
1

Photorealistic Monocular Gaze Redirection
Using Machine Learning

Daniil Kononenko∗, Yaroslav Ganin†, Diana Sungatullina∗,Victor Lempitsky∗
∗Skolkovo Institute of Science and Technology

{daniil.kononenko,d.sungatullina,lempitsky}@skoltech.ru
†Université de Montréal

yaroslav.ganin@gmail.com

Abstract—We propose a general approach to the gaze redirection problem in images that utilizes machine learning. The idea is to
learn to re-synthesize images by training on pairs of images with known disparities between gaze directions. We show that such
learning-based re-synthesis can achieve convincing gaze redirection based on monocular input, and that the learned systems
generalize well to people and imaging conditions unseen during training.
We describe and compare three instantiations of our idea. The first system is based on efficient decision forest predictors and redirects
the gaze by a fixed angle in real-time (on a single CPU), being particularly suitable for the videoconferencing gaze correction. The
second system is based on a deep architecture and allows gaze redirection by a range of angles. The second system achieves higher
photorealism, while being several times slower. The third system is based on real-time decision forests at test time, while using the
supervision from a “teacher” deep network during training. The third system approaches the quality of a teacher network in our
experiments, and thus provides a highly realistic real-time monocular solution to the gaze correction problem. We present in-depth
assessment and comparisons of the proposed systems based on quantitative measurements and a user study.

Index Terms—Gaze redirection, machine learning, deep learning, random forest, weakly-supervised learning, image resynthesis.

F

1 INTRODUCTION

F Ew image parts have such a dramatic effect on the perception
of an image like regions depicting eyes of a person in this

image. Humans (and even non-humans [1]) can infer a lot of
information about the owner of the eyes, her intent, her mood,
and the world around her, from the appearance of the eyes and, in
particular, from the direction of the gaze. Overall, the role of gaze
in human communication is long known to be very high [2].

The task of gaze redirection (i.e. image modification in order to
make an impression of changed gaze direction) emerges in several
scenarios. First and foremost, there is a problem of gaze in video-
conferencing that has been attracting researchers and engineers for
a long time. The problem manifests itself as the inability of the
people engaged into a videoconferencing to maintain gaze contact.
The lack of gaze contact is due to the disparity between the image
of the interlocutor’s face on the screen and the camera (as a result,
while the gaze into the eyes of the other person on the screen
is perceived as a downward stare by the interlocutor). Another
common scenario that needs gaze redirection are “talking head”-
type videos with teleprompting. Yet another example is photo
editing and movie post-production in order to make gaze direction
consistent with the ideas of the photographer or the movie director.

All of these scenarios put very high demands on the realism of
the result of the digital alteration, and some of them also require
real-time or near real-time operation. To meet these challenges, we
propose three systems for monocular gaze correction. All systems
are based on supervised machine learning, for which a large
number of image pairs describing the gaze redirection process
is utilized. We use a specially collected dataset that depicts the
change of the appearance under gaze redirection in real life.

For an input image frame, most previous systems for gaze cor-
rection synthesize a novel view of a scene from a virtual viewpoint

co-located with the screen [3], [4], [5], [6]. Alternatively, a virtual
view restricted to the face region is synthesized and stitched into
the original video stream [7], [8]. Novel view synthesis is however
a challenging task, even in constrained conditions, due to such
effects as (dis)-occlusion and geometry estimation uncertainties.
Stitching real and synthetic views can alleviate some of these
problems, but it often leads to distortions through the multi-
perspective nature of the stitched images.

We do not attempt to synthesize a view for a virtual camera. In-
stead, our method emulates the change in the appearance resulting
from a person changing her gaze direction by a certain angle (e.g.
ten degrees upwards), while keeping the head pose unchanged
(Figure 1). Emulating such gaze redirection is still challenging, as
it is associated with (a) complex non-rigid motion of eye muscles,
eyelids, and eyeballs, (b) complex occlusion/dis-occlusion of the
eyeballs by the eyelids, (c) change in illumination patterns due to
the complex changes in normal orientation.

Our key insight is that while the local appearance change
associated with gaze redirection is complex, it can still be learned
from a reasonable amount of training data. We use supervised
learning, as the training proceeds by observing multiple pairs of
images with altered gaze direction at training time. The main
challenge of such approach is to devise learning methods that
can generalize to people and imaging conditions unseen during
training, while also meeting the requirements of realism and
sufficient speed at test-time. Towards this end we present three
systems that achieve these goals in varying degrees.

The first of our systems is based on a special kind of random-
ized decision tree ensembles called eye flow forests that are learned
in a weakly-supervised manner. At training time, this system
observes pairs of images, where each pair contains the face of

2

Input Desired output Our output

Fig. 1. The setting for monocular gaze redirection. Left – an input frame with the gaze directed below the camera. Middle – a “ground truth” frame
with the gaze directed 15 degrees higher than in the input. Given an input image and the desired change in angle and direction (“15 degrees higher”)
our method aims to produce an image that for human perception is as close to ground truth as possible. The result of one of the proposed systems
(Section 3.4) is shown on the right. In this particular example, the computation time of the method is 5 ms on a single laptop core (excluding feature
point localization). Such speed makes our system suitable for real-time use in videoconferencing.

the same person with a fixed angular difference in gaze direction.
It then learns to synthesize the second image of a pair from the first
one by predicting a warping flow field. After learning, the system
gets the ability to redirect the gaze of a previously unseen person
by the same angular difference as in the training set. The system
synthesizes realistic views with a gaze systematically redirected
by 10 − 30 degrees in our experiments. At test-time, the system
accomplishes gaze correction using simple pixel replacement
operations that are localized to the vicinity of persons eyes, thus
achieving high computational efficiency. Our implementation runs
in real-time on a single core of a laptop. Although the results
are of a high perceptual quality (see Section 4.3), the system
still leaves some room for improvement and artifact reduction.
Another, less critical deficiency of the system is a relatively large
memory footprint of the learned models.

Our second system is based on a deep feed-forward archi-
tecture that combines several principles of operation (coarse-to-
fine processing, image warping, intensity multiplication). The
architecture is trained end-to-end in a supervised way using a
specially collected dataset that depicts the change of the appear-
ance under gaze redirection by different angles. Qualitative and
quantitative evaluation demonstrate that our deep architecture can
synthesize very high-quality eye images, as required by the nature
of the applications, and does so at several frames per second.
The quality of the results is higher than for the first system, but
the efficiency falls short of real-time CPU operation, making the
method impractical for video-conferencing using most consumer
devices. Such approach is still practical for image and video-
editing application scenarios outlined above. Our system also
contributes to an actively-developing field of image generation
with deep models.

Our third system combines the advantages of the previous
two. Similarly to the first system, it is based on a randomized
decision forest, which in this case is trained in a traditional fully-
supervised manner. To obtain such supervision, we use an output
of the second system, effectively making our deep architecture
to “teach” the random forest. At training time, the new system
observes images and the corresponding pixel flow that is estimated
by the deep model, and learns to produce the flow for previously
unseen images using a regression random forest. At test-time,
the system redirects gaze by applying the flow predicted by the
random forest to the input image. As shown in our experiments,
the trained forest manages to approach the quality of the teacher
network, outperforming the quality of a weakly supervised random
forest (from the first system). At the same time, this system runs

in real-time on a single core of a CPU. Moreover, resulting models
have much smaller memory footprint in comparison to the weakly
supervised forest.

The rest of the paper is organized as follows. We review the
related work on gaze correction, randomized trees, and image
re-synthesis using deep learning (Section 2). We introduce our
general approach and the three proposed systems in Section 3.
In Section 4, we perform qualitative and quantitative validation
of the proposed systems. Finally, we draw some conclusions in
Section 5.

2 RELATED WORK

Gaze correction in videoconferencing. Fixing the gaze problem
in videoconferencing (gaze correction) is the most popular use
case of gaze redirection. A number of systems solve the gaze
problem using a hardware-driven approach that relies on semi-
transparent mirrors/screens [9], [10]. Another group of methods
offers a mixed software/hardware solution and proceeds in two
steps. First, a dense depth map is estimated either through the
use of stereomatching [3], [4] or using RGB-D cameras [7], [11].
Then, a new synthetic view corresponding to a virtual camera
located behind the screen is created in real-time. A common
problem with the novel view synthesis is filling dis-occluded
regions. Generally, reliance on additional hardware represents an
obvious obstacle to the wide adaptation of these techniques.

While a certain number of purely software, monocular gaze
correction approaches have been suggested [5], [6], most of them
have been generally unable to synthesize realistic images while
meeting the requirements of realism and being able to alter
the perceived gaze direction sufficiently. One exception is the
system [12] that first prerecords a sequence of frames where a
person gazes into the camera, and then, at the conference time,
replaces the eye regions with the eye region taken from one of
the prerecorded frames (more recently, [13] suggested a similar
approach to replace closed eyes with open eyes for photo editing).
The downside of [12], is that while the obtained images achieve
sufficient realism, the gaze in the synthesized image remains
“locked” staring unnaturally into the camera irrespective of the
actual movement of eyes. A related drawback is that the system
needs to prerecord a sufficient number of diverse images of the
person eyes. Our systems do not suffer from either of these
limitations.

The more recent system [8] uses monocular real-time approx-
imate fitting of head model. Similarly to [7], the approximate

3

Fig. 2. Gaze redirection with our neural network-based system trained for vertical gaze redirection. The model takes an input image (middle row)
and the desired redirection angle (here varying between -15 and +15 degrees) and re-synthesize the new image with the new gaze direction. Note
the preservation of fine details including specular highlights in the re-synthesized images.

geometry is used to synthesize a high-quality novel view that is
then stitched with the initial view through real-time optimization.
The limitations of [8] are the potential face distortion due to multi-
perspective nature of the output images, as well as the need for
GPU to maintain the real-time operation. Prerecording heavily
occluded head parts (under chin) before each video-conference
is also needed.

Decision forests in computer vision. The variant of our
system based on eye flow trees continues the long line of real-time
computer vision systems based on randomized decision trees [14],
[15] that includes real-time object pose estimation [16], head pose
estimation [17], human body pose estimation [18], background
segmentation [19], etc. While classical random forests are trained
to do classification or regression, the trees in our method predict
some (unnormalized) distributions. Our method is thus related to
other methods that use structured-output random forests (e.g. [20],
[21]). Finally, the trees in our method are trained under weak
supervision, and this relates our work to such methods as [22].

Deep learning and image synthesis. Image synthesis using
neural networks is receiving growing attention [23], [24], [25],
[26], [27], [28], [29]. More related to our second system are
methods that learn to transform input images in certain ways [30],
[31], [32]. These methods proceed by learning internal compact
representations of images using encoder-decoder (autoencoder)
architectures, and then transforming images by changing their
internal representation in a certain way that can be trained from
examples. We have conducted numerous experiments following
this approach combining standard autoencoders with several ideas
that have reported to improve the result (convolutional and up-
convolutional layers [24], [33], adversarial loss [25], variational
autoencoders [34]). However, despite our efforts, we have found
that for large enough image resolution, the outputs of the network
lacked high-frequency details and were biased towards typical
mean of the training data (“regression-to-mean” effect). This is
consistent with the results demonstrated in [30], [31], [32] that
also exhibit noticeable bluring. The recent work [29] addresses
this problem using a new cross-conlutional layer that models
correlation between motion and image content as well as the
uncertainty of the motion field. The network then encodes input

image pyramid into multiple feature maps and convolves these
maps with different kernels.

Compared to [30], [31], [32], our approach can learn to
perform a restricted set of image transformations. However, the
perceptual quality and, in particular, the amount of high-frequency
details is considerably better in the case of our method due to the
fact that we deliberately avoid any input data compression within
the processing pipeline. This is crucial for the class of applications
that we consider.

The idea of spatial warping that lies in the core of the proposed
system has been previously suggested in [35]. In relation to [35],
parts of our architecture can be seen as spatial transformers with
the localization network directly predicting a sampling grid instead
of low-dimensional transformation parameters.

Finally, in parallel with our work, several papers presented
a related approach with a deep network that predicts warping
fields (flow) for image editing. The network architecture as well as
classes of objects and scenes in [36] differ from ours. Their archi-
tecture also lacks an equivalent of our lightness correction module.
The work [37] suggests synthesize flow fields that manipulate
facial expression. Unlike us, they used VAE-based architecture
with regularization on the latent space representation. In [38]
the idea of warping flow is used for predicting the missed frame
in a video sequence. In [39], the warping flow is used to fill in
disoccluded pixels, based on the prediction of the visibility map.

Teacher-student architectures. The idea to use output of
very precise but large and slow model as a supervision for a
faster architecture goes back to at least [40]. More recently [41]
suggested to train a “student” network, from the softened output
of an ensemble of wider networks (“teacher” networks), allowing
the student network to capture not only the information provided
by the true labels, but also the finer structure learned by the
teacher network. This idea was further developed in [42] that uses
activations of several hidden layers of the teacher network as a
guidance for the student network.

Conference versions. The first and the second systems (as
well as our general approach to gaze redirection) were presented in
the conference papers [43], [44]. This paper adds the third system,
which has the highest practical importance as it in many ways

4

combines the speed of the first system and the quality of the second
system. We also add several important details and illustrations, as
well as a unified treatment and validation for all three systems,
including a new user study that required users to assess the realism
of face images with redirected gaze (different from the user study
in [44], which showed the users separate eye images).

3 METHODS

All our systems are based on supervised learning, as the training
proceeds by observing multiple pairs of images with altered gaze
direction by a known angle at training time. As was mentioned
above, the main challenge of such approach is to devise learning
methods that can generalize to people and imaging conditions
unseen during training, and all three systems that we discuss below
achieve such generalization by learning to predict the warping field
(eye flow) rather than the output image directly. The second system
corrects the warped output with per-pixel brightness modification
(while still trying to achieve the redirection mostly by warping).

3.1 General setting

All three systems start by localizing the eye regions and then
achieving redirection by localized processing. We now discuss the
common elements of the three systems.

3.1.1 Eye localization
The eye localization step within our system is standard, as we use
an off-the-shelf real-time face alignment library (e.g. [45], [46])
to localize facial feature points. As the gaze-related appearance
change is essentially local to the eye regions, all further operations
are performed in the two areas surrounding the two eyes.

For each eye, we thus focus on the feature points f1 =
(x1, y1), f2 = (x2, y2) . . . fN = (xN , yN) corresponding to that
eye (in the case of [45] there are N = 7 feature points). We
compute a tight axis-aligned bounding box B′ of those points.
After this, we define the final bounding box B having the same
center as B′ and having the width W and height H that are
proportional to some characteristic radius ∆ (i.e. W = α∆,
H = β∆ for certain constants α, β). The bounding box B is
thus covariant with the scale and the location of the eye, and has
a fixed aspect ratio α : β. We define ∆ as the width of the tight
bounding box, which equals the distance between the corners of
an eye: ∆ = ||f1 − f4||.

3.1.2 Training dataset
As our approach is based on supervised learning, we have col-
lected a Skoltech Dataset of videos of around 150 people (Fig-
ure 3). During recording, to minimize head movement, a person
places her head on a special stand and follows with her gaze a
moving point on the screen in front of the stand. The sequence of
frames synchronized with the point position, from which we can
deduce the gaze direction, is recorded using a webcam mounted
in the middle of the screen.

About 200 frames for one video sequence are recorded. The
angular range is 36° in vertical direction and 60° in horizontal
direction. We manually exclude bad shots, where a person is
blinking, not changing gaze direction monotonically as anticipated
or moving head. For each person we record 2−10 sequences (450
sequences total), changing the head pose and lighting conditions
between different sequences. From each sequence, one can draw

about 50 − 80 training pairs for a certain angular difference in
gaze directions. Each training pair can be regarded as a training
example for supervised learning.

Training samples are cropped using the eye localization pro-
cedure described above. We incorporate left and right eyes into
one dataset, mirroring right eyes. At test time, we use the same
predictor for left and right eyes, mirroring the results.

3.1.3 Redirection by pixel wise replacement
After the eye bounding box is localized, the method needs to alter
pixels inside the box to emulate gaze redirection. As mentioned
above, we rely on machine learning to accomplish this. A 2D
offset vector (u(x, y), v(x, y)) is obtained for each pixel (x, y).
The final value of the pixel O(x, y) in the output image O is then
computed using the following simple formula:

O(x, y) = I (x+ u(x, y), y + v(x, y)) . (1)

In other words, the pixel value at (x, y) is “copy-pasted” from
another location determined by the eye flow vector (u, v). Such
restriction on the transformation introduces natural regularization
in our method. Such approach ensures that the pixels of the output
are copied from the input rather than “invented”. However, this
approach makes the learning problem weakly-supervised, because
we do not have flow vectors (u(x, y), v(x, y)) for the training
pairs, so the learning method should be developed to handle such
weak supervision.

3.1.4 Image-independent flow field
Under our approach, we can propose a very simple baseline
that suggests a fixed eye flow vector in (1) independent of the
test image content and based solely on the relative position
in the estimated bounding box, i.e. u = u(x/∆, y/∆) and
v = v(x/∆, y/∆), where the values of u and v for a given
relative location (x/∆, y/∆) are learned on training data as
discussed below.

3.2 Eye flow forest
We now describe the three systems sequentially, starting with
the system based on weakly-supervised random forests (eye flow
forests). At test time, this system matches a pixel at (x, y) to
a group of similar pixels in training data and finds the most
appropriate eye flow vector for this kind of pixels. To achieve
this effect, a pixel is passed through a set of specially-trained
ensemble of randomized decision trees (eye flow trees). When a
pixel (x, y) is passed through an eye flow tree, a sequence of
simple tests of two kinds are applied to it. A test of the first
kind (an appearance test) is determined by a small displacement
(dx, dy), a color channel c ∈ {R,G,B}, and a threshold τ and
compares the difference of two pixel values in that color channel
with the threshold:

I(x+ dx, y + dy)[c]− I(x, y)[c] ≷ τ (2)

A test of the second kind (a location test) is determined by the
number of the feature point i ∈ {1, . . . N} and a threshold τ and
compares either x− fi or y − gi with τ :

x− fi ≷ τ y − gi ≷ τ (3)

Through the sequence of tests, the tree is traversed till a leaf node
is reached. Given an ensemble of T eye flow trees, a pixel is thus
matched to T leaves.

5

Fig. 3. Left – dataset collection process. Right – examples of training pairs for 15° vertical redirection.

Fig. 4. Processing of a pixel (green square) at test time in an eye flow tree. The pixel is passed through an eye flow tree by applying a sequence of
tests that compare the position of the pixels w.r.t. the feature points (red crosses) or compare the differences in intensity with adjacent pixels (bluish
squares) with some threshold. Once a leaf is reached, this leaf defines a matching of an input pixel with other pixels in the training data. The leaf
stores the map of the compatibilities between such pixels and eye flow vectors. The system then takes the optimal eye flow vector (yellow square
minus green square) and uses it to copy-paste an appropriately-displaced pixel in place of the input pixel into the output image. Here, a one tree
version is shown for clarity, our actual system would sum up the compatibility scores coming from several trees before making the decision about
the eye flow vector to use.

Each of the leaves contain an unnormalized distribution of
compatibility score (4) over the eye flow vectors (u, v) for the
training examples that fell into that leaf at learning stage. We then
sum the T distributions corresponding to T leaves, and pick (u, v)
that minimizes the aggregated distribution. This (u, v) is used for
the copy-paste operation (1).

Handling scale variations. To make matching and replace-
ment operations covariant with the changes of scale, a special care
has to be taken. For this, we rescale all training samples to have
the same characteristic radius ∆0. During gaze redirection at test
time, for an eye with the characteristic radius ∆ we work at the
native resolution of the input image. However, when descending
an eye flow tree, we multiply the displacements (dx, dy) in (2)
and the τ value in (3) by the ratio ∆/∆0. Likewise, during copy-
paste operations, we multiply the eye flow vector (u, v) taken
from the image-independent field or inferred by the forest by the
same ratio. To avoid the time-consuming interpolation operations,
all values (except for τ) are rounded to the nearest integer after
the multiplication.

3.2.1 Learning

We assume that a set of training image pairs (Ij , Oj) is given.
We assume that within each pair, the images correspond to the

same head pose of the same person, same imaging conditions,
etc., and differ only in the gaze direction (Figure 1). We further
assume that the difference in gaze direction is the same for all
training pairs (separate predictor needs to be trained for every
angular difference). As discussed above, we also rescale all pairs
based on the characteristic radius of the eye in the input image.

For each pixel (x, y), our goal is to turn the color of the pixel
Ij(x, y) into the color given by Oj(x, y) by applying the oper-
ation (1). Therefore, each pixel (x, y) within the bounding box
B specifies a training tuple S = {(x, y), I, {(fi, gi)}, O(x, y)},
which includes the position (x, y) of the pixel, the input image I it
is sampled from, eye feature points {(fi, gi)} in the input image,
and finally the color O(x, y) of the pixel in the output image. The
trees or the image-independent flow field are then trained based
on the sets of the training tuples (training samples).

As discussed above, unlike most other decision trees, eye flow
trees have to be trained in a weakly-supervised manner. This is
because each training sample does not include the target vectors
(u(x, y), v(x, y)) that the tree is designed to predict. Instead, only
the desired output color O(x, y) is known, while same colors can
often be obtained through different offsets and adjustments making
the supervision “weak”.

The goal of the training is then to build a tree that splits the

6

space of training examples into regions, so that for each region
replacement (1) with the same eye flow vector (u, v) produces
good result for all training samples that fall into that region. Given
a set of training samples S = {S1,S2, . . . ,SK}, we define the
compatibility score E of this set with the eye flow (u, v) in the
following natural way:

E
(
S, (u, v)

)
= (4)

K∑
k=1

∑
c=R,G,B

∣∣∣Ik(xk + u, yk + v)[c]−Ok(xk, yk)[c]
∣∣∣ .

Here, the superscript k denotes the characteristics of the training
sample Sk, Ik and Ok denote the input and the output images
corresponding to the kth training sample in the group S, and c it-
erates over color channels. Overall, the compatibility E(S, (u, v))
measures the disparity between the target colors Ok(xk, yk) and
the colors that the replacement process (1) produces.

Given the compatibility score (4) we can define the coherence
score Ẽ of a set of training samples S = {S1,S2, . . . ,SK} as:

Ẽ(S) = min
(u,v)∈Q

E
(
S, (u, v)

)
, (5)

Here, Q denotes the search range for (u, v), which in our im-
plementation we take to be a square [−R, . . . R] ⊗ [−R, . . . R]
sampled at integer points. Overall, the coherence score is small as
long as the set of training examples is compatible with some eye
flow vector (u, v) ∈ Q, i.e. replacement (1) with this flow vector
produces colors that are similar to the desired ones.

The coherence score (5) then allows us to proceed with the top-
down growing of the tree. As is done commonly, the construction
of the tree proceeds recursively. At each step, given a set of
training samples S, a large number of tests (2),(3) are sampled.
Each test is then applied to all samples in the group, thus splitting
S into two subgroups S1 and S2. We then define the quality of
the split (S1,S2) as:

F (S1,S2) = Ẽ(S1) + Ẽ(S2) + λ
∣∣|S1| − |S2|

∣∣ , (6)

where the last term penalizes the unbalanced splits proportionally
to the difference in the size of the subgroups. This term typically
guides the learning through the initial stages near the top of the
tree, when the coherence scores (5) are all “bad” and becomes
relatively less important towards the leaves. After all generated
tests are scored using (6), the test that has the best (minimal) score
is chosen and the corresponding node V is inserted into the tree.
The construction procedure then recurses to the sets S1 and S2

associated with the selected test, and the resulting nodes become
the children of V in the tree.

The recursion stops when the size of the training sample set S
reaching the node falls below the threshold τS or the coherence
Ẽ(S) of this set falls below the threshold τC , at which point a
leaf node is created. In this leaf node, the compatibility scores
E(S, (u, v)) for all (u, v) from Q are recorded. As is done
conventionally, different trees in the ensemble are trained on ran-
dom subsets of the training data, which increases randomization
between the obtained trees.

Learning the image-independent flow field is much easier
than training eye flow trees. For this, we consider all training
examples for a given location (x, y) and evaluate the compatibility
scores (4) for every offset (u, v) ∈ Q. The offset minimizing the
compatibility score is then recorded into the field for the given
(x, y).

Discussion of the learning. We stress that by predicting the
eye flow

(
u(x, y), v(x, y)

)
we do not aim to recover the apparent

motion of a pixel (x, y). Indeed, while recovering the apparent
motion might be possible for some pixels, apparent motion vectors
are not defined for dis-occluded pixels, which inevitably appear
due to the relative motion of an eyeball and a lower eyelid.
Instead, the learned predictors simply exploit statistical dependen-
cies between the pixels in the input and the output images. As is
demonstrated in Section 4, recovering such dependencies using
discriminative learning and exploiting them allows to produce
sufficiently realistic emulations of gaze redirection.

3.2.2 Implementation details
Learning the forest. When learning each split in a node of a tree,
we first draw randomly several tests without specifying thresholds.
Namely, for each test we first randomly sample a type of the test,
choosing between the appearance test and the location test with
equal probability. We then we sample parameters of test uniformly
from a certain range. We thus sample dx, dy (from the 9 × 9
neighborhood) and a channel c for appearance tests (2), or the
number of the feature point for location tests (3). We then learn an
optimal threshold for each of the drawn test. In more detail, denote
as h the left-hand-sides of expressions (2), (3), and h1, . . . , hK —
all the data sorted by this expression. We then sort all thresholds of
the form hi+hi+1

2 and probe them one-by-one (using an efficient
update of the coherence scores (5) and the quality score (6) as
inspired by [21]).

To randomize the trees and speed up training, we learn each
tree on random part of the data. Afterwards we “repopulate” each
tree using the whole training data, i.e. we pass all training samples
through the tree and update the distributions of replacement error
in the leaves. Thus, the structure of each tree is learned on random
part of the data but the leaves contain the error distribution of all
data.

The eye flow forest system is trained for a specific angular
difference. If needed, multiple separat models for different dis-
cretized angular differences could be trained. For example, for
a video conference setup one can use 10, 15, 20, 25, 30 degrees
depending on the distance between the face and the screen. How-
ever, we found that the 15° vertical redirection produce convincing
results for a typical distance between a person and a laptop and a
typical laptop sizes, so we focus on this angular difference in our
experiments.

Numerical parameters. In the current implementation we
resize all cropped eyes to the resolution 50 × 40. We take the
parameters of the bounding box α = 2.0, β = 1.6, the parameter
λ = 10, R = 4 and learn a forest of six trees. We stop learning
splits and make a new leaf if one of the stopping criteria is
satisfied: either coherence score (5) in the node is less than 1300
or the number of samples in the node is less than 128. Typically
trees have around 2000 leaves and the depth around 12.

3.3 The deep warp system
In this subsection, we proceed to the discussion of our second
system (deep warp). Unlike the eye flow forest system, the deep
warp system is trained on pairs of images corresponding to eye
appearance before and after the redirection by different angles.
The redirection angle serves as an additional input parameter that
is provided both during training and at test time.

As in the forest-based approach, the bulk of gaze redirection
is accomplished via warping the input image (Figure 5). The task

7

α

image

anchors

angl
e

2-scale
flow
NN

flo
w

Lightness
correction

NN

Fig. 5. The deep warp system takes an input eye region, feature points (anchors) as well as a correction angle α and sends them to the multi-
scale neural network (see Section 3.3.1) predicting a flow field. The flow field is then applied to the input image to produce an image of a redirected
eye. Finally, the output is enhanced by processing with the lightness correction neural network (see Section 3.3.3).

input
maps H conv

layers N flow
bilinear
sampler

out

(a) 0.5×-scale processing module

input
maps

conv
layers

res
flow

bilinear
sampler

out

coarse
flow +

(b) 1×-scale processing module

conv 5x5
16 maps

batch
norm

ReLU
conv 3x3
32 maps

batch
norm

ReLU
conv 3x3
32 maps

batch
norm

ReLU
conv 1x1
32 maps

batch
norm

ReLU
conv 1x1
2 maps

TanH

(c) Convolutional layers

Fig. 6. The architecture of the two warping modules: (process 0.5×-scale 6(a) and process 1×-scale 6(b)) predicting and applying pixel-
flow to the input image; 6(c) represents a fully convolutional sequence of layers inside warping modules.

of the network is therefore the prediction of the warping field.
This field is predicted in two stages in a coarse-to-fine manner,
where the decisions at the fine scale are being informed by the
result of the coarse stage. Beyond coarse-to-fine warping, the
photorealism of the result is improved by performing pixel-wise
correction of the brightness where the amount of correction is
again predicted by the network (Figure 8). All operations outlined
above are implemented in a single feed-forward architecture and
are trained jointly end-to-end.

3.3.1 Warping modules

The warping modules takes as an input the image, the position
of the feature points, and the redirection angle. All inputs are
expressed as maps as discussed below, and the architecture of the
warping modules is thus “fully-convolutional”, including several
convolutional layers interleaved with Batch Normalization layers
[47] and ReLU nonlinearities (the actual configuration is shown
in Figure 6(c)). To preserve the resolution of the input image, we
use ‘same’-mode convolutions (with zero padding), set all strides
to one, and avoid using max-pooling.

The resulting flow is obtained using coarse-to-fine two-stage
warping. Firstly, the first part (stage) of the network estimates
the coarse flow at half resolution. Then, the second stage of the
network performs additive rectification at full scale, using the
upsampled coarse flow as well as the feature maps computed by
the first-stage. We provide the details below.

Coarse warping. The last convolutional layer of the first (half-
scale) warping module (Figure 6(a)) produces a pixel-flow field
(a two-channel map), which is then upsampled Dcoarse(I, α) and
applied to warp the input image by means of a bilinear sampler S

[35] that finds the coarse estimate:

Ocoarse = S (I,Dcoarse(I, α)) . (7)

Here, the sampling procedure S samples the pixels of Ocoarse at
pixels determined by the flow field:

Ocoarse(x, y, c) = (8)

I{x+Dcoarse(I, α)(x, y, 1), y +Dcoarse(I, α)(x, y, 2), c} ,

where c corresponds to a color channel and the curly brackets
correspond to bilinear interpolation of I(·, ·, c) at a real-valued
position. The sampling procedure (7) is piecewise differentiable
[35].

Fine warping. In the fine warping module (Figure 6(b)), the
rough image estimate Ocoarse and the upsampled low-resolution
flow Dcoarse(I, α) are concatenated with the input data (the image,
the angle encoding, and the feature point encoding) at the original
scale and sent to the 1×-scale network which predicts another two-
channel flow Dres that amends the half-scale pixel-flow (additively
[48]):

D(I, α) = Dcoarse(I, α)+ (9)

Dres(I, α,Ocoarse,Dcoarse(I, α)) ,

the amended flow is used to obtain the final output (again, via
bilinear sampler):

O = S (I,D(I, α)) . (10)

The purpose of coarse-to-fine processing is two-fold. The half-
scale (coarse) module effectively increases the receptive field of
the model resulting in a flow that moves larger structures in a more
coherent way. Secondly, the coarse module gives a rough estimate

8

Input CFW + LCM Mask GT

Fig. 7. Visualization of three challenging redirection cases where the
Lightness Correction Module helps considerably compared to the
system based solely on coarse-to-fine warping (CFW), which is having
difficulties with expanding the area to the left of the iris. The ‘Mask’
column shows the soft mask corresponding to parts where lightness
is increased. Lightness correction fixes problems with dis-occluded eye-
white, and also emphasizes the specular highlight increasing the per-
ceived realism of the result.

of how a redirected eye would look like. This is useful for locating
problematic regions which can only be fixed at a finer scale.

3.3.2 Input encoding
Alongside the raw input image, the warping modules also receive
the information about the desired redirection angle and feature
points also encoded as image-sized feature maps.

Embedding the angle. Similarly to [31], we treat the correc-
tion angle as an attribute and embed it into a higher dimensional
space using a multilayer perceptron Fangle(α) with ReLU nonlin-
earities. The precise architecture is FC(16)→ ReLU→ FC(16)
→ ReLU. Unlike [31], we do not output separate features for each
spatial location but rather opt for a single position-independent 16-
dimensional vector. The vector is then expressed as 16 constant
maps that are concatenated into the input map stack. During
learning, the embedding of the angle parameter is also updated
by backpropagation.

Embedding the feature points. Although in theory a convolu-
tional neural network of an appropriate architecture should be able
to extract necessary features from the raw input pixels, we found it
beneficial to further augment 3 color channels with additional 14
feature maps containing information about the eye anchor points.

In order to get the anchor maps, for each previously obtained
feature point located at (xi, yi), we compute a pair of maps:

∆i
x[x, y] = x− xi,

∆i
y[x, y] = y − yi,

∀(x, y) ∈ {0, . . . ,W} × {0, . . . , H},

(11)
where W,H are width and height of the input image respectively.
The embedding give the network “local” access to similar features
as used by decision trees.

Ultimately, the input map stack consists of 33 maps (RGB +
16 angle embedding maps + 14 feature point embedding maps).

3.3.3 Lightness Correction Module
While the bulk of appearance changes associated with gaze redi-
rection can be modeled using warping, some subtle but important
transformations are more photometric than geometric and require
a more general transformation. In addition, the warping approach
can struggle to fill in dis-occluded areas in some cases (Figure 7).

0.5×-scale
features

1×-scale
features

conv
layers

per-pixel
weights • corrected

out

out

palette

(a) Architecture.

conv 1x1
8 maps

batch
norm

ReLU
conv 1x1
8 maps

batch
norm

ReLU
conv 3x3
32 maps

spatial
softmax

(b) Convolutional layers.

Fig. 8. 8(a) – The architecture of the Lightness Correction Module. The
output of the lightness correction module is a weighted sum of the image
created by the warping modules and the palette (which in this paper is
taken to be a single white colour). The mixing weights predicted by the
network are passed through the softmax activation and therefore sum
to one at each pixel. The module takes the features computed by the
coarse and the fine warping modules (from Figure 8(b)) as input.

To increase the generality of the transformation that can be
handled by our deep warp architecture, we add the final lightness
adjustment module (Figure 8(a)). The module takes as input the
features computed within the coarse warping and the fine warping
modules (specifically, the activations of the third convolutional
layer), as well as the overall image resulting from the warping.
The output of the module is a single map M of the same size
as the output image that is used to modify the brightness of the
output O using a simple element-wise transform:

Ofinal(x, y, c) = O(x, y, c) · (1−M(x, y)) +M(x, y), (12)

assuming that the brightness in each channel is encoded between
zero and one. The resulting pixel colors can thus be regarded as
blends between the colors of the warped pixels and the white color.
The actual architecture for the lightness correction module in our
experiments is shown in Figure 8(b).

3.3.4 Training procedure
We used a regular `2-distance between the synthesized output
Ooutput and the ground-truth Ogt as the objective function. The
model was trained end-to-end on 128-sized batches using Adam
optimizer [34]. We found that biasing the selection process for
more difficult and unusual head poses and bigger redirection
angles improved the results. For this reason, we used the following
sampling scheme aimed at reducing the dataset imbalance. We
split all possible correction angles (that is, the range between −30°
and 30°) into 15 bins. A set of samples falling into a bin is further
divided into “easy” and “hard” subsets depending on the input’s
tilt angle (an angle between the segment connecting two most
distant eye feature points and the horizontal baseline). A sample
is considered to be “hard” if its tilt is > 8°. This subdivision helps
to identify training pairs corresponding to the rare head poses. We
form a training batch by picking 4 correction angle bins uniformly
at random and sampling 24 “easy” and 8 “hard” examples for each
of the chosen bins.

3.3.5 Implementation details
The neural network is trained at a fixed spatial scale. At test time,
we rescale the input to match the resolution at training time. The
predicted flow and lightness correction fields are then bilinearly

9

Fig. 9. The output flow of warping modules (Section 3.3.1) on random
samples from a training set. The coarse-to-fine model without lightness
correction was trained on a task of 15° redirection upwards. This data
is used to train a neural network-supervised regression random forest.
The right down figure is a color pattern, explaining how the direction of
the flow vector is encoded with the color of the pixel. The more intense
the pixel is, the longer the flow vector in this pixel is.

rescaled to the original resolution. We also linearly decrease the
flow and lightness correction maps to zeros near the border of
the cropped eye (four pixels in our experiments). The proposed
architecture is implemented in Torch using the bilinear sampler
operation provided with [49].

3.4 Neural network-supervised forests

The quality of the results of our deep warping system compares
favorably with the results of the eye flow forest-based system. One
more drawback of this system is its big memory footprint. This is
because storing the distributions of the compatibility score (4) in
the leaves requires the amount of memory proportional to the patch
size. In our implementation, training eye flow forests with several
trees and 9-by-9 patches leads to the size of the resulting model
up to 200Mb.

The better quality of the deep warp results come at the cost
of the much higher computation time (few frames per second
on GPU). Our third system based on neural network-supervised
forests aims at combining the speed of the forest-based system
with the quality of the deep warp system. This is achieved by
training regression forests to emulate the predictions of the deep
warp system at each pixel. Assuming that during training, the
prediction of deep warp are treated as pseudo ground truth, the
regression forests can be trained in a traditional fully-supervised
manner discussed below.

In more detail, we fix the desired redirection angle and use
the sum of the coarse and the fine flow predicted by a deep warp
system (the teacher) for the given angle as ground-truth data. The
examples of such training data are shown in Figure 9.

The input data to the NN-supervised regression forests is the
same as to the weakly supervised eye-flow forests, i.e. an image
of the eye and its landmark locations. The regression forests
apply the same appearance and location tests ((2) and (3)) as
the eye-flow forests. As is commonly done for regression forests,
we use the split criterion that measures the variance of the two
child nodes. In more detail, suppose we have a set of training
samples S = {S1,S2, . . . ,SK}, where each sample is a tuple
S = {(x, y), I, {(fi, gi)}, (dx, dy)} with dx and dy being the
prediction of the deep warp system. The quality of the split of S
into two subsets S1 and S2 is then computed as:

Q(S1,S2) = V (S1) + V (S2) + λ
∣∣|S1| − |S2|

∣∣ , (13)

where

V (Si) = Vx(Si) + Vy(Si) = (14)∑
s∈Si

(dxs − dxi)
2 +

∑
s∈Si

(dys − dyi)
2,

with dxi and dyi being the means of dx and dy flow in the subset
Si.

At test time, a pixel is passed down the tree, and the mean
2D flow vector (across the training examples, which fell to the
corresponding leaf) is picked. The flows coming from different
trees in a forest are averaged to get the final result. As the range
of flow is limited, only two bytes are sufficient to store a flow
vector in each leaf, which is much smaller compared to weakly
supervised forest. The reduction in memory is thus w2/2, where
w is the size of the width of the patch in the weakly-supervised
eye flow forest system (Figure 4). Moreover, as the supervised task
is easier to learn, the depth and the number of leaves can be made
lower, resulting in typical memory demand for trained forests of
only three megabytes.

The prediction of the lightness correction module 3.3.3 can
be incorporated using the second forest, which is applied to the
output images after applying the warping predicted by the first
NN-supervised forest. The train set for the second forest is the
output of the lightness correction module of the neural network
and images {Îj}, which are obtained from original set {Ij} by
applying the first forest and warping procedure (1). The splitting
criterion is the same as (13), except that output in this case is
one-dimensional vector.

4 EXPERIMENTS

We now evaluate the performance of the three systems. We
show the qualitative results and perform comparisons between the
systems (also evaluating the baseline from Section 3.1.4).

4.1 Quantitative evaluation
We evaluate the methods on our dataset. We randomly split the
initial set of subjects into the training and the testing sets. We
sample image pairs applying the same pre-processing steps as
when preparing data for learning (Section 3.1.1).

15° correction. In order to have the common ground with
the existing systems, we first restrict ourselves to the case of
15° vertical gaze redirection. For this comparison we consider
the following models:

1) A system based on weakly supervised eye-flow random
forests (EFF), described in Section 3.2.

2) A coarse-to-fine warping-based system described in Sec-
tion 3.3 (CFW) without lightness correction trained for
15° vertical gaze redirection.

3) A neural network supervised random forests (NNSF),
described in Section 3.4, which predicts the output flow of
a coarse-to-fine warping-based system without lightness
correction. The teacher for the method is CFW (the
resulting flow on train set).

4) A deep warp coarse-to-fine warping-based system with a
lightness correction module trained for 15° vertical gaze
redirection (CFW + LCM) (Section 3.3.3).

5) A simple baseline - image independent flow field (Sec-
tion 3.1.4), where the flow is based solely on the relative
position of the pixel (IIF).

10

Fig. 10. Ordered errors for 15° vertical gaze redirection (see text for more
discussion of the error metric). The best performance is shown by the
full coarse-to-fine architecture with the lightness correction module.

In Figure 10 we present a graph of sorted normalized errors, where
all errors are divided by the MSE obtained by an input image taken
as an output. For each method, the errors on the test set are sorted.
It can be seen, that NN-supervised forest performs comparably to
the eye-flow forest. What is more important, this improvement is
quite visible in terms of noise and artifacts (Figure 12). However,
there is still a gap between the NN-supervised forest and its
teacher, the multiscale model without the lightness correction
module. The lightness adjustment extension (Section 3.3.3) is able
to show quite significant improvements. Those are mostly cases
similar to shown in Figure 7. Unified multiscale models trained to
handle different angles (not included in this comparison) are, in
general, comparable with the one specialized for 15° redirection.
It is also worth noting that even a single-scale model trained for
this specific correction angle consistently outperforms eye flow
forest, demonstrating the superiority of deep learning.

Arbitrary vertical redirection. We also compare different
variants of the deep warp system and plot the error distribution
over different redirection angles (Figure 11). The neural network
models in this comparison are trained for the task of vertical gaze
redirection in the range from −30° to 30°. The following systems
are compared to demonstrate the importance of different elements
of the deep warp system:

1) A single-scale (SS) version of deep warp method. It
consists of a single warping module Figure 6(a) operating
on the original image scale.

2) A multiscale (MS) network without coarse warping. The
system processes inputs on two scales and uses features
from both scales to predict the final warping transforma-
tion.

3) A coarse-to-fine warping-based system described in Sec-
tion 3.3 (CFW) without lightness correction.

4) A coarse-to-fine warping-based system with a lightness
correction module (CFW + LCM) (Section 3.3.3).

For small angles, all systems demonstrate roughly the same
performance, but as we increase the amount of correction, the task
becomes much harder (which is reflected by the growing error)
revealing the difference between the models. The best results are

Fig. 11. Distribution of errors over different vertical correction angles.
With the increase of the redirection angle, the more comprehensive
models show the better quality.

achieved by the full model, which is followed by the multi-scale
network without the lightness correction module.

4.2 Qualitative evaluation

To qualitatively compare the systems, we show a random subset of
our results of redirection by 15 degrees upwards in Figure 12. All
methods were trained for 15° vertical redirection. One can observe
that the system is able to learn to redirect the gaze of unseen people
rather reliably obtaining a close match with the ground truth. Deep
warp systems produce the results visually closer to the ground
truth, than forest-based systems. The effect of lightness correction
is pronounced: on the input image with the invisible sclera in
one corner, the system with lightness correction performs clearly
better. However, the downside effect of lightness correction could
be blurring/lower contrast because of the multiplication procedure
(12).

Redirection within range. In Figure 2 and Figure 13, we
provide qualitative results of vertical and horizontal gaze redi-
rection in the angular range from −15° to 15° using the model
trained for both horizontal and vertical redirection. Some examples
showing the limitations of our method are given. The limitations
are concerned with cases with severe dis-occlusions, where large
areas have to be filled by the network.

Lower resolution images. In Figure 14 we provide results
of the NNSF-system for lower input resolutions on randomly
sampled images from a test set. For that, we downsample images
from the original size of 80 × 100, to 10 × 12, 20 × 25,
40× 50 correspondingly. The NNSF-system is then applied to the
downsampled versions. The effect of gaze redirection is noticeable
even for very low resolutions.

Comparison with Giger et al. In Figure 15 we show the
side-by-side comparison with the system [8], which also performs
monocular gaze correction for the videoconferencing scenario.
The difference in the approaches is clearly visible. While our
method redirects gaze and confines the changes to the eye region,
while keeping the head pose unchanged, the system [8] synthesizes
the novel view for the facial part then blending the new face
area into the input image. The latter approach results in certain

11

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Fig. 12. Results on a random subset of the hold-out test set. From left to right: (a) Input, (b) Eye-flow forests, (c) Neural network supervised forests,
(d) Coarse-to-fine warping with the lightness correction module, (e) Coarse-to-fine warping without the lightness correction module, (f) Ground truth.
The full variant (CFW + LCM) of deep warp system (e) generally performs the best.

Fig. 13. Horizontal redirection with a model trained for both vertical and horizontal gaze redirection. For the first four rows the angle varies from
−15° to 15° relative to the central (input) image. The last two rows push the redirection to extreme angles (up to 45°) breaking our model down.

distortion of face proportions. Moreover, [8] requires a simple
per-person precalibration step and requires a (low-end) GPU for
real-time operation (whereas our method achieves more than 30
fps on a single core of an Intel Core-i5 CPU).

Finally, the supplementary video [50] demonstrates a real-time
screencast of our NNSRF system running on a variety of people
under a variety of conditions typical for teleconferencing scenario.
We also present animations, produced by our deep warp system
trained simultaneously for vertical and horizontal redirection, in
the supplementary material.

4.3 User study

To confirm the improvement corresponding to different aspects
of the proposed models, which may not be adequately reflected
by `2-measure, we performed a user study enrolling 41 subjects

unrelated to computer vision to compare four methods (EFF,
NNSF, CFW, CFW+LCM). Each user was shown 80 quadruplets
of images, and in each quadruplet one of the images was obtained
by re-synthesis with one of the methods, while the remaining three
were unprocessed real face images. The example screen-shot from
the user study interface is shown in Figure 16. In comparison to
conference paper [44], we changed the setup to showing the full
face image, while still instructing the users that only eye region
will be resynthesized. Showing full face was motivated by more
direct measurement of users’ perception of the overall realism of
the resulting images.

Twenty randomly sampled results from each of the compared
methods were embedded in the set of quadruplets shown to each
participant. The ordering of the methods and the position of the
right answer were randomized. When a quadruplet was shown, the

https://youtu.be/sw31vBxQUNs

12

Fig. 14. The results of NNSF system for the 15° upwards redirection with
input images of lower resolutions (the downsampling factors are shown
at the top). Gaze redirection is persistent even for very low resolution
images.

TABLE 1
User assessment for the photorealism of the results for the four
methods. During the session, each user observed 20 instances of

results of each method embedded within 3 real images. The
participants were asked to click on the re-synthesized image in as little
time as they could. The first three parts of the table specify the number
of correct guesses (the smaller the better). The last line indicates the

mean time needed to make a guess (the larger the better). The
performance is not far from the performance of a random guess, thus,

re-synthesized images could be hardly distinguished from the real
ones.

EFF NNSF CFW CFW+LCM
Correctly guessed (out of 20)

Mean 7.12 5.68 6.16 5.58
Std 0.87 0.98 0.92 1.10
Median 6 6 6 6
Max 13 10 10 9
Min 4 2 1 2

Correctly guessed within 4 seconds (out of 20)
Mean 1.9 1.66 1.98 1.85
Std 0.54 0.67 0.59 0.62
Median 1 1 2 0
Max 6 7 6 5
Min 0 0 0 0

Correctly guessed within 2 seconds (out of 20)
Mean 0.56 0.80 1.09 0.96
Std 0.69 0.55 0.48 0.46
Median 0 0 0 0
Max 4 6 5 4
Min 0 0 0 0

Mean time to make a guess
Mean time, sec 7.7 7.3 9.1 9.7
Std, sec 1.9 2.5 2.0 2.2

task of the subject was to click on the artificial (re-synthesized)
image as quickly as possible. For each method, we then recorded
the number of correct guesses out of 20 (for an ideal method the
expected number would be 5, and for a very poor one it would
be 20). We also recorded the time that the subject took to decide
on each quadruplet (better method would take a longer time for
spotting). Table 1 shows results of the experiment.

In general, all methods performed very well, approaching the
best performance, which is 25% (the performance of random
guess). The performances of the NN-supervised random forest and
the full deep warp system are comparable, while the other two sys-
tems (eye flow forest and coarse-to-fine warping without lightness

correction) performed a little worse. However, if considering only
fast (confident) clicks, neural networks become slightly worse in
comparison to eye flow forest, as well as to NN-supervised forest.
Such performance of the deep architecture is explained by the fact,
that it works on the fixed basic resolution, while the forest based
methods could process images at the eye on native resolution of
the cropped image. For a few examples, the users were apparently
able to quickly notice the interpolation artifacts or the artifacts near
the border in the deep warp system results. As a result, the teacher
CFW method performs a bit worse than the student NNSF in these
metrics. In terms of mean time that a user took for making a guess,
deep warp architectures outperformed forest-based, because of the
big contribution of the hardest samples, where users got stuck for
a long time.

4.4 Computational speed and memory demands
Our main testbed for video-conferencing is a standard 640× 480
stream from a laptop camera. Facial alignment takes a few
milliseconds per frame. On top of the feature tracking time, the
eye flow forest method requires from 3 to 30 ms to perform the
remaining operations like querying the forest, picking optimal eye
flow vectors, and performing replacements. The large variability is
due to the fact that the bulk of operation is linear in the number of
pixels we need to process, so the 30 ms figure corresponds to the
situation with the face spanning the whole vertical dimension of
the frame. Further trade-offs between the speed and the quality can
be made if needed (e.g. reducing the number of trees twice will
bring only very minor degradation in quality and almost two-fold
speedup).

The neural network supervised forest method performs com-
parably to the eye flow forest, requiring 3 − 30 ms per frame
on single core of a CPU (Intel Core i5 2.6GHz). In fact, it
is typically slightly faster than eye flow forest, because of the
smaller tree depth, however this difference is not crucial in
our implementations. The significant improvement is in memory
consumption: eye flow forest method typically requires 100−200
Mb, which should be stored in RAM memory at test-time, while
the neural network supervised forest requires only 1.5 − 3 Mb.
The big difference in memory requirements occurs because of
error distributions stored in leaves in the former case (Section 3.2)
and only two-dimensional flow vector in the latter (Section 3.4).

The computational performance of the deep warp method is up
to 20 fps on a mid-range laptop GPU (NVIDIA GeForce-750M),
and typically 3− 5 times slower on a CPU. A model for the deep
warp method is much more compact than for the forest-based one
(only 250 Kb in our experiments), while also being universal, i.e.
not tied to a specific redirection angle.

5 SUMMARY AND DISCUSSION

We have presented a new approach to gaze redirection based on
supervised machine learning. The key advantages of the approach
is its ability to work with a monocular input and in real-time
on consumer-grade devices. The key novelty of our approach is
the idea of using a large training set in order to learn how to
redirect gaze. We have found a learnable and generalizable entity:
the warping field of displacement vectors. It is used by our system
within pixel-wise “copy-paste” operations.

We have presented three different systems that instantiate the
approach. The two methods learn to predict the warping filed in a
weakly supervised setting. The first variant of our system redirects

13

Fig. 15. Comparison with monocular gaze correction method from [8]. Left – the input video frame (taken from [8]). Middle – the output of our
NNSF system. Right – the result of [8]. While both systems achieve convincing redirection effect, our NNSF system avoids the distortion of facial
proportions (especially in the forehead and the chin regions), while also not requiring GPU to achieve real-time performance.

Fig. 16. The screen-shot from the user study interface. User was in-
structed, that one of the four images is not real, and was asked to click
on the one, which seems unnatural, spending not much time (trying not
to exceed 5 seconds). In this example, the top left image is the right
answer.

the gaze by a fixed angle and runs in real-time on CPU (using
a random forest predictor), while the second takes a redirection
angle as an input and thus allows to change gaze continuously
in a certain range, while also obtaining the higher quality result.
This system predicts the warping field using a deep convolutional
network with coarse-to-fine architecture of warping modules and
embeds redirection angle and feature points as image-sized maps.
In addition to warping, photorealism is increased using the light-
ness correction module. Finally, the third system can be regarded
as a hybrid of the first two, as it essentially “condenses” the neural
network into a random forest, achieving high-quality results, fast
operation, and very compact models (all for a fixed redirection
angle).

Notably, we have performed the user study showing the high
photorealism of suggested methods, as the guess ratio is close to
a random guess. Our user study of the system actually confirmed
that unrealism in results is seldom caught by users, with very little
artifacts being noticed. Arguably, our approach has successfully
crossed the “uncanny valley” for the gaze redirection task.

Looking into the future, our approach gives greate promise
of learning-based methods for photorealistic image synthesis and

editing. An obvious next target is the extension of the proposed
approach to face editing. For some face editing effects (e.g. wide
smile), however, the warping-based model can fail to synthesize
new content.

REFERENCES

[1] L. J. Wallis, F. Range, C. A. Müller, S. Serisier, L. Huber, and Z. Virányi,
“Training for eye contact modulates gaze following in dogs,” Animal
behaviour, vol. 106, pp. 27–35, 2015.

[2] C. L. Kleinke, “Gaze and eye contact: a research review.” Psychological
bulletin, vol. 100, no. 1, p. 78, 1986.

[3] R. Yang and Z. Zhang, “Eye gaze correction with stereovision for video-
teleconferencing.” in ECCV (2), 2002, pp. 479–494.

[4] A. Criminisi, J. Shotton, A. Blake, and P. H. Torr, “Gaze manipulation
for one-to-one teleconferencing,” in IEEE International Conference on
Computer Vision (ICCV), 2003, pp. 191–198.

[5] T. Cham, S. Krishnamoorthy, and M. Jones, “Analogous view transfer for
gaze correction in video sequences,” in Seventh International Conference
on Control, Automation, Robotics and Vision, ICARCV 2002, Singapore,
2-5 December 2002, Proceedings, 2002, pp. 1415–1420.

[6] B. Yip and J. S. Jin, “Face re-orientation using ellipsoid model in video
conference,” in Proc. 7th IASTED International Conference on Internet
and Multimedia Systems and Applications, 2003, pp. 245–250.

[7] C. Kuster, T. Popa, J.-C. Bazin, C. Gotsman, and M. Gross, “Gaze
correction for home video conferencing,” ACM Transactions on Graphics
(TOG), vol. 31, no. 6, pp. 174:1–174:6, 2012.

[8] D. Giger, J.-C. Bazin, C. Kuster, T. Popa, and M. Gross, “Gaze correction
with a single webcam,” in IEEE International Conference on Multimedia
& Expo, 2014.

[9] K.-I. Okada, F. Maeda, Y. Ichikawaa, and Y. Matsushita, “Multiparty
videoconferencing at virtual social distance: Majic design,” in Proceed-
ings of the 1994 ACM Conference on Computer Supported Cooperative
Work, ser. CSCW ’94, 1994, pp. 385–393.

[10] A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. T. Bolas,
and P. E. Debevec, “Achieving eye contact in a one-to-many 3D video
teleconferencing system,” ACM Trans. Graph., vol. 28, no. 3, 2009.

[11] J. Zhu, R. Yang, and X. Xiang, “Eye contact in video conference via
fusion of time-of-flight depth sensor and stereo,” 3D Research, vol. 2,
no. 3, pp. 1–10, 2011.

[12] L. Wolf, Z. Freund, and S. Avidan, “An eye for an eye: A single camera
gaze-replacement method,” in Computer Vision and Pattern Recognition
(CVPR), 2010, pp. 817–824.

[13] Z. Shu, E. Shechtman, D. Samaras, and S. Hadap, “Eyeopener: Editing
eyes in the wild,” ACM Transactions on Graphics, vol. 36, no. 1, Sep.
2016.

[14] Y. Amit and D. Geman, “Shape quantization and recognition with
randomized trees,” Neural Computation, vol. 9, pp. 1545–1588, 1997.

[15] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct. 2001.

14

[16] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time key-
point recognition,” in Computer Vision and Pattern Recognition (CVPR),
2005, pp. 775–781.

[17] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. J. V. Gool, “Random
forests for real time 3d face analysis,” International Journal of Computer
Vision, vol. 101, no. 3, pp. 437–458, 2013.

[18] J. Shotton, R. B. Girshick, A. W. Fitzgibbon, T. Sharp, M. Cook,
M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and
A. Blake, “Efficient human pose estimation from single depth images,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 2821–2840,
2013.

[19] P. Yin, A. Criminisi, J. M. Winn, and I. A. Essa, “Tree-based classifiers
for bilayer video segmentation,” in Computer Vision and Pattern Recog-
nition (CVPR), 2007.

[20] J. Gall and V. S. Lempitsky, “Class-specific hough forests for object
detection,” in Computer Vision and Pattern Recognition (CVPR), 2009,
pp. 1022–1029.

[21] P. Dollár and C. L. Zitnick, “Structured forests for fast edge detection,”
in IEEE International Conference on Computer Vision (ICCV), 2013, pp.
1841–1848.

[22] S. R. Fanello, C. Keskin, P. Kohli, S. Izadi, J. Shotton, A. Criminisi,
U. Pattacini, and T. Paek, “Filter forests for learning data-dependent
convolutional kernels,” in Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 1709–1716.

[23] A. Mahendran and A. Vedaldi, “Understanding deep image representa-
tions by inverting them,” in CVPR, 2015.

[24] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox, “Learning to
generate chairs with convolutional neural networks,” in CVPR, 2015.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, 2014, pp.
2672–2680.

[26] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image
models using a laplacian pyramid of adversarial networks,” in Advances
in neural information processing systems, 2015, pp. 1486–1494.

[27] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convo-
lutional neural networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 262–270.

[28] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “Draw:
A recurrent neural network for image generation,” in Proceedings of
the 32nd International Conference on Machine Learning, 2015, pp.
1462–1471.

[29] T. Xue, J. Wu, K. Bouman, and B. Freeman, “Visual dynamics: Prob-
abilistic future frame synthesis via cross convolutional networks,” in
Advances in Neural Information Processing Systems, 2016, pp. 91–99.

[30] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep con-
volutional inverse graphics network,” in Advances in Neural Information
Processing Systems, 2015, pp. 2539–2547.

[31] A. Ghodrati, X. Jia, M. Pedersoli, and T. Tuytelaars, “Towards automatic
image editing: Learning to see another you,” CoRR, vol. abs/1511.08446,
2015. [Online]. Available: http://arxiv.org/abs/1511.08446

[32] S. E. Reed, Y. Zhang, Y. Zhang, and H. Lee, “Deep visual analogy-
making,” in Advances in neural information processing systems, 2015,
pp. 1252–1260.

[33] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV. Springer, 2014, pp. 818–833.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[35] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in Advances in Neural Information Processing Systems, 2015,
pp. 2017–2025.

[36] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View synthesis
by appearance flow,” in European Conference on Computer Vision.
Springer, 2016, pp. 286–301.

[37] R. Yeh, Z. Liu, D. B. Goldman, and A. Agarwala, “Semantic facial
expression editing using autoencoded flow,” CoRR, vol. abs/1611.09961,
2016. [Online]. Available: http://arxiv.org/abs/1611.09961

[38] Z. Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame
synthesis using deep voxel flow,” CoRR, vol. abs/1702.02463, 2017.
[Online]. Available: http://arxiv.org/abs/1702.02463

[39] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg,
“Transformation-grounded image generation network for novel 3d
view synthesis,” CoRR, vol. abs/1703.02921, 2017. [Online]. Available:
http://arxiv.org/abs/1703.02921

[40] C. Bucilu, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 535–541.

[41] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2017. [Online]. Available:
http://arxiv.org/abs/1503.02531

[42] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” CoRR, vol. abs/1412.6550,
2014. [Online]. Available: http://arxiv.org/abs/1412.6550

[43] D. Kononenko and V. Lempitsky, “Learning to look up: realtime monoc-
ular gaze correction using machine learning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 4667–4675.

[44] Y. Ganin, D. Kononenko, D. Sungatullina, and V. Lempitsky, “Deepwarp:
Photorealistic image resynthesis for gaze manipulation,” in European
Conference on Computer Vision. Springer, 2016, pp. 311–326.

[45] T. Baltru, P. Robinson, L.-P. Morency et al., “Openface: an open source
facial behavior analysis toolkit,” in 2016 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE, 2016, pp. 1–10.

[46] T. Baltrusaitis, P. Robinson, and L.-P. Morency, “Constrained local neural
fields for robust facial landmark detection in the wild,” in Proceedings
of the IEEE International Conference on Computer Vision Workshops,
2013, pp. 354–361.

[47] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of the
32nd International Conference on Machine Learning, 2015, pp. 448–456.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[49] M. Oquab, “Torch7 modules for spatial transformer networks,” https:
//github.com/qassemoquab/stnbhwd, 2015.

[50] D. Kononenko, “Gaze correction for videoconferencing,” https://youtu.
be/sw31vBxQUNs, 2014, [Online; accessed 17-Aug-2017].

AUTHORS

Daniil Kononenko is a PhD candidate in the
Computer Vision group at Skolkovo Institute of
Science and Technology (Skoltech). Prior to that,
he was a researcher at Datadvance. He com-
pleted BSc in 2011 and MSc in 2013 from
Moscow Institute of Physics and Technology. His
research interests are concerned with computer
vision and machine learning.

Yaroslav Ganin is a PhD student in Montreal
Institute for Learning Algorithms, Université de
Montréal. He previously worked at the Computer
Vision group at Skolkovo Institute of Science and
Technology (Skoltech), and at NVIDIA. He com-
pleted MSc in 2011 from Lomonosov Moscow
State University. His research interests are deep
learning and computer vision.

http://arxiv.org/abs/1511.08446
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1611.09961
http://arxiv.org/abs/1702.02463
http://arxiv.org/abs/1703.02921
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6550
https://github.com/qassemoquab/stnbhwd
https://github.com/qassemoquab/stnbhwd
https://youtu.be/sw31vBxQUNs
https://youtu.be/sw31vBxQUNs

15

Diana Sungatullina is a Junior Researcher in
the Computer Vision group at Skolkovo Institute
of Science and Technology (Skoltech). Prior to
that, she was a Research Intern at Advanced
Digital Sciences Center in Singapore. She com-
pleted MSc (Specialist) in 2014 from Lomonosov
Moscow State University. Her research interests
are concerned with computer vision, image pro-
cessing, and deep learning.

Victor Lempitsky is an associate professor
and the head of the Computer Vision group at
Skolkovo Institute of Science and Technology
(Skoltech), which is a new research university in
Moscow area. Prior to that, he was a postdoc-
toral researcher at the Visual Geometry Group
of Oxford University, and at the Computer Vi-
sion group of Microsoft Research Cambridge.
He also was a researcher at Yandex, which
is the biggest internet search company on the
Russian market. Victor holds a PhD (”kandidat

nauk”) from Moscow State University (2007). His research interests are
concerned with computer vision, biomedical image analysis, and deep
learning.

	Introduction
	Related work
	Methods
	General setting
	Eye localization
	Training dataset
	Redirection by pixel wise replacement
	Image-independent flow field

	Eye flow forest
	Learning
	Implementation details

	The deep warp system
	Warping modules
	Input encoding
	Lightness Correction Module
	Training procedure
	Implementation details

	Neural network-supervised forests

	Experiments
	Quantitative evaluation
	Qualitative evaluation
	User study
	Computational speed and memory demands

	Summary and discussion
	References
	Biographies
	Daniil Kononenko
	Yaroslav Ganin
	Diana Sungatullina
	Victor Lempitsky

