
CHATFIELD et al.: THE DEVIL IS IN THE DETAILS 1

The devil is in the details: an evaluation of
recent feature encoding methods
Ken Chatfield
http://www.robots.ox.ac.uk/~ken

Victor Lempitsky
http://www.robots.ox.ac.uk/~vilem

Andrea Vedaldi
http://www.vlfeat.org/~vedaldi

Andrew Zisserman
http://www.robots.ox.ac.uk/~az

Department of Engineering Science,
Oxford University

Abstract

A large number of novel encodings for bag of visual words models have been pro-
posed in the past two years to improve on the standard histogram of quantized local
features. Examples include locality-constrained linear encoding [23], improved Fisher
encoding [17], super vector encoding [27], and kernel codebook encoding [20]. While
several authors have reported very good results on the challenging PASCAL VOC clas-
sification data by means of these new techniques, differences in the feature computation
and learning algorithms, missing details in the description of the methods, and different
tuning of the various components, make it impossible to compare directly these meth-
ods and hard to reproduce the results reported. This paper addresses these shortcomings
by carrying out a rigorous evaluation of these new techniques by: (1) fixing the other
elements of the pipeline (features, learning, tuning); (2) disclosing all the implementa-
tion details, and (3) identifying both those aspects of each method which are particularly
important to achieve good performance, and those aspects which are less critical. This
allows a consistent comparative analysis of these encoding methods. Several conclusions
drawn from our analysis cannot be inferred from the original publications.

1 Introduction
The typical object recognition pipeline is composed of the following three steps: (i) extrac-
tion of local image features (e.g., SIFT descriptors), (ii) encoding of the local features in an
image descriptor (e.g., a histogram of the quantized local features), and (iii) classification
of the image descriptor (e.g., by a support vector machine). Recently several authors have
focused on improving the second component, i.e. the encoding of the local features in global
image statistics. The baseline method is to compute a spatial histogram of visual words
(quantized local features) and was introduced in [4, 11, 19]. Recent advances replace the
hard quantization of features involved in this method with alternative encodings that retain
more information about the original image features. This has been done in two ways: (1) by
expressing features as combinations of visual words (e.g., soft quantization [20], local linear

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Wang, Yang, Yu, Lv, Huang, and Gong} 2010

Citation
Citation
{Perronnin, S{á}nchez, and Mensink} 2010

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010

Citation
Citation
{van Gemert, Geusebroek, Veenman, and Smeulders} 2008

Citation
Citation
{Csurka, Bray, Dance, and Fan} 2004

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006

Citation
Citation
{Sivic and Zisserman} 2003

Citation
Citation
{van Gemert, Geusebroek, Veenman, and Smeulders} 2008



2 CHATFIELD et al.: THE DEVIL IS IN THE DETAILS

encoding [23]), and (2) by recording the difference between the features and the visual words
(e.g., Fisher encoding [17], super-vector encoding [27]).

Papers have flourished [17, 23, 24, 25, 27], and some have reported very good results
on challenging benchmarks such as the PASCAL VOC classification challenge [5]. Unfor-
tunately, it is well known that the performance of object recognition methods depends very
strongly on all the stages of the pipeline, and especially on the feature computation step.
Moreover, papers sometimes lack descriptions of critical details that are required to repro-
duce the proposed methods, and do not discuss certain aspects such as memory consumption
and speed that are of critical importance in applications. All in all, it is very hard to assess
the relative merits of these new encodings.

In this paper, we attempt to address this situation. We compare five recent encoding meth-
ods: locality-constrained linear encoding, super vector encoding, improved Fisher encoding,
kernel codebook encoding, and the standard spatial histograms baseline. The contribution
offered over that of the original papers is that we: (1) compare the methods by fixing the
underlying representation (SIFT descriptors), learning framework (linear SVM), and their
tuning; (2) disclose the source code used to generate the experimental results and describe
all the implementation details (including some that were omitted in the original publications
and that were obtained from personal communications with the authors); (3) analyse which
aspects of the different constructions are important for performance and which are not. The
overall picture that emerges cannot be inferred from the original publications alone.

In Sect. 2 we discuss the details of the encoding approaches. We begin by consider-
ing those parts of the pipeline leading up to the encoding stage including: computation of
low level features, quantization by k-means, large scale k-means, Gaussian mixture mod-
els (Sect. 2.1) before considering the encoding methods themselves: the histogram, kernel
codebook, Fisher, super-vector, and locality-constrained encodings (Sect. 2.2). This is fol-
lowed by a discussion of the part of the pipeline after the encoding stage, covering the use
of non-linear kernels, spatial binning, and learning (Sect. 2.3). The detailed experimental
settings and the results of the methods and their variations on PASCAL VOC 2007 [5] and
Caltech-101 [6] datasets are reported in Sect. 3. The last part of the paper (Sect. 4) contains
an analysis of comparative performance.

2 Methods

2.1 Local descriptors and quantization

The purpose of the encodings compared in this paper is to compute global image descriptors
from large set of local descriptors. The local descriptors are fixed in all experiments to be
SIFT descriptors [13] extracted with a spatial stride of between two and five pixels, and at
four scales, defined by setting the width of the SIFT spatial bins to 4, 6, 8 and 10 pixels
respectively. The rotation of the SIFT features is fixed to a constant value. Additionally, low
contrast SIFT descriptors are detected by measuring the average of the gradient magnitude
(in the descriptor support) and dropped when this magnitude is below a certain threshold
(about 5% of the SIFT features in the PASCAL dataset satisfy this condition). To simplify
reproducibility, the SIFT descriptors are computed by using the vl_phow command in-
cluded in the publicly available VLFeat toolbox [21], version 0.9.13. Apart from the stride
parameter, the defaults options are used, along with the ’fast’ option which selects the
faster (but slightly approximated) extraction algorithm. This implementation is very close to

Citation
Citation
{Wang, Yang, Yu, Lv, Huang, and Gong} 2010

Citation
Citation
{Perronnin, S{á}nchez, and Mensink} 2010

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010

Citation
Citation
{Perronnin, S{á}nchez, and Mensink} 2010

Citation
Citation
{Wang, Yang, Yu, Lv, Huang, and Gong} 2010

Citation
Citation
{Yang, Yu, and Huang} 2010

Citation
Citation
{Yu, Zhang, and Gong} 2009

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010

Citation
Citation
{Everingham, Zisserman, Williams, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2007

Citation
Citation
{Everingham, Zisserman, Williams, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2007

Citation
Citation
{Fei-Fei, Fergus, and Perona} 2003

Citation
Citation
{Lowe} 1999

Citation
Citation
{Vedaldi and Fulkerson} 2010



CHATFIELD et al.: THE DEVIL IS IN THE DETAILS 3

Lowe’s original but is much faster for dense feature extraction, requiring well under a second
for a typical PASCAL image. In some cases, the dimensionality of the SIFT descriptor will
be reduced by using PCA [9].

K-means clustering. All the encodings considered here are based on the idea of partitioning
the local descriptor space into informative regions whose internal structure can be disre-
garded or parametrized linearly. These regions are also called visual words and a collection
of visual words is called a visual vocabulary.

k-means clustering is probably the most common way of constructing visual vocabular-
ies. Given a set x1, . . . ,xN ∈ RD of N training descriptors (to which PCA reduction may
have been applied), k-means seeks K vectors µ1, . . . ,µK ∈ RD and a data-to-means assign-
ments q1, . . . ,qN ∈ {1, . . . ,K} such that the cumulative approximation error ∑

N
i=1 ‖xi−µqi‖2

is minimized. Two k-means clustering algorithms are considered. The first one is the stan-
dard Lloyd’s algorithm [12], an optimization method that alternates between seeking the best
means given the assignments (µk = avg{xi : qi = k}), and seeking then the best assignments
given the means

qki = argmin
k
‖xi−µk‖2. (1)

The second algorithm, used for large vocabularies, is an approximated version of Lloyd’s one
where the data-to-clusters assignments (1) are computed by using an approximate nearest
neighbour (ANN) algorithm (we use as ANN the randomized best-bin-first KD-tree forest
proposed in [16], as implemented in the VLFeat toolbox).

GMM clustering. A Gaussian mixture model (GMM) p(x|θ) is the probability density on
RD given by

p(x|θ) =
K

∑
k=1

p(x|µk,Σk)πk, p(x|µk,Σk) =
1√

(2π)D detΣk
e−

1
2 (x−µk)

>Σ
−1
k (x−µk),

where θ = (π1,µ1,Σ1, . . . ,πK ,µK ,ΣK) is the vector of parameters of the model, including the
prior probability values πk ∈ R+ (which sum to one), the means µk ∈ RD, and the positive
definite covariance matrices Σk ∈ RD×D of each Gaussian component. Here the covariance
matrices are assumed to be diagonal, so that the GMM is fully specified by (2D+1)K scalar
parameters. The parameters are learned by expectation maximization (EM, [14]) from a
training set of descriptors x1, . . . ,xN , but making sure that the diagonal covariances of the
components are never smaller than 0.01 times the overall diagonal covariance of the data.
The GMM defines then the soft data-to-cluster assignments

qki =
p(xi|µk,Σk)πk

∑
K
j=1 p(xi|µ j,Σ j)π j

, k = 1, . . . ,K. (2)

2.2 Encodings
Histogram encoding is, as the name suggests, a histogram of the quantized local descriptors
and constitutes the baseline encoding upon which the other methods improve. The construc-
tion of the encoding starts by learning a k-means visual vocabulary µ1, . . . ,µK (Sect. 2.1).
Given a set of descriptors x1, . . . ,xN sampled from an image, let qki be the assignments of
each descriptor xi to the corresponding visual word as given by (1). The histogram encoding
of the set of local descriptors is the non-negative vector fhist ∈ RK such that [fhist]k = |{i :
qki = k}|.

Citation
Citation
{Ke and Sukthankar} 2004

Citation
Citation
{Lloyd} 1982

Citation
Citation
{Muja and Lowe} 2009

Citation
Citation
{McLachlan and Peel} 2000



4 CHATFIELD et al.: THE DEVIL IS IN THE DETAILS

Kernel codebook encoding [18, 20] is a variant in which descriptors are assigned to
visual words in a soft manner. More specifically, each descriptor is encoded as [fkcb(xi)]k =
K(xi,µk)/∑

K
j=1 K(xi,µ j) where K(x,µ) = exp(− γ

2‖x−µ‖2), and a set of N descriptors ex-
tracted from an image as fkcb =

1
N ∑

N
i=1 fkcb(xi). Both give an encoding of size K.

Fisher encoding [17] captures the average first and second order differences between
the image descriptors and the centres of a GMM, which can be thought of as a soft visual
vocabulary. The construction of the encoding starts by learning a GMM model θ (Sect. 2.1).
Given a set of descriptors x1, . . . ,xN sampled from an image, let qki, k = 1, . . . ,K, i= 1, . . . ,N
be the soft assignments of the N descriptors to the K Gaussian components as given by (2).
For each k = 1, . . . ,K, define the vectors

uk =
1

N
√

πk

N

∑
i=1

qkiΣ
− 1

2
k (xi−µk), vk =

1
N
√

2πk

N

∑
i=1

qki
[
(xi−µk)Σ

−1
k (xi−µk)−1

]
.

Note that, since the covariance matrices Σk are assumed to be diagonal, computing these
quantities is quite fast. The Fisher encoding of the set of local descriptors is then given by
the concatenation of uk and vk for all K components, giving an encoding of size 2DK

fFisher = [u>1 ,v
>
1 , . . .u

>
K ,v

>
K ]
>. (3)

Super vector encoding [27] is similar to the Fisher encoding. There are two variants
of this encoding, based on hard assignment to the nearest codeword or soft assignment to
several near neighbours. For the hard super vector encoding, let qki = 1 if xi is assigned to
cluster k by k-means and 0 otherwise (Sect. 2.1). [27] does not specify how qki are set in the
soft assignment case. We defined qki to be essentially the same as for the Fisher encoding,
setting Σk = σ2 ·I and σ being twice the mean distance between points and means within the
k-means algorithm and I the identity matrix. Define

pk =
1
N

N

∑
i=1

qki, sk = s
√

pk, uk =
1
√

pk

N

∑
i=1

qki(xi−µk),

where s is a constant chosen to balance sk with uk numerically. Then the super vector encod-
ing is given by

fsuper = [s1,u>1 , . . . ,s
>
K ,u

>
K ]
>. (4)

This gives an encoding of size K(D+ 1). Compared to the Fisher encoding, the super vec-
tor encoding: (1) considers only the first order differences uk between features and cluster
centres; (2) adds the components sk which represent the mass of each cluster; (3) normal-
izes each cluster by the square root of the posterior probability

√
pk rather than of the prior

probability
√

πk.
Locality-constrained linear (LLC) encoding (LLC) [23] projects each image descrip-

tors xi down to the local linear subspace spanned by the M� K visual words closest to xi.
Let µ1, . . . ,µK be a visual vocabulary learned by using k-means (Sect. 2.1). Let σ1, . . . ,σM
be the indices of the M visual words µk closer to xi (in Euclidean distance) and denote them
collectively as B = [µσ1 , . . . ,µσM ]. Let α ∈ RM be the coefficients of the approximation
xi ≈ Bα (given below). The LLC encoding of the descriptor xi is the K-dimensional vector
fLLC(xi) of all zeroes except for the M components [fLLC(xi)]σm = αm, m = 1, . . . ,M. The
LLC encoding of a set of descriptors x1, . . . ,xN is then obtained by max-pooling: [fLLC] j =
maxi=1,...,N [fLLC(xi)] j. As with both histogram encoding and kernel codebook encoding, this
gives an encoding of size K.

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2008

Citation
Citation
{van Gemert, Geusebroek, Veenman, and Smeulders} 2008

Citation
Citation
{Perronnin, S{á}nchez, and Mensink} 2010

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010

Citation
Citation
{Wang, Yang, Yu, Lv, Huang, and Gong} 2010



CHATFIELD et al.: THE DEVIL IS IN THE DETAILS 5

To project xi down to the span of the visual words B, one solves the problem α∗ =
argmin1>α=1 ‖xi−Bα‖2 +β‖α‖2, where β is a small regularization constant. After a few
algebraic manipulations, one gets the solution α∗ ∝ (∆>i ∆i + β I)−1∆i1, where ∆i = [xi−
µσ1 , . . . ,xi−µσM ] (the norm of α∗ is fixed by the constraint 1>α = 1).

2.3 Spatial binning, kernels, and learning

Non-linear kernels. For training with a support vector machine (SVM) all of the encodings
f,g∈RD discussed so far can be used directly with a linear kernel K(f,g) = 〈f,g〉. While lin-
ear kernels are very efficient [8] for training, non-linear kernels tend to yield better classifi-
cation accuracy [26]. A class of kernels that are almost as efficient as the linear ones but usu-
ally much more accurate are the additive homogeneous kernels [22] K(f,g) = ∑

D
i=1 k(fi,gi),

where k is itself a kernel on the non-negative reals. Examples of k include the Hellinger’s
(Bhattacharya’s) kernel k( f ,g) =

√
f g and the χ2 kernel k( f ,g) = 2 f g/( f +g). While these

kernels are normally defined for non-negative vectors (histograms), they can be extended to
arbitrary vectors by setting k′( f ,g) = sign( f g)k(| f |, |g|).

The computational advantage of using additive kernels is that they can be represented as
linear ones up to the computation of an efficient feature map. For instance, for the Hellinger’s
kernel it suffices to consider the feature map defined by [Ψ(f)]i =

√
fi, as in fact K(f,g) =

〈Ψ(f),Ψ(g)〉 = ∑
D
i=1
√

fi
√gi = ∑

D
i=1
√

figi. For the χ2 and other kernels one can use the
approximated feature maps introduced by [22], which are nearly as efficient.

SVMs usually work better if the data is properly normalized [22]. Here all encodings
are used in combination with linear SVMs (potentially after the computation of a suitable
feature map as explained above), so that the optimal normalization is l2 [22].

Spatial binning. A standard way of introducing weak geometry in a bag-of-words repre-
sentation is the use of spatial histograms [7, 11]. The concept can be extended to any of
the encodings analysed here by computing one encoding for each spatial region and then
stacking the results. Note that each spatial region is normalized individually prior to stack-
ing. The l1 norm is employed in the case of histogram and kernel codebook encodings,
with the l2 norm used for all other methods as suggested by the original publications. This
was found to work better than the original approach [11] of normalizing groups of regions
according to their size. After stacking, any feature map is applied to the entire histogram
and finally the entire histogram is l2 normalized to make it suitable for use within our linear
SVM framework.

In the experiments the spatial regions are obtained by dividing the image in 1×1, 3×1
(three horizontal stripes), and 2× 2 (four quadrants) grids, for a total of 8 regions, for the
PASCAL VOC data, and in 1×1, 2×2, and 4×4, for a total of 21 regions, for the Caltech-
101 data.

Pooling. When computing the encoding for each spatial region, the image features can be
pooled in one of two ways: sum pooling, in which case the encodings of SIFT features in a
given region are combined additively, or max pooling, in which case each bin in the encoding
is assigned a value equal to the maximum across SIFT feature encodings in that region. We
use max pooling for the LLC encoding, and sum pooling for all other methods, as in the
original publications.

Learning. All the experiments use a linear SVM on top of each encoding. The parameter C
of the SVM (regularization-loss trade off) is determined on a validation set (on the provided

Citation
Citation
{Joachims} 2006

Citation
Citation
{Zhang, Marsza{T1l }ek, Lazebnik, and C.} 2007

Citation
Citation
{Vedaldi and Zisserman} 2010

Citation
Citation
{Vedaldi and Zisserman} 2010

Citation
Citation
{Vedaldi and Zisserman} 2010

Citation
Citation
{Vedaldi and Zisserman} 2010

Citation
Citation
{Grauman and Darrel} 2005

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006



6 CHATFIELD et al.: THE DEVIL IS IN THE DETAILS

train and val split in the PASCAL VOC data and on a random split in Caltech-101).

3 Experiments
This section describes the experimental setup, including the parameters used for each of
the encodings. The PASCAL VOC 2007 data contains about 10,000 images split into train,
validation, and test sets, and labelled with twenty object classes. A 1-vs-rest SVM classifier
for each class is learned and evaluated independently and the performance is measured as
mean Average Precision (mAP) across all classes. The Caltech-101 data contains a variable
number of images for 102 categories (one is background). Of this data, we take three splits at
random, each containing 30 training images and up to 30 testing images per class. Similarly
to PASCAL, 102 1-vs-rest SVM classifiers are learned and evaluated, one for each class, but
in the case of Caltech-101 the evaluation is conducted in terms of the average classification
accuracy across all classes instead of the mAP.

Baseline: histogram encoding. The baseline encoding is a histogram of visual words ob-
tained with hard quantization (Sect. 2.2). For each dataset a single dictionary of visual words
is learned for all classes. The number of visual words varies between 600 and 8,000 for the
Caltech-101 data and between 4,000 and 25,000 for the PASCAL VOC data.

Kernel codebook encoding. This encoding is analogous to the histogram encoding, but
uses soft quantization. It requires a single additional parameter γ (Sect. 2.2) which is de-
termined on the data validation split of the data as for the other parameters. The codeword
uncertainty method of [20] is used. For efficiency, each descriptor is encoded by considering
only the top five nearest visual words.

LLC encoding. Similarly to the kernel codebook encoding, this encoding requires setting
the number of neighbour visual words M considered for each encoded descriptor (Sect. 2.2).
This is again set to five. The parameter β in the computation of the projections is set to 10−4.

Improved Fisher encoding. As suggested in [17], we used GMM with K = 256 compo-
nents (Sect. 2.1) after reducing the dimensionality of the SIFT descriptors to 80 by using
PCA. PCA was found to improve the accuracy and decrease the memory footprint of this
representation. Hellinger’s kernel is also used with this encoding, which amounts to square
rooting the features (up to rectification) and then l2-normalizing the result. This was also the
method used in [17], and is treated in full generality in Sect. 2.3.

Super vector encoding. Since [27] reports very similar performance for codebooks of size
1024 and 2048, we chose the former size to reduce computation and memory consumption,
which still remained very high. In our experiments, PCA reduction to 80 dimensions de-
graded the performance considerably, and we therefore report the results for the original
SIFT descriptors. The memory required for storing super-vectors is particularly high for
Caltech-101 dataset (due to larger number of spatial bins – 21 versus 8, refer to section 2.3);
therefore, only the performance on PASCAL VOC 2007 is reported.

We used the soft-assignment variant of super vector encoding with 5 (approximate) near-
est neighbours used to encode each descriptor. At least with our implementation of soft
assignment, the method turned out to be very sensitive to the number of nearest neighbors,
with performance for 20 nearest neighbors and 1 nearest neighbor (i.e., hard-assignment)
being much worse (−5% and −7% mAP respectively) than for 5 nearest neighbors.

Citation
Citation
{van Gemert, Geusebroek, Veenman, and Smeulders} 2008

Citation
Citation
{Perronnin, S{á}nchez, and Mensink} 2010

Citation
Citation
{Perronnin, S{á}nchez, and Mensink} 2010

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010



CHATFIELD et al.: THE DEVIL IS IN THE DETAILS 7

Method mAP

(a) FK Lin ss3 256 61.69 78.97 67.43 51.94 70.92 30.79 72.18 79.94 61.35
(b) SV Lin ss3 1024 58.16 74.32 63.79 47.02 69.44 29.06 66.46 77.31 60.18

(c) LLC Lin ss2 25k 57.60 71.05 62.85 47.40 67.67 25.21 62.70 77.02 59.59
(d) LLC-F Lin ss2 25k 59.32 74.10 64.92 51.48 68.33 27.18 62.89 78.44 61.39
(e) VQ Chi ss2 25k 56.07 70.00 58.90 42.86 66.75 26.59 62.27 75.67 57.09
(f) LLC Lin ss3 25k 57.27 71.35 62.65 46.12 68.98 26.04 63.92 76.98 59.71
(g) LLC Sqr ss3 25k 56.71 71.24 61.75 42.73 68.21 25.85 62.33 76.40 59.31
(h) LLC Chi ss3 25k 57.66 72.41 62.19 47.30 68.91 25.78 63.95 77.27 59.83
(i) LLC-F Lin ss3 25k 59.74 74.17 65.39 51.15 69.69 28.67 64.40 78.48 63.00
(j) VQ Chi ss3 25k 55.30 70.10 59.24 44.14 66.34 26.79 60.88 75.62 55.42
(k) KCB Chi ss3 25k 56.26 70.83 60.60 44.50 66.52 27.02 62.07 76.29 57.61
(l) LLC Lin ss5 25k 56.96 69.82 61.63 46.71 68.27 25.66 63.78 76.32 59.83
(m) LLC-F Lin ss5 25k 58.70 73.44 62.90 50.22 67.90 27.85 64.35 77.91 62.44
(n) VQ Chi ss5 25k 53.87 68.74 57.14 41.24 64.54 25.20 61.12 74.06 53.22

(o) LLC Lin ss3 14k 56.18 70.71 59.67 44.81 67.20 26.03 60.99 76.25 58.54
(p) VQ Chi ss3 14k 54.82 69.09 58.61 41.27 66.30 26.49 61.46 75.42 55.77

(q) LLC Lin ss3 10k 56.01 69.66 60.44 44.21 67.78 24.66 61.84 75.42 57.70
(r) VQ Chi ss3 10k 54.98 69.56 57.97 42.86 65.84 23.52 61.06 75.89 55.55

(s) LLC Lin ss3 4k 53.79 69.83 57.63 42.04 66.46 22.44 55.62 72.77 56.98
(t) LLC Sqr ss3 4k 52.07 68.52 54.62 40.14 65.34 21.53 51.89 71.54 55.19
(u) LLC Chi ss3 4k 53.47 70.17 56.20 42.73 65.27 22.23 55.18 72.78 56.95
(v) LLC-1 Lin ss3 4k 36.06 53.39 43.20 22.47 46.32 11.40 29.48 64.66 45.41
(w) LLC-F Lin ss3 4k 55.87 72.27 61.41 44.08 67.85 24.97 57.92 75.40 59.44
(x) VQ Sqr ss3 4k 51.97 67.29 55.22 36.58 64.42 21.89 56.31 72.90 52.11
(y) VQ Chi ss3 4k 53.42 68.65 57.04 39.86 64.59 21.96 58.79 73.89 53.77
(z) VQ Lin ss3 4k 46.54 60.63 48.80 32.76 58.54 16.26 50.44 68.42 45.97
(α) KCB Chi ss3 4k 54.60 69.82 59.20 41.97 64.85 23.90 59.02 74.98 54.63

Table 1: Image classification results using Pascal VOC 2007 dataset (continued on next page)
VQ – baseline method; FK – Fisher kernel; SV – super vector coding; KCB – kernel codebook; LLC – locally-
constrained linear coding; LLC-F – LLC encoding with original+left-right flipped training images; LLC-1 – L1-
normalized LLC encoding; Lin/Sqr/Chi – linear/hellinger/χ2 kernel map; third column: SIFT sampling density;
fourth column: visual vocabulary size

The accuracy achieved by the super vector encoding in our experiments (Table 1) is
competitive with other methods (for example, it compares favourably to the 58.3% mAP
reported in [17], albeit at a finer dense SIFT sampling of every 3 pixels compared to the 16
pixel spacing used in that paper, or the 59.3% mAP reported in [23]), yet still quite far from
the performance (64% mAP) reported in [27]. However, as we learned from personal com-
munication with the authors, [27] used nontrivial modifications not discussed in the paper to
achieve those results (these include using LDA to compute the SVM kernel and second order
information as in the Fisher encoding). According to the authors, the performance achieved
with our implementation is representative of their method, given that we did not apply these
additional modifications.

4 Analysis
The results of our experiments over PASCAL VOC 2007 are shown in Table 1. As expected,
all the recently introduced methods improve the classification accuracy over the spatial his-

Citation
Citation
{Perronnin, S{á}nchez, and Mensink} 2010

Citation
Citation
{Wang, Yang, Yu, Lv, Huang, and Gong} 2010

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010



8 CHATFIELD et al.: THE DEVIL IS IN THE DETAILS

(a) FK 55.98 49.61 58.40 44.77 78.84 70.81 84.96 31.72 51.00 56.41 80.24 57.46
(b) SV 50.19 46.46 51.86 44.07 77.85 67.12 83.07 27.56 48.50 51.10 75.50 52.26

(c) LLC 54.24 45.27 51.56 44.24 77.52 67.05 83.29 27.57 45.73 53.62 76.01 52.32
(d) LLC-F 54.41 47.24 52.75 44.55 78.10 68.48 83.73 29.90 50.95 55.48 78.55 53.62
(e) VQ 53.80 41.35 51.55 42.57 76.33 65.11 82.98 26.70 43.47 52.18 74.27 50.87
(f) LLC 53.96 46.34 52.10 42.39 77.17 67.15 83.36 23.11 44.45 52.12 75.36 52.21
(g) LLC 53.91 45.63 49.61 42.91 75.50 65.93 83.03 27.10 43.82 52.28 74.71 51.86
(h) LLC 54.25 45.97 51.11 43.22 76.74 67.07 83.49 27.73 44.77 52.77 76.00 52.47
(i) LLC-F 55.31 49.52 53.03 44.60 78.52 68.85 84.24 28.44 50.47 55.18 77.56 54.17
(j) VQ 53.12 40.40 51.27 39.16 76.87 63.09 82.16 20.96 42.96 51.40 75.13 50.94
(k) KCB 54.31 41.64 51.91 41.05 76.40 66.06 82.97 23.86 43.66 51.32 75.10 51.40
(l) LLC 53.17 44.89 51.03 40.70 76.88 66.84 82.78 26.19 45.46 52.17 75.11 52.03
(m) LLC-F 54.12 47.33 52.31 42.90 77.69 68.39 83.28 27.43 50.06 54.41 77.36 51.73
(n) VQ 52.08 38.96 48.66 38.64 74.84 62.40 81.24 25.08 40.46 49.35 72.19 48.22

(o) LLC 52.62 44.06 49.17 38.65 75.90 66.61 82.30 27.19 44.63 52.02 74.55 51.64
(p) VQ 52.68 40.18 50.58 38.14 75.25 63.87 82.23 21.36 42.19 51.72 74.10 49.64

(q) LLC 52.90 45.11 49.78 39.89 75.57 65.29 82.02 25.96 43.20 51.23 74.82 52.64
(r) VQ 52.97 41.09 49.64 41.28 76.33 64.24 81.94 21.49 41.91 52.95 74.06 49.51

(s) LLC 51.72 42.82 46.14 39.47 74.08 62.04 80.92 24.50 38.81 49.35 71.24 51.03
(t) LLC 50.83 40.10 42.63 39.47 71.69 58.57 79.74 22.89 38.98 47.78 70.87 49.09
(u) LLC 52.13 41.51 43.94 40.71 73.24 60.58 81.09 24.28 38.90 48.56 71.99 50.96
(v) LLC-1 32.84 19.06 21.34 22.72 53.28 33.59 68.74 11.38 6.17 37.97 60.44 37.30
(w) LLC-F 53.02 43.92 47.68 39.90 75.95 62.77 81.93 25.25 45.23 51.69 74.07 52.70
(x) VQ 51.51 38.23 46.50 34.99 74.62 60.71 80.05 18.79 37.13 50.22 71.71 48.32
(y) VQ 52.40 38.57 49.20 36.85 75.59 61.59 81.63 20.47 40.05 50.92 73.39 49.21
(z) VQ 48.25 28.31 41.73 30.21 70.51 55.24 77.79 14.79 31.37 39.73 68.27 42.73
(α) KCB 52.49 40.48 50.53 37.98 76.03 63.73 82.47 22.31 43.08 50.96 73.97 49.68

Table 1: Image classification results on Pascal VOC 2007 dataset (continued from previous page)

codebook size
Method 256 600 1500 2000 4000 8000

(a) FK Lin 77.78 ± 0.56 – – – – –
(b) LLC Lin – 73.10 ± 1.09 74.84 ± 0.67 75.75 ± 0.71 76.15 ± 0.59 76.95 ± 0.39
(c) LLC Chi – 72.30 ± 1.08 74.23 ± 0.62 75.24 ± 0.71 75.95 ± 0.57 76.62 ± 0.61
(d) VQ Chi – 72.65 ± 0.77 73.62 ± 0.51 73.93 ± 0.79 74.41 ± 1.04 74.23 ± 0.65
(e) KCB Chi – 73.38 ± 0.65 75.24 ± 0.63 75.50 ± 0.65 75.92 ± 0.63 75.93 ± 0.57

Table 2: Image classification results on Caltech-101 dataset (30 training images)

togram of visual words baseline. This concurs with the fact that information is lost when
a local descriptor is replaced with (assigned to) the nearest codeword. A detailed analysis
follows; we will use letters in square brackets to indicate the corresponding rows of Table 1.

For small codebook sizes, the kernel codebook encoding with χ2 kernel performs bet-
ter than the newer LLC-encoding ([α] vs [s]), while the baseline encoding with χ2 kernel
performs almost as well [y] (the performance degrades dramatically with linear kernel [z]).
For larger codebook sizes, LLC encoding performs better than the baseline and the kernel
codebook ([f] vs [j] vs [k]), but the difference is not large. However, it is interesting to note
that LLC-encoding using the linear kernel achieves comparable performance to the χ2 ker-
nel across different vocabulary sizes and outperforms the results using the Hellinger’s kernel



CHATFIELD et al.: THE DEVIL IS IN THE DETAILS 9

feature map ([f] vs [g] and [h]; [s] vs [t] and [u]). This suggests that the linear kernel is suf-
ficient to achieve good performance with the encoding, avoiding the computational expense
of applying a non-linear kernel – even through a more efficient feature map.

Our comparisons suggest that the Fisher encoding [a] and super-vector encoding [b]
have an edge over other encoding methods, although for PASCAL the advantage is not as
dramatic as portrayed in the respective papers (cf. e.g. [b] vs [j]). The Fisher encoding also
is the best performing in the Caltech-101 experiment (Table 2). Thus it can be concluded
that encoding the relative displacement between a descriptor and a codeword, as with both
the Fisher encoding and super-vector encoding, successfully retains some extra information
lost in the quantization process.

Vocabulary size. The PASCAL experiments clearly demonstrate that larger vocabularies
lead to higher accuracy. While the law of diminishing returns is clearly in place, it is most
likely that the performance is not saturated even at 25K visual words ([s]-[q]-[o]-[f], [y]-[r]-
[p]-[j]). A similar trend (although for a much smaller vocabulary size) is observed in Table 2.
It should be noted that in the case of LLC encoding, even at a vocabulary size of 8,000 the
performance acheived appears to be still increasing suggesting that further gains could be
acheived by increasing the vocabulary size even further.

Sampling density/data augmentation. As has been observed in multiple previous works,
the sampling density of the local descriptors matters, with denser sampling yielding higher
accuracy ([f] vs [l]; [i] vs [m]; [j] vs [n]). The performance however saturates around the
maximum sampling density that we considered here ([c] is better than [f] but [d] is not better
than [i]). Nonetheless, the performance can be further improved considerably via simple
data augmentation tricks, such as adding left-right flipped versions of the training data to the
training set ([c] vs [d], [f] vs [i], [l] vs [m]). Further data augmentation strategies are likely
to improve the performance even more.

Size of encoding. Soft-assignment methods (LLC, kernel codebooks) gain considerably
from large (e.g. 25,000) vocabularies resulting in a correspondingly large encoding size
(number of words times number of spatial bins, e.g. 200K floats per image). Fisher kernel
and super-vector encodings produce even larger vectors (e.g. with the encoding parameters
suggested in [27], each VOC image is encoded with a 1.4-million dimensional dense vector).
In our implementation, the size of the Fisher kernel encoding is smaller than super-vector en-
coding (∼ 1.26MB vs∼ 3.8MB) due to the smaller codebook employed and the use of PCA.

With our sampling density, neither of the encodings results in particularly sparse vectors:
on PASCAL VOC, sparsity ranges from 30% non-zeros for the baseline encoding to close
to 100% non-zeros for super-vector encoding and Fisher kernel encoding. Consequently,
fitting the encoded training data in memory is not possible even for a relatively small datasets
like PASCAL VOC 2007 and Caltech-101. In these cases computing the kernel matrix and
solving the problem in the dual by using e.g. LIBSVM [2] reduces the memory footprint
significantly, and this is the approach we use.

Speed of encoding. For the hard and soft-assignment based methods (LLC, kernel code-
books, the baseline) the encoding time is dominated by the approximate nearest neighbour
search, which increases sub-linearly yet considerably not only with the size of the vocabu-
lary but also the number of nearest neighbours sought. Therefore, the overhead of LLC and
kernel codebook (KCB) encodings over the baseline are significant as a result of the addi-
tional time spent searching for K nearest neighbours per feature instead of just one. We also
use a higher bound on the maximum number of comparisons per feature in our approximate

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010

Citation
Citation
{Chang and Lin} 2001



10 CHATFIELD et al.: THE DEVIL IS IN THE DETAILS

nearest neighbour algorithm for the LLC and KCB encodings to maintain performance when
searching for the greater number of nearest neighbours required by these methods (we use a
maximum of 500 comparisons per feature for LLC and KCB, which in our experiments both
use K = 5 nearest neighbours, compared to 25 comparisons for the baseline method, which
requires just the first nearest neighbour) leading to an encoding time of 20 seconds per image
for LLC and 30 seconds for KCB compared to 0.5 seconds for the baseline encoding. The
time required to compute the approximate nearest neigbours comprises the majority of this
– around 17 seconds for the 5-NN search for LLC and KCB compared to < 0.5 seconds for
the 1-NN search in the case of the baseline encoding. The relative slugishness of the KCB
encoding can be explained by the fact our implementation is unoptimized MATLAB code
compared to the C++ implementations used for the baseline and LLC encodings. All timings
are for runs on a 3.07GHz Intel CPU using a vocabulary of 10K visual words.

Despite their size, super-vector encodings and Fisher kernel encodings can potentially
be faster (since they have to search neighbours/compute distances within a much smaller
vocabulary). To achieve full speed, Fisher coding would probably benefit from some spar-
sification (i.e. qki ≈ 0 should be set to 0), which we did not use. Super-vector encoding in
our MATLAB implementation takes about 12 seconds per image and Fisher encoding about
9 seconds per image using a combined C++/MATLAB implementation.

It is noteworthy that for all encodings the cost of computing the SIFT descriptors is much
smaller than the time required for any of the encodings (< 0.5 seconds per image).

5 Conclusions
We have presented a detailed empirical evaluation of several recent encoding methods for
bag-of-word models for object recognition. In some cases, our observations differed signifi-
cantly from the one presented in the original publications, which emphasizes the importance
of controlling carefully all conditions when comparing different representations. We pub-
lish the MATLAB code for our experiments on the web page [3], in the hope that it would
provide common ground for future comparisons, e.g. for new papers on feature encoding.

The list of encoding methods evaluated in this work is not exhaustive. In particular,
quite a few recent works (e.g. [1, 10, 15]) investigated the supervised learning of encoding
and all reported an improvement in classification performance due to the introduction of
supervision. In future, we plan to extend our comparison to include some of those methods.

Acknowledgments
We thank Florent Perronnin and Jorge Sánchez for discussions and useful suggestions in the
implementation of the algorithms. Funding is provided by the EPSRC, ERC grant VisRec
no. 228180, and EU Project FP7 AXES ICT-269980.

References
[1] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for recogni-

tion. In Proc. CVPR, pages 2559–2566, 2010.

[2] C. C. Chang and C. J. Lin. LIBSVM: a library for support vector machines, 2001. URL
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Citation
Citation
{Chatfield, Vedaldi, Victor, and Zisserman} 

Citation
Citation
{Boureau, Bach, LeCun, and Ponce} 2010

Citation
Citation
{Lazebnik and Raginsky} 2009

Citation
Citation
{Moosmann, Triggs, and Jurie} 2006

http://www.csie.ntu.edu.tw/~cjlin/libsvm


CHATFIELD et al.: THE DEVIL IS IN THE DETAILS 11

[3] K. Chatfield, A. Vedaldi, L. Victor, and Z. Zisserman. The devil is in the details:
an evaluation of recent feature encoding methods webpage. URL http://www.
robots.ox.ac.uk/~vgg/research/encoding_eval.

[4] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints.
In Workshop on Statistical Learning in Computer Vision, ECCV, pages 1–22, 2004.

[5] M. Everingham, A. Zisserman, C. Williams, and L. Van Gool. The PASCAL visual
obiect classes challenge 2007 (VOC2007) results. Technical report, Pascal Challenge,
2007.

[6] L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot
learning of object categories. In Proc. ICCV, 2003.

[7] K. Grauman and T. Darrel. The pyramid match kernel: Discriminative classification
with sets of image features. In Proc. ICCV, 2005.

[8] T. Joachims. Training linear SVMs in linear time. In Proc. KDD, pages 217–226, 2006.

[9] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local image
descriptors. In Proc. CVPR, 2004.

[10] S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by infor-
mation loss minimization. PAMI, 31(7):1294–1309, 2009.

[11] S. Lazebnik, C. Schmid, and J Ponce. Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories. In Proc. CVPR, 2006.

[12] S. Lloyd. Least square quantization in PCM. IEEE Trans. on Information Theory, 28
(2), 1982.

[13] D. Lowe. Object recognition from local scale-invariant features. In Proc. ICCV, pages
1150–1157, 1999.

[14] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000.

[15] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using
randomized clustering forests. In Proc. NIPS, pages 985–992, 2006.

[16] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorith-
mic configuration. In Proc. VISAPP, 2009.

[17] F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale
image classification. In Proc. ECCV, 2010.

[18] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Im-
proving particular object retrieval in large scale image databases. In Proc. CVPR, 2008.

[19] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching
in videos. In Proc. ICCV, pages 1470–1477, 2003.

[20] J. C. van Gemert, J. M. Geusebroek, C. J. Veenman, and A. W. M. Smeulders. Kernel
codebooks for scene categorization. In Proc. ECCV, 2008.

http://www.robots.ox.ac.uk/~vgg/research/encoding_eval
http://www.robots.ox.ac.uk/~vgg/research/encoding_eval


12 CHATFIELD et al.: THE DEVIL IS IN THE DETAILS

[21] A. Vedaldi and B. Fulkerson. VLFeat - An open and portable library of computer vision
algorithms. In Proc. ACM Int. Conf. on Multimedia, 2010.

[22] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In
Proc. CVPR, 2010.

[23] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear
coding for image classification. Proc. CVPR, 2010.

[24] J. Yang, K. Yu, and T. Huang. Supervised translation-invariant sparse coding. In Proc.
CVPR, 2010.

[25] K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate coding. In
NIPS, 2009.

[26] J. Zhang, M. Marszałek, S. Lazebnik, and Schmid C. Local features and kernels for
classification of texture and object categories: a comprehensive study. IJCV, 2007.

[27] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector
coding of local image descriptors. In Proc. ECCV, 2010.


