, we assume that the ulti-
mate goal in this scenario is the improvement of the recog-
nition accuracy for classifiers trained from the respective
training sets after background removal. The consequence
of this observation is that a “good” co-segmentation pro-
cess should have a tendency to assign regions with the ap-
pearance patterns that are ubiquitous across multiple image
sets to background (as these patterns would not be discrim-
inative but rather confusing for class discrimination).

Our second approach (BiCoS-MT) enforces background
sharing by modifying the SVM formulation in BiCoS. For
each class-specific dataset Sk, the algorithm finds a sepa-
rate hyperplane that discriminates between the background
and the foreground appearances typical for that class. The
hyperplanes for different classes are however not computed
independently. Instead, for the class k, the separating hy-
perplane is found as the sum of two vectors wk + w−,
where wk is the class-specific part and w− is the compo-
nent shared across all classes. The objective of the joint
SVM formulation is then naturally defined as:

µ

2
||w−||2 +

K∑
k=1

[
1

2
||wk||2+

(2)

C

Nk∑
i=1

`
(
yki · (wk +w−)

Txk
i

)]
→ min
{w1...wK ,w−}

.

Thus, (2) is defined as a sum of K independent SVM ob-
jectives for each class along with the vector component w−
(and its regularization term) shared across the SVMs. (In
(2), xk

i and yki denote superpixels within the dataset Sk; Nk

denotes the number of superpixels in image set Sk; µ is an
additional regularization parameter set to 1

2 in all our exper-
iments.)

Since we want to encourage the sharing of background
and discourage the sharing of the foreground appearance
patterns, we impose additional constraints on (2):

wj
k ≥ 0, ∀j = 1 . . . D (3)

wj
− ≤ 0, ∀j = 1 . . . D (4)

An intuition behind the constraints (4) is that they make the
separating hyperplanes for different classes share negative
coefficients (that are indicative of background superpixels),
while positive coefficients can be inferred for each class in-
dependently. With respect to the original SVM formulation,
it is easy to show that for the case of a single class K = 1
and equal regularization on w1 and w− (i.e. when µ = 1),
the standard SVM formulation (1) and the new formulation



Figure 2. Bird segmentations: (top) original images, (middle) using BiCoS and (bottom) using BiCoS-MT. In the left 5 images, BiCoS-MT
performs better because it takes into account background elements (e.g. tree branches) in the background of images from other classes. But
due the existence of confusing foreground elements (e.g. blue birds) in other classes, sky can be mis-classified using BiCoS-MT.

(2)–(4) are exactly equivalent and produce the same sepa-
rating hyperplane.

Based on the augmented SVM formulation, we devise
the BiCoS-MT algorithm that uses the joint program (2)–
(4) to estimate the separating hyperplane wk+w− for each
class k at step 2. The rest of the steps are unchanged from
BiCoS. We note that the joint SVM formulation can be
naturally interpreted as an instance of multi-task learning
[10, 11] (hence the name BiCoS-MT). Within BiCoS-MT,
each task corresponds to learning a superpixel classifier for
a particular image set Sk. We also note that “softer” version
of background sharing may be implemented, where each
class possesses both positive component w+

k and negative
component w−k specific to that class, whereas the extra term
ν
∑

k ||w
−
k −w−||2 penalizes the deviation of the negative

components from their joint mean vector w− that does not
enter in any other terms (c.f. [11]).

The program (2)–(4) may be rather large (many tens of
thousands of variables in some of our experiments), and
we therefore implemented the modification of a popular
stochastic gradient descent-based method (Pegasos [33]) to
handle the task. This allows (2)–(4) to scale to a large num-
ber of classes and/or a large number of images per class.
A detailed pseudocode description of the modified Pegasos
solver for (2)–(4) is given at [2].

As illustrated in Fig. 2, sharing the background among
all classes may lead to better segmentation, but may also
cause mis-segmentation. But for the majority of our exper-
iment setups, BiCoS-MT has an advantage over BiCoS.

4. Experimental results
Performance measures. During the evaluation of co-
segmentation systems, we are interested in two measures:
the segmentation accuracy and the accuracy of the recogni-
tion achieved by a visual classifier trained on the segmented
dataset, and we report these measures for three image clas-

sification datasets and several methods.

Given a ground truth foreground mask, the segmentation
accuracy can be expressed in several ways. One is the ratio
between the size of the intersection area between the esti-
mated foreground and ground truth foreground over the size
of their union (Seg. I). The other is the percentage of pix-
els classified correctly as either foreground or background
(Seg. II). We report both numbers for our methods, and
whichever is published for the competitors. For the average
recognition accuracy (Rec.), we take the mean value of the
relative numbers of correctly classified images of each cat-
egory (i.e. the average class accuracy) by a state-of-the-art
visual classifier briefly described below.

Evaluation on image recognition. In order to evaluate the
effect of co-segmentation on the recognition accuracy we
apply the following training pipeline: (i) BiCoS, BiCoS-
MT or one of the baseline segmentation algorithms is used
to obtain foreground segmentation masks on the training
data (note, in all cases the algorithm can make use of the
class labels of the training data – BiCoS can be applied to
each class independently, and BiCoS-MT is formulated to
use this information); (ii) a 1-vs-rest SVM image classifier
is learnt for each category (see below) using the foregrounds
of that category as positives, and the foregrounds of all other
categories as negatives; (iii) a generic segmenter is learnt
(which will be applied to the test images) as an SVM for
super-pixels using the foreground regions of all categories
as positives and the background regions of all categories
as negatives (note, at test time we do not know the class
label so cannot use a BiCoS algorithm just for that class).
The test pipeline then proceeds as: (i) segmenting into fore-
ground background using the generic segmenter SVM on
superpixels followed by step 3 of BiCoS; (ii) classifying the
foreground image using each of the 1-vs-rest SVM image
classifiers; and (iii) returning the class with the maximum
score over all the image classifiers.



Implementation Details. The features for the image recog-
nition part are obtained by concatenating the Bag-Of-Words
(BoW) histograms of Lab color and SIFT descriptors,
which are extracted solely from the foreground area given
by the segmentation. We use three different histograms for
SIFT feature corresponding to dense sampling at several
scales, sampling at interest points, and sampling along the
foreground boundary. Similar to the superpixel descriptors,
the vector-quantization uses locally-constrained linear cod-
ing [39]. The vocabulary sizes are 800 for Lab and 8000 for
each of the 3 SIFT descriptors. Before concatenating the
four descriptors together, we apply the homogeneous ker-
nel map with approximation order 1 and sampling step 0.7
[36] onto it, which results in a 74400 dimensional feature
vector, that is used within the linear SVM (with C = 1).
The implementation uses VL-Feat [35].

4.1. Oxford Flowers 17

The Oxford Flowers 17 dataset contains 17 different
flower species with 80 images per category. The dataset
provides three different data splits with each having 60
training and 20 test images. And 818 out of the 1360 im-
ages have hand-annotated ground truth segmentations. The
fact that these ground truth segmentations are unequally dis-
tributed among all categories, makes it difficult to compare
segmentation and recognition accuracies simultaneously.

We first compare our algorithms to the recently pub-
lished co-segmentation algorithm by Joulin et al. [19]. We
use their provided code and their suggested parameter set-
tings for this dataset. The memory demands of this algo-
rithm are too excessive to use the predefined 60/20 train/test
split. Instead, a new data split having 15 training and 65
test images per category is used. This split has 15 training
images with ground truth segmentations for 16 of the cat-
egories (out of the total of 17). Thus, for the new split we
can compare both segmentation and recognition accuracies.
We note that other published co-segmentation methods ei-
ther do not scale to even this number of images or require
user supervision [5], thus making [19] the natural choice for
the comparison.

The numerical comparison between our own methods
and method [19] is shown in Tab. 1, while some of the seg-
mented images are shown in Fig. 3. In Tab. 1 and thereafter,
we also provide the accuracies for the cases when no pre-
segmentation of training and test images is performed, and
when the training dataset is pre-segmented with GrabCut.

We also compare the recognition accuracy of our full
system that uses BiCoS to co-segment training image with
the state-of-art recognition results using the predefined data
splits. We show our recognition accuracies in Tab. 2 along
with the results provided by Gehler and Nowozin [14] and
Nilsback [26].

Methods Seg. I Seg. II Rec.
All foreground 32.8 32.8 62.1
Joulin et al. CVPR’10 [19] 75.8 86.6 74.1
GrabCut [30] 89.3 96.3 73.3
BiCoS (this work) 94.1 98.1 79.3
BiCoS-MT (this work) 94.7 98.3 80.5

Table 1. Performance on Oxford Flowers 17 (with the alternative
data split – 15 images per class). Our algorithms achieves the
highest results in all three measures. For this number of training
images, BiCoS-MT also outperforms BiCoS.

Methods Rec. Accuracy
Gehler and Nowozin ICCV’09 [14] 85.5 ± 3.0
Nilsback’ thesis [26] 88.1 ± 1.9
BiCoS (this work) 91.1 ± 1.5
BiCoS-MT (this work) 90.4 ± 2.3

Table 2. Performance on Oxford Flowers 17 (with the original data
splits – 60 training images per class). Our algorithms once again
lead to the highest recognition accuracies. For 60 images per class,
BiCoS-MT no longer perform better than BiCoS.

4.2. Oxford Flowers 102

The Oxford Flowers 102 dataset has 8289 images di-
vided into 102 categories with 40 to 250 images per cate-
gory. For each category, 10 training and 10 validation im-
ages are predefined, while the rest is left for testing. There is
no segmentation ground truth provided in the dataset, there-
fore, we use the recognition accuracy as the only measure-
ment.

Among all recent approaches evaluated on this dataset
[18, 20], the best performance is reported in [26]. The au-
thors proposed a model-based foreground segmentation ap-
proach which segments images independently. In the fol-
lowing experiments, we can show that this baseline can
be surprisingly outperformed in our experiment framework
even if the images are segmented independently using Grab-
Cut alone. We also show that the accuracy can be pushed
even further with the proposed methods (Tab. 3). We used
the results of the segmentation [26] available online to eval-
uate the combination of their segmentation system and our
image classifier. The improvement obtained by BiCoS and
BiCoS-MT over [26] in this experiment is all the more
important, as the system [26] required around 800 hand-
annotated segmentation masks as training data.

4.3. Caltech-UCSD Birds 200

The recently published Caltech-UCSD Birds 200 [40]
contains 200 bird categories and 6033 images in total. There
are rough segmentation masks provided with the dataset,
which allows us to compare segmentation accuracies. How-
ever, we should note that those values are only approxi-
mated because of the rough segmentation ground truth ob-



Figure 3. Flower segmentations: (top) original images, (middle) segmentations by Joulin et al. [19] and (bottom) the segmentations of
BiCoS-MT. The results of BiCoS are very similar to BiCoS-MT for these particular images.

Segmentation Classification Rec. Accuracy
no segmentation ours 64.7
Nilsback [26] Nilsback [26] 76.3
Nilsback [26] ours 76.8
Kanan and Cottrell [20] Kanan [20] 72.8
Ito and Cubota[18] Ito [18] 74.8
GrabCut [30] ours 77.0
BiCoS ours 79.4
BiCoS-MT ours 80.0

Table 3. Recognition performance for different combination of
segmentaiton and classification approaches on Oxford Flowers
102. For a number of methods, we vary the (co-)segmentation
approach while keeping the classification approach fixed. The pro-
posed methods once again lead to the highest recognition accuracy.

Methods Seg. I Seg. II Rec.
no segmentation 17.0 17.0 6.7
GrabCut [30] 38.8 73.5 13.6
BiCoS 41.1 78.3 15.7
BiCoS-MT 39.9 77.3 16.2
using ground truth seg. - - 23.3

Table 4. Performance on Caltech-UCSD Birds 200. BiCoS algo-
rithms outperform GrabCut in all measures. BiCoS-MT leads to
slightly higher recognition accuracy. The bottom line provides the
performance of our classification approach given ground truth seg-
mentation.

tained with MTurk. The dataset is extremely challenging,
and its authors report only 19% recognition accuracy when
using ground truth masks. Tab. 4 gives the segmentation
and classification accuracies (using the suggested 20 train-
ing images per class split) of GrabCut, BiCoS, and BiCoS-
MT paired with our recognition approach. We hope that
they may serve as a baseline for further research on seg-
mentation and co-segmentation.

4.4. Weizmann Horses and Caltech-4

We also evaluate BiCoS on datasets with fixed view-
point orientation and classes that have well-defined geomet-
ric shape. This scenario is quite different from our main
application and it is inevitable that methods interleaving
segmentation and construction of class-specific geometric
models are likely to have an advantage over BiCoS or any
other method not having a geometric model. Still, it is inter-
esting to see how well BiCoS can fare against such methods,
in particular against Alexe et al. [3] to which it is most simi-
lar. We therefore evaluated BiCoS on Weizmann Horses [7]
and 3 out of 4 Caltech-4 classes [21] (the grayscale ‘cars’
class was left out). We keep all the parameters fixed from
the Flowers and Birds experiments, except that GrabCut is
initialized with the central foreground rectangle occupying
25% (rather than 50%) of the image area.

The comparison with state-of-the-art is in Tab. 5. Here
we also give results for the iterated BiCoS (repeating step 2
to step 3 for 5 times). In the experiments, BiCoS performed
poorly on the motorbike class, where GrabCut often fails
due to unnatural framing within many photographs. Apart
from that, the performance of BiCoS is surprisingly com-
petitive, in particular outperforming Alexe et al. [3] on the
remaining 4 categories. The top performing method of [22]
outperforms BiCoS on all categories except airplanes where
BiCoS (one iteration) is better.

5. Discussion
We presented BiCoS: a co-segmentation method that is

arguably very simple, yet is scalable and performs remark-
ably well in our experimental comparisons. BiCoS out-
performed GrabCut that treats images independently and
the state-of-the-art co-segmentation [19] in all compar-
isons. Image classification systems trained on datasets co-
segmented with BiCoS achieved state-of-the-art accuracy
on the Flowers-17 and Flowers-102 datasets. For the small



Methods
horse airplane face motorbike

Seg I Seg II Seg I Seg II Seg I Seg II Seg I Seg II

All background 0.0 71.0 0.0 83.1 0.0 80.0 0.0 72.9
Joulin et al. [19] - 80.1 - - - - - -
Cao&Fei-Fei [9] - 81.8 - - - - - -
Alexe et al. [3] - 86.2 - 89.8 - 89.0 - 90.3
Arora et al. [4] - - - 93.1 - 92.4 - 83.1
LOCUS [41] - 93.1 - - - - - -
Liu et al. [22] - 95.9 63.9 - - - 71.6 -
GrabCut [30] 60.6 86.3 59.2 90.7 60.1 86.2 41.1 80.6
BiCoS (1 iter.) 65.2 87.6 64.5 93.0 66.2 89.3 44.7 82.8
BiCoS (5 iter.) 68.7 90.0 63.8 93.2 69.0 91.1 41.8 82.4

Table 5. (Co-)segmentation performance on Weizmann Horses and
Caltech-4 datasets reported in the literature. Despite the lack of the
geometric model, BiCoS is competitive with the methods that have
such models (see text for more discussion).

number of images per class (Tab. 1, Tab. 3) the multi-task
version of BiCoS leads to even higher recognition accuracy.

Many co-segmentation methods attempt to segment im-
ages and infer the foreground and background appearance
models at the same time. BiCoS follows a different, per-
haps less principled way, and performs within-image and
across-image appearance propagation consecutively rather
than jointly. Such a two-step approach, however, allows a
proper feature representation to be used at each level (color-
based at the level of individual images, discriminative clas-
sification of rich superpixel descriptors at the dataset level).
The success of BiCoS in our experiments therefore seems
to concur with the well-known fact that devising appropri-
ate feature representations has a higher impact on the per-
formance of computer vision systems than the choice of a
principled optimization algorithm.

All the segmentations from Sec. 4 are provided at [2],
and a classification demo on the Oxford Flower 102 dataset
is available at [1].
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