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Abstract

A number of 3D shape reconstruction algorithms, in par-
ticular 3D image segmentation methods, produce their re-
sults in the form of binary volumes, where a binary value
indicates whether a voxel is associated with the interior or
the exterior. For visualization purpose, it is often desirable
to convert a binary volume into a surface representation.
Straightforward extraction of the median isosurfaces for bi-
nary volumes using the marching cubes algorithm, however,
produces jaggy, visually unrealistic meshes. Therefore, sim-
ilarly to some previous works, we suggest to precede the iso-
surface extraction by replacing the original binary volume
with a new continuous-valued embedding function, so that
the zero-isosurface of the embedding function is smooth but
at the same time consistent with the original binary volume.

In contrast to previous work, computing such an embed-
ding function in our case permits imposing a higher-order
smoothness on the embedding function and involves solv-
ing a convex optimization problem. We demonstrate that
the resulting separating surfaces are smoother and of bet-
ter visual quality than minimal area separating surfaces ex-
tracted by previous approaches to the problem. The code of
the algorithm is publicly available.

1. Introduction

The problem of surface extraction from binary volumes
arises in the post-processing step of several computer vi-
sion applications. In particular, binary image segmentation
algorithms such as region growing [1], graph cuts [6], or
a simple thresholding proceed by labeling image elements
as belonging to either foreground or background. The out-
put of such an algorithm is, therefore, a binary-valued seg-
mentation mask. For two-dimensional problems, the seg-
mentation mask can be visualized in several ways, e.g. by
superimposing it onto the original image. Over the recent
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years, there is, however, an ever-increasing demand for 3D
image segmentation, where a three-dimensional segmenta-
tion mask (a binary volume) needs to be visualized after the
segmentation is performed.

In many cases, the user expects the 3D image segmen-
tation result to be presented in the form of a separating
surface, i.e. a surface that separates the background and
the foreground segments of a binary volume. In many
applications such as the biomedical imaging, this surface
may correspond to the actual physical interface, e.g. the
boundary of an organ. The problem of extracting a sepa-
rating surface from a binary volume also arises within the
post-processing step in several other applications such as
stereo- or silhouette-based multiview reconstruction [15,16]
or shape-from-range data [8], when the underlying algo-
rithms work with voxel representations and make hard de-
cisions about the voxel occupancy.

Given a binary volume, a separating surface can be ex-
tracted as an isosurface corresponding to the median value
(e.g. the zero-isosurface is taken, if the background label
is interpreted as −1 and the foreground label is interpreted
as 1). These isosurfaces can be efficiently extracted in a
form of triangular meshes using the marching cubes algo-
rithm [18]. Such isosurfaces, however, exhibit distracting
aliasing artifacts (Figure 1a, Figure 3a). These artifacts have
a regular structure and therefore are perceived as “signal”
rather than “noise”, which leads to their amplification by
the human visual system.

The aliasing problem is caused by the fact that a binary
volume does not define the separating surface uniquely. In
fact, depending on the interpretation, a binary volume is
typically consistent with the entire family of separating sur-
faces. Thus, in this work we interpret a binary volume as
a set of hard constraints imposed on the separating surface.
Under these constraints, the separating surface must contain
the centers of all foreground voxels inside while having the
centers of all background voxels outside; whether or not this
interpretation has a “physical” meaning depends on the par-
ticular algorithm used to compute the binary volume. It can
be demonstrated, for example, that this interpretation has a
sound geometric justification for the graph cut (or more pre-
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cisely GeoCut) framework [7], which became very popular
for segmentation as well as other low-level vision tasks over
the last years.

In the paper, we discuss a new method for the extrac-
tion of smooth separating surfaces based on the constrained
convex optimization of the higher-order smoothness crite-
rion. The results of the method for several binary volumes
suggest that it yields higher-quality surfaces as compared to
the previous approaches that are discussed in the following
section.

2. Related Work
The problem of extracting a separating surface can be

regarded as the problem of picking one out of an infinitely-
large class of surfaces that meet the hard constraints im-
posed by the binary volume. The zero-isosurface is a choice
that is suboptimal from the perceptual point of view, as it
lacks smoothness. Some of the initial approaches [25] sug-
gested to overcome the aliasing artifacts (jagginess and ter-
racing) by a local Gaussian pre-filtering of the binary vol-
ume. The problem with that approach, however, is that the
terracing/jagginess effects often require very large kernel
and strong filtration to be diminished (let alone completely
eliminated), whereas such a filtration smooths out the fine
details and, in general, produces oversmoothed surfaces in-
compatible with the original binary volumes.

To overcome this essential non-locality of the aliasing
effects, strategies based on the optimization of global ob-
jectives were suggested. Towards this end, [9] evolves the
extracted surface to minimize its area, subject to the con-
straint that it has to remain compatible with the original bi-
nary volumes during the evolution. A body of work has
considered similar constrained mesh evolution approaches
either based on the constrained Laplacian smoothing [3, 4],
which lead to similar surface area minimization effect, or
based on the higher-order smoothness criteria [12, 19, 20],
which has been demonstrated to improve the smoothness of
the marching cube-based meshes considerably in the pro-
cess of local non-convex optimization.

Following up on the area minimization approach, [26] in-
troduced the surface extraction method, which solve essen-
tially the same optimization problem (constrained minimal
area separating surface) but in the implicit level-set frame-
work [22]. The smoothness is thus introduced prior to the
isosurface extraction by the modification of the underlying
volume function. In this way, the function values are no
longer restricted to be binary (1 or −1). Such an implicit
smoothing strategy has several advantages over the explicit
smoothing of the isosurface mesh including the ease of han-
dling of topology changes during smoothing as well as the
simplicity of imposing the hard constraints.

In this paper, we suggest a new simple criterion that sim-
ilarly to [26] can be used to extract the separating surfaces

from binary volumes within the implicit framework, yield-
ing surfaces with higher-order smoothness rather than the
minimal area property. Such criterion has a nice property
of leading to convex optimization problems (as opposed
to non-convex problems in previous frameworks). Impor-
tantly, we demonstrate that the higher-order smoothness im-
posed by the resulting algorithm allows to obtain separating
surfaces with much fewer aliasing artifacts as compared to
the area minimization method [26].

3. Surface Extraction with Higher-order
Smoothness

Problem setting. Assume that a binary volume function
V : G → {−1,+1} is given, where G is the discrete grid
domain G = {1, 2, . . . , L}×{1, 2, . . . ,M}×{1, 2, . . . , N}.
Then, denote with vijk ∈ {−1,+1} the value of V on the
respective node of the grid.

As a result of the smoothing, we are going to obtain
a non-binary embedding function F : G → R, where
fijk ∈ R will again denote the value of F on the node of the
grid. The obtained function F must be consistent with the
binary volume V , so that the zero-isosurface extracted from
(the continuous interpolation of) F contains all foreground
nodes {i, j, k| vijk= + 1} inside (or on the boundary) and
all background nodes {i, j, k| vijk=− 1} outside (or on the
boundary). This requirement is equivalent to the following
set of hard constraints imposed on F :

∀i, j, k vijk · fijk ≥ 0 . (1)

We seek to obtain F meeting constraints (1) so that its zero
isosurface is smooth (in the sense that we discuss below).
An idea that we use in our method is to impose smoothness
on F directly, so that its isosurfaces also possess a certain
degree of smoothness.

Imposing smoothness. The idea of imposing the
smoothness directly on the embedding function is used ex-
tensively in image segmentation. Thus, the level set frame-
works modify the embedding function locally, so that the
area of the zero isosurface is also minimized. The TV-
minimization framework [21] as well as the GeoCut frame-
work [7] minimize the integral of the absolute value of
variation of the embedding function. Again, although the
smoothness is imposed on the embedding function rather
than on its zero-isosurface1, the area of the zero-isosurface
is provably minimized in this case. These, however, lead to
so-called “shrinking bias”, that is bias towards smaller sur-
faces, which have smaller areas, and ultimately towards an
empty surface, which is a unique global optimizer of such
regularization.

1The term “0.5-isosurface” would be more consistent with the notation
of papers concerned with these frameworks. We still use “zero-isosurface”
here to be consistent with the rest of our paper.



(a) the binary volume and
its zero-isoline

(b) minimal-length
separating curve

(c) separating curve with
regularization (2)

(d) separating curve with
regularization (3)

(a) zero-isosurface (b) minimal-area separating
surface

(c) separating surface with
regularization (2)

(d) separating surface with
regularization (3)

Figure 1. (better viewed in color) Top row: a 2D example highlighting the performance of different approaches. The input binary volume
is obtained by sampling a circle on a very coarse (12×12) grid, so that red nodes correspond to the interior (+1) and blue nodes correspond
to the exterior (-1). Both the zero-isoline (a) and the minimal length separating curve (b) (as sought by [3, 9, 26]) suffer heavily from
the aliasing artifacts, while our method computes smooth separating curves (c,d) with the shape close to being circular. Bottom row:
analogous surfaces in the 3D case for a ball sampled on a discrete 3D grid. Same pattern is observed: zero-isosurface and minimal area
separating surface suffer from jagginess, while higher order order regularization in our method leads to smoother surfaces. In 3D case,
regularization (3) leads to smoother surface than regularization (2).

More recently, it has been argued (see e.g. [11]) that one
can impose smoothness by minimizing the square (or other
powers) of the variation of the embedding function. Unlike
the case of the absolute value of the variation, minimizing
such quantity for the embedding function does not translate
into minimizing some clearly understood functional of the
zero-isosurface (and the same holds for the regularization
used in our approach). Yet, it has been demonstrated to
achieve the desired effect of imposing smoothness on this
isosurface [11].

The methods discussed above (except level-sets) mini-
mize some function of the first-order variation |∇F | or re-
lated quantities. As a result, these methods are biased to-
wards the constant embedding functions, as this is the only
class of the embedding functions, which are considered ab-
solutely smooth under this definition of smoothness. To
avoid this and achieve the higher-order smoothness, we sug-
gest to regularize the higher-order derivatives of the em-
bedding function. Thus, in the continuous limit, one may
regularize the deviation of the laplacian of the embedding
function from zero, by imposing the following regulariza-

tion penalty: ∫
(∆F )2 dV → min, (2)

where ∆F = ∂2F
∂x2 + ∂2F

∂y2 + ∂2F
∂z2 is a laplacian of F . The

global minimizers of (2) are the embedding functions that
are harmonic inside the bounding volume. As any plane
may be expressed as a zero-isosurface of a linear (hence,
harmonic) embedding function, planes (as well as other iso-
surfaces of harmonic functions) are not penalized by this
regularization. This is in sharp contrast to the methods that
use the first-order variation on the embedding function for
the regularization, and thus penalize all surfaces except the
empty ones.

Another very similar way to impose higher-order
smoothness on the embedding function is to penalize the
deviations of the second-order non-mixed derivatives from
zero:∫ (

∂2F

∂x2

)2

+
(
∂2F

∂y2

)2

+
(
∂2F

∂z2

)2

dV → min . (3)

This regularization essentially differs from (2) by the ab-
sense of cross-products between derivatives in the square



of the laplacian. Unlike (2), the functional (3) is not
rotationally-invariant. The set of global minimizers of (3)
is a subset of global minimizers of (2) that still includes all
the linear functions (hence, planar surfaces are still not pe-
nalized).

Our framework can use any of the regulariztions (2) and
(3), and both of them lead to the surfaces that are consid-
erably smoother and less prone to jagginess artifacts than
the minimal area isosurfaces (Figure 1). Between them, the
functional (3) leads to smaller computational burden, faster
convergence of our numeric optimization scheme, and often
produce smoother and more visually pleasant results com-
pared to (2), despite not being rotationally invariant. We,
therefore, used the regularization (3) throughout the rest of
the experiments.

In the discrete setting, the finite-difference approxima-
tion is used to express (3):∑

ijk

[
(fi+1 jk + fi−1 jk − 2fijk)2 +

(fi j+1 k + fi j−1 k − 2fijk)2+ (4)

(fij k+1 + fij k−1 − 2fijk)2
]
→ min .

Similar finite-difference approximation can be used for the
laplacian regularization (2).

Adding a margin. We now seek to obtain an embedding
function that is smooth in the sense of (3) and meets the con-
ditions (1). While the regularization (3) on its own does not
bias the embedding function to be constant, one may no-
tice however, that combining it with the hard constraints (1)
would lead back to the unique and trivial optimal solution
F ≡ 0. This can be avoided if the hard constraints (1) are
made more stringent, ensuring some margin separating the
resulting embedding function from the zero solution:

∀i, j, k vijk · fijk ≥ mijk . (5)

Here, mijk are non-negative values, which are strictly pos-
itive for some i, j, k, ensuring that the embeding function
deviates from zero somewhere. There exist different rea-
sonable choices of margin values that lead to perceptually
plausible and similar separating surfaces. Thus, if we de-
note with B the set of boundary nodes in V , i.e. nodes
adjacent (in 26-connectivity) to the nodes of the different
values in V , the simple choice for mijk would be:

mijk =

{
0, if (i, j, k) ∈ B,
1, otherwise.

(6)

A marginally better results in our experiments were pro-
duced by the margin equal to the (unsigned) Euclidean dis-
tance to the set B:

mijk = dist
(
(i, j, k), B

)
=

min
(α,β,γ)∈B

√
(i− α)2 + (j − β)2 + (k − γ)2 . (7)

Algorithm 1 Surface Extraction
Require: Binary volume V

1: D = Signed Distance Function (V )
2: Compute narrow band NB from D
3: Compute margin (5) from D
4: F = Solve Quadratic Programming (8) in NB
5: S = Marching Cubes (F , 0-isosurface)
6: return mesh surface S

Figure 2. Our surface extraction algorithm.

Extracting the surface. To extract the separating surface
from the binary volume, our method simply solves the fol-
lowing convex quadratic optimization problem:

SOLV E (4) s. t. (5). (8)

The separating surface is then extracted as the zero-
isosurface of the optimal embedding function using the
marching cubes algorithm [18]. Alternatively, the recov-
ered embedding function can be rendered directly using the
volume rendering techniques such as [10].

4. Implementation details
Narrow band implementation. As we are interested in

the values of F near its zero isosurface, we can restrict our
computations to the nodes within the narrow band defined
as {(i, j, k)| dist

(
(i, j, k), B

)
< C}, where C is the con-

stant defining the half-width of the band which can be set to
a small value (e.g. 4) without visually affecting the result-
ing isosurface (as compared to the computations on the full
grid). The overall pseudocode of our method is then given
in Figure 2.

Solving the quadratic program. The convex quadratic
program (8) can be solved using a large variety of the con-
vex optimization algorithms [5], with the final result being
invariant to the particular choice of the algorithm. For our
experiments, we devised a simple special-purpose optimiza-
tion scheme based on the projected Jacobi iterations, in the
spirit of the scheme used in [14]. Experimentally, we have
confirmed the convergence of the scheme to global optima.

To describe the scheme, we detail (8) as:

fTQ f → min, s. t. l ≤ f ≤ u, (9)

where f is a vector of the embedding function values in the
voxels of the narrow band, l and u are the lower and upper
bounds on the values of f derived from the margin inequal-
ity (5), andQ is a sparse, positive-semidefinite matrix of the
quadratic form derived from the finite-difference approxi-
mation (4). Then, the kth iteration of the method starts with
the current solution xk, computes its Jacobi update, makes



a step towards it, and then projects the resulting point onto
the optimization domain by clamping the current solution
to be between the lower and the upper bounds:

xk+1
Jacobi = −D−1Rxk (10a)

xk+1
step = ω · xk+1

Jacobi + (1− ω) · xk (10b)

xk+1 = min
{
u,max{l,xk+1

step}
}

(10c)

Here, xk+1 is the solution at the k+ 1 iteration of the algo-
rithm, D and R are the diagonal and the off-diagonal parts
of Q, the scalar ω is the step-length parameter, which in our
experiments was set to 0.5, and the minima and the maxima
are taken element-wise. The attractive properties of the up-
date (10) are its small memory footprint as well as easiness
and efficiency, in particular for GPU architectures.

Computing distance function. The distance function
required to construct the band and to compute the margin
values can be efficiently computed even for large volumes
using the algorithm [23] among others.

5. Results
Qualitative assessment. The suggested algorithm has

been evaluated on several synthetic and real binary volumes.
In Figure 3a, we present the zero-isosurfaces of the input
volumes, while the minimal area separating surfaces com-
puted using the method [26] are shown in Figure 3b. Finally,
the separating surfaces extracted with our method are pre-
sented in Figure 3c (the margin as defined by (7) was used).
It can be observed that while the minimial area approach
yields the surfaces that look much better than the original
zero-isosurfaces, they still suffer from aliasing (terracing)
artifacts. These artifacts are removed and smoother, more
naturally-looking surfaces are obtained with our method.

The top row in Figure 3 correspond to a binary volume
obtained by rasterizing a cube on low-resolution (64×64×
64) grid (the cube axes were rotated relative to the grid
axes). The second row corresponds to the binary segmen-
tation result of an MRI hip joint dataset (128× 128× 119)
obtained using the graph cut method [6]. The third row cor-
responds to the binary volume (100 × 100 × 79) obtained
from the set of range scans using the method [17]. While
for the illustration purposes the volumes in Figure 3 have
low resolution, our method scales to much larger volumes
due to its banded nature.

For example, Figure 4 shows the closeups of the surface
extracted from the 256× 256× 288 binary volume. It also
demonstrates the main failure mode for our method, which
are thin objects (protrusions). Although, our method (Fig-
ure 4b) still does marginally better than the minimal area
surface approach (in Figure 4a), it can be seen that very
thin objects cannot be processed with the method described
above in a satisfactory way. The problem occurs because

the functional (4) drives the value of the embedding func-
tion towards zero, while the margin value (7) does not pre-
vent that, as it is equal to zero for the voxels belonging to
thin parts.

Handling thin parts. One easy way to improve the per-
formance of the method on thin objects is first to identify
the thin parts to be preserved and then to increase the mar-
gin values for these voxels. The thin parts can be identified
using simple morphological operations. Thus, we perform
morphological opening of the binary volume by eroding it
in a 6-connected neighborhood, and subsequently dilating it
in a 26-connected neighborhood. We then consider all vox-
els that are inside the object in the original volume but not
inside the opening as protrusions that require further pro-
cessing and raise their margin values mijk (which the rule
(7) always set to zero in these parts) to ε = 0.25. As shown
in (Figure 4c), this improves the performance of the method
in protrusion areas considerably (although, admittedly, the
aliasing artifacts can be observed there). Importantly, the
surface remains virtually unchanged in other parts.

Accuracy. The main criterion of the isosurface ex-
traction method is the visual consistency of the produced
meshes. This, however, is hard to quantify, and, there-
fore, we performed quantitative comparisons of the pro-
duced meshes in the following way. We took two binary
volumes at high resolution (rasterized ball at 4003 resolu-
tion, and “bunny” volume at approximately 5123 resolu-
tion). We then downsampled them by a factor of 5 us-
ing nearest neighbor interpolation, and reconstructed the
meshes from the downsampled volumes. We then looked
at the distribution of the signed distances from the zero iso-
surface for the vertices of the produced meshes, whereas
the distances were computed from the zero-isosurface of the
high-resolution volume and measured in voxels of that vol-
ume.

Table 5 reveals that mean squared distance for the
three methods (extracting zero-isosurface from the low-
resolution volume, performing minimum area reconstruc-
tion, and using our method) was very close for both meth-
ods, our method being only marginally better. At the same
time, the mean signed distance reveal the characteristic
shrinking bias of the minimal area approach towards pos-
itive signed distance (positive = “interior”).

For the ball dataset, we also computed the normals at ver-
tices (by averaging the normals of the adjacent faces), and
looked at the squared angles between these normals and the
normals of the perfect sphere. Here in the orientation do-
main, the accuracy advantage of our method was very sig-
nificant, namely one and two order of magnitude over mini-
mal area and zero-isosurface approaches, as the bottom line
of Table 5 (as well as the bottom row of Figure 1) demon-
strates.

Runtimes. We give the runtimes for the main stages of



(a) Zero-isosurfaces of binary volumes (b) Minimal area separating surfaces (c) Our separating surfaces
Figure 3. For a set of synthetic and real-data binary volumes, our method extracts separating surfaces with less aliasing artifacts, as
compared to the minimal area approach or the straightforward application of the marching cubes. See the text for the description of the
binary volumes.

our algorithm for several datasets. The run-times are given
for the narrow band half-width C = 4; the Jacobi update
(10) was performed 1000 times.

The timings for the three main stages and for a num-
ber of datasets are given in Table 5. The set-up stage in-
volved computing the distance transform, identifying nar-
row band, and preparing the matrix for the quadratic pro-
gramming. The main stage (quadratic programming via Ja-

cobi iterations) was performed either on a desktop Intel 2.4
GHz CPU, or on the entry-level2 NVIDIA Quadro FX 580
GPU card (high-end GPU cards are thus expected to bring
further speed-up). The timings are given for an excessive
number of iterations (1000), while much smaller number
may already produce a surface, that is sufficiently smooth
(Figure 5). For the last stage (marching cubes), we used the

2According to NVIDIA web-site.



(a) – Minimal area separating surface

(b) – Our separating surface

(c) – Our separating surface, modified margin
Figure 4. Close-ups of the surfaces extracted from the high-
resolution binary volumes with different methods. Both the min-
imal area approach and our approach struggle to obtain visually
consistent surfaces for very thin objects such as vessels. The per-
formance of our method in these regions may be improved by au-
tomatically increasing the margin values locally; in other parts, the
surface remains unchanged.

Volume – Measurement 0-isosurf. Minim.area Ours
Ball – Mean Sq. Dist. 15.05 14.86 14.06

Bunny – Mean Sq. Dist. 16.73 15.96 15.61
Ball – Mean Signed Dist. -0.13 0.59 0.04

Bunny – Mean Signed Dist. -0.23 0.25 -0.2
Ball – Mean Sq. Angle 0.06 0.003 0.0003

Table 1. Comparative distance and angle measurements for the iso-
surface reconstruction from downsampled volumes. Mean squared
and mean signed distances to the zero-isosurface of the vol-
umes before downsampling are given for the three methods (zero-
isosurface, minimal area, our method). The last line correspond to
angles between vertex normals and vertices of the perfect sphere
(in radians).

MATLAB’s isosurface function.
As for the methods performing minimal area extraction,

[3] reported 1.3–2.0 sec on a CPU presumably similar to
ours for a very similar geometry to ‘Sphere-100’ in our ta-

after 100 iterations after 1000 iterations

Figure 5. Even when our computation scheme is not run until con-
vergence, the result may be a sufficiently smooth surface (left).

Dataset Sphere-100 Sphere-200 Bunny Bone
Volume Size 1003 2003 100x100x80 128x128x60

Mesh Size(tri) 31,496 128,600i 54,892 19,010
Setting up 1.05 sec 6.18 sec 1.55 sec 0.77 sec

QP on GPU* 0.85 sec 3.33 sec 7.85 sec 3.05 sec
(QP on CPU) (5.42 sec) (21.87 sec) (10.54 sec) (3.68 sec)
March. Cubes 0.13 sec 0.93 sec 0.23 sec 0.09 sec

Table 2. Sample runtimes of the main stages of our algorithm.
*Note that an entry-level GPU card was used.

ble, [26] reported the runtimes of 1–5 minutes on an SGI
185 MHz workstation for the volume sizes in the same ball-
park as ours.

6. Discussion

We have presented a simple algorithm allowing to extract
smooth isosurfaces from binary volumes, which is a com-
mon post-processing task within a range of shape recon-
struction applications, in particular 3D image segmentation.
Unlike previous methods, our approach operates within the
implicit framework and minimizes a higher-order smooth-
ness criterion imposed on the embedding function. Such
minimization can be achieved via convex quadratic pro-
gramming and yields smooth isosurfaces with fewer alias-
ing artifacts. It remains an interesting question whether sim-
ilar kind of higher-order smoothness can be used for other
tasks, e.g. whether it can be applied to image segmentation
directly.

Our approach, thus, presents a viable alternative to the
approaches that impose the higher-order smoothness within
the evolution process after the mesh is extracted [12,19,20].
One advantage of imposing the higher-order smoothness
within our framework is the convexity of the resulting opti-
mization problem. Furthermore, unlike [12, 19, 20] the op-
timized higher-order smoothness functional is independent
from the mesh structure defined by marching cubes. Fi-
nally, our method seems to be more suitable for the class
of techniques that avoid extracting the mesh isosurface and



work with the signed distance field representation directly
[10, 13]. On the downside, as our method relies on march-
ing cubes to extract the final isosurface, it has no control on
the quality of the produced triangles, and as a large num-
ber of triangles with poor aspect ratio may appear further
remeshing operation [2] may be needed. One remedy for
that may be using the dual marching cube algorithm [19]
rather than the primal one for the isosurface extraction.

While we have focused on the surface extraction from
the binary volumes, it is highly likely that higher-order
smoothness will be useful for the segmentation results pro-
duced by the methods working with continuous representa-
tions, as the criteria within these methods are not designed
to extract isosurfaces that are smooth at subvoxel levels.
E.g., the level-set frameworks [22] typically optimize min-
imal area-related objectives and therefore isosurfaces ex-
tracted from the resulting continuous-valued volumes will
be very similar to the minimal area separating surfaces com-
puted with the level set method [26]. Similarly, the random
walker algorithm [11] permits subvoxel isosurface extrac-
tion, yet enforce the first-order smoothness on the embed-
ding function. Therefore, we believe that imposing higher-
order smoothness may be as useful for the extraction of the
surfaces from the segmentation results of all these methods
as it is for the segmentation methods with binary outputs.

It can be argued, at the same time, that for such tasks
as multiview reconstruction or shape-from-points the in-
put data may be reused at the surface extraction stage to
achieve the subvoxel accuracy (since unlike image segmen-
tation, the initial data for these problems are not sampled on
a grid and typically have higher effective resolution). Still,
our method may be useful for the approaches solving these
problems within the increasingly popular graph-cut [17,24]
and TV-minimization [14] frameworks as a fast, “ready-to-
use” solution for the surface extraction.

The code of the approach is available at the webpage of
the author3.
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