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Abstract
Image-based object modeling has emerged as an impor-

tant computer vision application. Typically, the process
starts with the acquisition of the image views of an ob-
ject. These views are registered within the global coordinate
system using structure-and-motion techniques, while on the
next step the geometric shape of an object is recovered us-
ing stereo and/or silhouette cues. This paper considers the
final step, which creates the texture map for the recovered
geometry model.

The approach proposed in the paper naturally starts
by backprojecting original views onto the obtained sur-
face. A texture is then mosaiced from these backprojections,
whereas the quality of the mosaic is maximized within the
process of Markov Random Field energy optimization. Fi-
nally, the residual seams between the mosaic components
are removed via seam levelling procedure, which is similar
to gradient-domain stitching techniques recently proposed
for image editing.

Unlike previous approaches to the same problem, inten-
sity blending as well as image resampling are avoided on
all stages of the process, which ensures that the resolution
of the produced texture is essentially the same as that of the
original views. Importantly, due to restriction to non-greedy
energy optimization techniques, good results are produced
even in the presence of significant errors on image registra-
tion and geometric estimation steps.

1. Introduction
The problem of 3D object modeling from registered pho-

tographs has received a lot of attention within computer vi-
sion community. The emphasis was however put on the
geometry recovery [21, 7], while the problem of texture
map creation was mainly overlooked. However, a texture
map is an important component of a geometric model, and
the texture quality and resolution have a key impact on the
model realism. In this paper, we therefore investigate how
high-resolution texture map can be obtained for a geometric
model obtained with some image-based 3D reconstruction
method.

Figure 1. An image view (left) is backprojected onto a surface
model (middle) yielding a texture fragment (right).

Thus, we consider the creation of a texture map for a
geometric model of an object given in a form of triangular
mesh. We assume that the image views of the object and the
recovered model are registered within the global coordinate
system. Consequently, for each point on the surface of the
model it is possible to find its projection onto each of the
images.

Given such registration, creating image-based texture
maps is essentially the problem of the combination of tex-
ture fragments. Consider an image view V of some ob-
ject and its surface model S that is defined by a triangular
mesh. Once the camera parameters for an image view are
known, they establish a one-to-one correspondence between
the projection of S onto V and the part of S visible in V .
In other words, the image can be backprojected onto the
surface. The result of such backprojection is a texture frag-
ment (Fig. 1). Multiple views produce multiple texture frag-
ments. The domains of these fragments are different parts
of the surface model. Overlapping fragments may differ
photometrically due to different lighting, camera settings,
or non-lambertian object surface and geometrically due to
model imprecision and/or imperfect registration.

To overcome these misalignments, current solutions to
the considered problem employ some kind of blending be-
tween the fragments. Thus, some works perform weighted
averaging of fragments over the whole mesh [3, 6, 15, 19].
Others employ mosaicing strategy but use feathering to
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mask seams after the mosaicing process [2, 11, 14, 20].
These strategies based on intensity blending have the fol-
lowing drawbacks. Firstly, in the presence of geometric
misalignments, blending causes ghosting (double imaging)
and blurring. Secondly, to blend the fragments, one need
to resample them to some common reference frame (unified
parametrization). Constructing good parametrizations for
objects with complex topology and geometry is difficult,
while inevitable distortions in the computed parametriza-
tions cause image quality degradation during resampling.

At the same time, the problem of combination of tex-
ture fragments shares a lot in common with planar image
stitching and texture synthesis, where recent introduction
of graph cut optimization and gradient-domain techniques
improved the performance over intensity blending signif-
icantly [9, 18, 1, 12]. Therefore, the contribution of this
paper is the extension of these techniques to the problem of
texture fragment combination on a 3D surface, which to the
best of our knowledge has not been done before.

The approach proposed in the paper accomplishes frag-
ment combination in two-steps. On the first step the frag-
ments are mosaiced into the texture, whereas the optimal
mosaic is sought within Markov Random Field energy opti-
mization framework. On the second step, the mosaic seams
are removed via seam levelling procedure, which is equiv-
alent to gradient domain based stitching techniques. Im-
portantly, with this approach the fragments need not be re-
sampled to unified texture coordinates. Instead, our method
uses what we call a natural texture mapping. This texture
mapping is defined by the geometric projection from the
model surface to the original image which is used to tex-
ture the particular surface part. The texture map in this case
can be obtained by a simple stacking of the initial views
(Fig. 2 middle) and does not incur any resampling. To make
the texture more compact, one can remove the unused parts
of the texture (Fig. 2 right) and pack the used parts more
tightly on a plane. Note, that all such operations do not re-
quire resampling and hence do not degrade the quality of
the texture.

2. MRF-based mosaicing

2.1. Energy formulation

The first step of our texture mosaicing approach can be
regarded as a labelling procedure. Consider a mesh with
the faces F1, F2, . . . FK , and the set of texture fragments
V 1, V 2, . . . V N , each corresponding to one of the initial
views. Then the texture mosaic is defined by a labelling
vector M = {m1,m2, . . . ,mK} ∈ {0..N}K , prescribing
to texture the face Fi from the fragment V mi .

Obviously, not all fragments containing a face are
equally suitable for texturing it. We assume that the qual-
ity of a face Fi in the fragment V j is defined by the cost

Figure 2. Texture maps created with our approach employs a natu-
ral texture mapping defined by projection operators (creating uni-
fied parametrization is not required). Left – a model from Fig. 1
with the mosaiced texture map. Middle – a natural texture map
obtained by stacking the initial views. Right – the same, but the
unused parts are removed.

value wj
i , which is smaller for the fragments with better

quality. If at least part of the face does not fit into the
fragment then wj

i is set to ∞. For other fragments, dif-
ferent strategies can be used to compute cost values. Thus
wj

i may be computed based on the angle between the lo-
cal viewing direction of the corresponding view and the
face normal (e.g. wj

i = sin2φ + α), giving preference to
less oblique backprojections. We have also tried some more
sophisticated variants, which involved surface distances to
surface boundaries and the differences between the frag-
ment color and the median local color, and found that they
tended to give similar results. A number of previous ap-
proaches chose the fragment for each face based on such
quality measure, which correspond to the labelling vector
M = {mi| mi = arg minj wj

i }.
However, such “best fragment” approach to mosaicing

does not take into account the visibility of the seams that
appear when two adjacent faces are textured from different
fragments (Fig. 2 left). Therefore, we propose to minimize
the visibility of such seams simultaneously with the maxi-
mization of fragment quality, thus measuring the quality of
each possible mosaic M with a two-termed energy:

E(M) = EQ(M) + λES(M) . (1)

Here, the first term EQ(M) =
∑K

i=1 wmi
i is the energy

term corresponding to the quality of fragments parts used
in the mosaic, while the second term ES(M) in (1) cor-
responds to the distinguishability of the seams. Assuming
that two adjacent faces Fi and Fj share an edge Eij , the
visibility of a seam between Fi and Fj is measured by the
integral difference of the colors of this edge in correspond-
ing fragments:

w
mi,mj

i,j =
∫

Eij

d(Prmi(X), P rmj (X)) dX . (2)

Here, Prr is a projection operator for the view r, and d(·, ·)
is some metric on colors or intensities (we used a Euclidean



distance in RGB color space). Naturally, if mi = mj then
w

mi,mj

i,j equals zero (texturing from the same view does not
produce seams).

If N denotes a set of pairs of adjacent faces, then the
second term in (1) can be written as:

ES(M) =
∑

{i,j}∈N

w
mi,mj

i,j , (3)

and the overall energy (1) can be rewritten as:

E(M) =
K∑

i=1

wmi
i +

∑
{i,j}∈N

w
mi,mj

i,j . (4)

2.2. Energy optimization

The functionals similar to (4) are common in computer
vision, as they are associated with probability distributions
of pairwise Markov Random Fields [13]. Such Markov
Random Fields (MRF) have been recently applied for mo-
saicing in texture synthesis and image stitching [9, 1]. For
those problems, however, the structure of MRF is typically
defined by the pixel or voxel grid, the nodes are associated
with pixels or voxels, and the node interactions are added
for adjacent pixels and voxels. In our case, the MRF is
mesh-based, its nodes correspond to mesh faces, and the
node interactions are defined by faces adjacency.

The wide applicability of pairwise discrete MRFs greatly
promoted the search for the efficient optimization methods
in recent years. For the minimization of our energy, we
considered three state-of-the art algorithms: max-product
Belief Propagation (BP) [16], α-expansion Graph Cuts [4],
and Convergent Tree Reweighted Message Passing (TRW-
S) [8] and found out α-expansion to demonstrate the best
performance. It converged to a lowest value of energy us-
ing the smallest amount of time (just several seconds for
a mesh with hundreds of thousand faces). Therefore all
further experimental results were produced using this al-
gorithm. As can be seen from fig. 3, the optimized mo-
saics gives textures, which are visually superior to “best
fragment” approach. Not only the overall length of the
seams is reduced in the optimized mosaic, but also the
seams there pass through the regions where misalignments
between fragments are lower.

3. Seam levelling
MRF-mosaicing decreases the distinguishability of

seams significantly. However, in the presence of large
photometric differences between original images it can
not make seams completely unnoticable. Therefore, for
truly seamless mosaicing, the remaining intensity discon-
tinuities on seams require further processing. A number
of gradient-domain (or equivalent) methods for seamless

“Best Fragment”

MRF-based
(a) (b) (c) (d)

Figure 3. MRF-based mosaicing results in better quality than “best
fragment” approach. (a) and (b) – “best fragment” and optimized
mosaics; face color corresponds to the number of fragment it is
textured with. (c) – a model with an optimized texture map. (d) –
closeup comparison of “best fragment” and MRF-optimized mo-
saics.

stitching, which avoid intensity blending, were proposed in
[17, 18, 12] for planar images. Below, we present the seam
levelling procedure, which is an adaptation of these meth-
ods to the problem of fragment combination on arbitrary
manifolds, e.g. meshes.

3.1. Seam levelling on manifolds

Figure 4. Seam levelling on a circumference (function values are
shown as elevations above the circumference). By summing the
original discontinuous function (left) with the specially computed
levelling function (middle), the continuous seam-levelled function
(right) that preserves the higher frequencies of the original func-
tion is obtained. The disconuity points of the original function are
indicated with radial sticks.

In this subsection, we propose a continuous formulation
of seam levelling on an arbitrary smooth oriented manifold
M (e.g. a circumference on Fig. 4). Let f be a piecewise-
continuous function on M and let S be a seam submanifold
of codimension one formed by the discontinuity points of
f .

The levelling function g is a piecewise-continuous func-
tion with the same discontinuity set as f , defined as follows:

g = arg min
∫

M\S
(∇h)2dX (5)

s.t. [g]
∣∣
X

= −[f ]
∣∣
X

, ∀X ∈ S . (6)



Here, the first condition (5) ensures the minimality of
gradient magnitude for the levelling function, while the sec-
ond condition (6) demands that the jump of g at each dis-
continuity point must be equal to the minus jump of f . As a
consequence, the sum f + g (Fig. 4-right) is an everywhere
continuous function on M .

Note that due to the condition (5), the levelling func-
tion is as smooth as possible within each continuity region.
Therefore, this seam levelling procedure preserves higher
frequencies of the initial function (Fig. 4).

Note, that the two conditions (5)(6) define g up to an
additive constant, which can be chosen arbitrarily, e.g. by
equating the mean value of g to zero (for an unconnected
manifold, this constant may be chosen independently in ev-
ery connected component).

3.2. Implementation for meshes

Seam levelling can be applied to remove the seams on the
fragments mosaic. Consider some given mosaic M. This
mosaic determines some texture map on the surface, i.e. it
defines a texture intensity function f on the mesh surface
(f : S → R). For color textures, we consider three separate
functions corresponding to RGB components.

Let C1, C2, ..., CT be connected components of the mo-
saic M , i.e. connected sets of triangles textured from the
same texture fragment. Then we treat the texture intensity
function f as continuous on each Cj and having disconti-
nuities on the boundaries between different Cj . For this f ,
we seek for the levelling function g.

For the approximate computation of the levelling func-
tion g, we make use of the mesh structure. We aim at
computing function g in each vertex of the mesh. The val-
ues of g between vertices are calculated by interpolation.
More specifically, we consider the pair set M containing
all (i, j)-pairs such as at least one triangle adjacent to the
vertex Vi belongs to the connected component Cj . For each
(i, j) ∈ M we compute the value gj

i , which will be later
used to interpolate the value of g over the triangles adjacent
to Vi in the fragment Cj .

Let us denote with f j
i the value of the original texture

function on the fragment Cj in vertex Vi (note, that these
values will be different for the same Vi but different Cj

since f is discontinuous in such points). Also let L be the
set of pairs of adjacent vertices on the mesh. Then the fol-
lowing least-squares energy over the variables gj

i approxi-
mates the conditions (5), (6):∑
(i1,j)∈M
(i2,j)∈M
(i1,i2)∈L

(gj
i1
−gj

i2
)2 +λ

∑
(i,j1)∈M
(i,j2)∈M

(gj1
i −gj2

i − (f j2
i −f j1

i ))2

Indeed, the first term ensures the small absolute value of
∇g and therefore approximates the condition (5), while the

Bust Rabbit Matreshkas
Figure 6. Samples of the source photographs for the experiments
(“bust” sequence downloaded from Long Quan’ homepage). Note
exposure and white balance variations, as well as surface specu-
larity and varying lighting (flash) in case of “matreshkas”.

second term approximates the condition (6). Since (6) is
a hard constraint, we set the parameter λ to a large value
(e.g. 100). The values gj

i are obtained after solving least
squares problem with sparse solver and are used to inter-
polate the values of g over the whole mesh. The resulting
levelling function is added pixel-wise to f yielding the final
texture (Fig. 5).

4. Experimental Validation
In this section, the ability of our method to generate

seamless mosaiced texture maps under a large variety of
conditions is validated in a series of experiments.

Experiment with synthetic data. An important ques-
tion is the performance of the method in the presence of sig-
nificant errors in the supplied geometry. To control the de-
gree of geometry inaccuracy, we tested the method on a set
of 20 computer-generated images of a unit sphere textured
with an Earth map along with a set of concentric spheres of
different radii. While the precise geometry (a unit sphere)
produced the exact copy of the original scene, our method
was also able to produce visually pleasant seamless textures
for the spheres with other radii (Fig. 7), thus demonstrating
the ability to cope with significant errors in geometry.

Experiments with real data. Our method was also
tested on several real sequences, containing 16-25 regis-
tered photos. In each case, the geometric model was ob-
tained using silhouette intersection on a volumetric grid.
Resulting visual hulls of the models [10] constituted coarse
approximations to the actual object shape, which caused
significant misalignments between different fragments and
made seamless mosaicing challenging. Arguably, such sil-



Figure 5. Seam levelling for fragments mosaicing. From left to right: the geometric model, the model with MRF-mosaiced texture (arrows
point to residual seams), computed levelling function (contrast enhanced), the model with the seam-levelled texture. Seam levelling
successfully removed seams preserving the original detailization.

One of source images +10% Correct radius -10% -20% -33% -50%
Figure 7. ”Synthetic Earth” experiment: spheres of different radii are textured based on the images of a unit sphere. Visually-consistent
seamless textures are produced for radii significantly deviating from 1 demonstrating the ability of our method to cope with errors on
geometry estimation step.

Figure 8. Our method applied to rabbit sequence. Note a coarse-
ness of geometry. Left – the geometric model. Middle – the mo-
saic structure and the levelling function. Right – the model with
the texture produced with our method.

houette intersection is the simplest and most robust yet im-
precise way to capture the model geometry.

The following table summarizes the properties of
the considered real sequences ordering them from
“vase”(simplest) to “matreshkas”(most challenging):

Setup
Exposure&
White Bal. Lighting Surface Result

Vase fixed fixed non-lambert. Fig. 3
Bust varied fixed lambert. Fig. 5

Rabbit varied fixed lambert. Fig. 8
Matreshkas varied varied non-lambert. Fig. 9

Comparative evaluation. Figure 10 presents the close-
ups of two models with texture maps obtained using differ-
ent fragment combination techniques, including traditional
fragments blending and unoptimized “best fragment” mo-
saics. For blending, the weights were chosen according to
the angle between the viewing direction and the face nor-
mal. After that they were smoothly truncated to zero in the
ramp near the border of each fragment.

While the results of blending and “best fragment” ap-
proaches exhibit significant artifacts, the addition of seam
levelling or MRF optimization improved the texture quality
significantly. Importantly, the combination of MRF opti-
mization and seam levelling yielded the results superior to
each of the techniques on its own.

5. Conclusion
In this paper, we addressed the problem of creation of

seamless texture maps for image-based modeling. Such
maps are composed from the backprojected texture frag-
ments using MRF-based mosaicing with subsequent seam
levellng derived from the analogous techniques recently
proposed for planar image stitching. Unlike previous ap-
proaches to the problem, intensity blending between sev-
eral fragments and resampling are avoided. As a result, the
produced maps have essentially the same resolution as the
original photographs. Experiments demonstrate the ability
of our method to produce seamless, detail-rich texture maps
under a large variety of conditions.



Figure 9. Results for the matreshkas sequence: the geometry, the mosaic, and the views of the textured model. Despite strong specularities
on varnished surfaces and varying lighting (built-in camera flash) visually-consistent seamless texture is obtained.

Blending “Best fragment”
“Best fragment” +

levelling MRF mosaic
MRF mosaic +

levelling
Structure of
MRF mosaic

Figure 10. Close-up comparison of different fragment combination techniques for “synthetic Earth” and “bust” setups. For “synthetic
Earth” the radius was decreased by 20%. While intensity-blending and “best fragment” mosaic produces inconsistent results, the best
quality is attained by the combination of MRF mosaicing and seam levelling proposed in this paper.
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