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Abstract

Many computer vision applications rely on the efficient
optimization of challenging, so-called non-submodular, bi-
nary pairwise MRFs. A promising graph cut based ap-
proach for optimizing such MRFs known as “roof duality”
was recently introduced into computer vision. We study two
methods which extend this approach. First, we discuss an
efficient implementation of the “probing” technique intro-
duced recently by Boroset al. [5]. It simplifies the MRF
while preserving the global optimum. Our code is 400-700
faster on some graphs than the implementation of [5]. Sec-
ond, we present a new technique which takes an arbitrary
input labeling and tries to improve its energy. We give theo-
retical characterizations of local minima of this procedure.

We applied both techniques to many applications, in-
cluding image segmentation, new view synthesis, super-
resolution, diagram recognition, parameter learning, tex-
ture restoration, and image deconvolution. For several ap-
plications we see that we are able to find the global mini-
mum very efficiently, and considerably outperform the orig-
inal roof duality approach. In comparison to existing tech-
niques, such as graph cut, TRW, BP, ICM, and simulated
annealing, we nearly always find a lower energy.

1. Introduction

Most early vision problems can be formulated in terms
of Markov random fields (MRFs). Algorithms for MRF in-
ference therefore are of fundamental importance for com-
puter vision. The MAP-MRF approach (computing maxi-
mum a posteriori configurations in an MRF) has proven to
be extremely successful for many vision applications such
as stereo, image segmentation, image denoising, super-
resolution, new view synthesis and others. We refer to [22]
for an overview of MRF optimization techniques in vision.
Binary MRFs In this paper we focus on a special class of
MRFs. Namely, we consider the problem of minimizing an
energy function of the form

E(x) = θconst +
∑

p∈V

θp(xp) +
∑

(p,q)∈E

θpq(xp, xq) . (1)

HereG = (V , E) is an undirected graph. The set of nodesV

usually corresponds to pixels, andxp ∈ {0, 1} denotes the
label of nodep. It is well-known that if the functionE is
submodular, i.e. every pairwise termθpq satisfies

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0), (2)

then a global minimum ofE can be computed in polynomial
time as a minimums-t cut in an appropriately constructed
graph (“submodular graph cuts”). Submodular functions
are very important, for example, for the image segmentation
problem (see e.g. [6]). In many vision applications, how-
ever, condition (2) is not satisfied. We focus on the problem
of minimizing non-submodular functions, which is a very
challenging task (in general, NP-hard).

A promising approach for this problem calledroof dual-
ity was proposed in [12] (see a review in [15]). It produces
part of an optimal solution. Boroset al. [3] give an efficient
algorithm for computing a roof dual. It can be viewed as a
generalization of the standard graph cut algorithm used in
vision: for submodular functions the two methods give the
same answer and have exactly the same running time, ex-
cept for a linear time overhead. We will refer to this method
as theQPBOalgorithm, which stands forquadratic pseudo-
boolean optimization- this is what the minimization prob-
lem (1) is called in [12, 3]. Recently it was successfully ap-
plied to vision applications such as MR reconstruction [18]
and texture restoration [15].
Our contributions In some cases the roof duality ap-
proach does not work very well, i.e. it leaves many nodes
unlabeled. We investigate two extensions of the roof duality
approach. The first one is the “probing” method introduced
recently in [5]. This is an exact technique: it simplifies the
energy by contracting and fixing nodes while preserving the
global optimum. We describe an efficient implementation
and observe that our code is 400-700 times faster than the
software of [5] on several4-connected grid graphs (such
grids are common in vision.) Our experiments show that
this makes the algorithm practical for vision applications.

Second, we develop a new approximate technique: it
takes an input solution and tries to improve its energy. The
energy is guaranteed not to increase, and experimentally of-
ten decreases. Both techniques can be combined; in some
cases such combination outperformed other methods that
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we tested (simulated annealing, ICM, max-product belief
propagation, graph cut, and TRW).

Last but not least, we show the importance of the roof
duality approach and its extensions for many vision appli-
cations, such as image segmentation, diagram recognition,
new view synthesis, and image deconvolution. Note, exper-
iments in [5] were outside computer vision.
Related work There is an extensive literature devoted to
minimizing energy (1). Exact methods for this problem
are usually branch-and-bound style methods, with different
techniques for obtaining a lower bound. A large number of
heuristic ideas have also been applied to this problem, e.g.
tabu search, scatter search, simulated annealing, evolution-
ary algorithms. We refer to [1, 4] and references therein for
an overview of different exact and approximate methods.

2. Optimizing Binary MRFs: Roof duality
In this section we give an overview of the roof duality ap-

proach for optimizing binary MRFs introduced in [12]. The
idea is to solve a particular linear programming (LP) relax-
ation of the energy where integer constraintsxp ∈ {0, 1}
are replaced with linear constraintsxp ∈ [0, 1]. It can be
shown that this LP has a half-integer optimal solutionx̄, i.e.
x̄p ∈ {0, 1, 1

2} for every nodep. It is convenient to define
the correspondingpartial labelingx of the integer problem
with xp ∈ {0, 1, ∅} where value∅ means that the node is
“unlabeled”.

The LP relaxation above can be solved in several dif-
ferent ways. The algorithm in [3] is perhaps the most ef-
ficient. We review this method, which we call QPBO, in
Section 2.1. As we mentioned, it produces a partial labeling
x. Properties of this labeling (in particular,persistency, or
partial optimality) are discussed in Section 2.2.

2.1. The QPBO Algorithm

We describe the algorithm of [3] using the notion of
reparameterization.
Reparameterization Let us introduce the following no-
tation. The energy of eq. (1) is specified by the constant
termθconst, unary termsθp(i) and pairwise termsθpq(i, j)
(i, j ∈ {0, 1}). It will be convenient to denote the last two
terms asθp;i andθpq;ij , respectively. We can concatenate
all these values into a single vectorθ = {θα |α ∈ I} where
the index set isI = {const} ∪ {(p; i)} ∪ {(pq; ij)}. Note
that (pq; ij) ≡ (qp; ji), so θpq;ij andθqp;ji are the same
element. We will use the notationθp to denote a vector of
size 2 andθpq to denote a vector of size 4.

Vectorθ′ is called areparameterizationof vectorθ if the
energy functionsE′ andE that they define are the same, i.e.
E′(x) = E(x) for all labelingsx. As a particular example,
we can subtract some constant from vectorsθp or θpq and
add the same constant toθconst. Another possible trans-
formation involves edge(p, q) ∈ E and labelj ∈ {0, 1}:

we can subtract a constant from componentsθpq;ij for all
i ∈ {0, 1} and add the same constant toθp;j .
Normal form We will say that the vectorθ is in anormal
form if it satisfies the following:

(a)min{θp;0, θp;1} = 0 for all nodesp.
(b)min{θpq;0j , θpq;1j}=0 for all (p, q)∈E andj∈{0, 1}.

Normal form implies the following:θpq;00 = θpq;11 = 0,
θpq;01, θpq;10 ≥ 0 if edge(p, q) is submodular; andθpq;01 =
θpq;10 = 0, θpq;00, θpq;11 ≥ 0 if (p, q) is supermodular (see
fig. 1 in [15]).
Algorithm The first step of the QPBO algorithm is to repa-
rameterize vectorθ into a normal form. This can be done in
linear time (see e.g. [15]). Then a directed weighted graph
G = (V, A) is constructed. For each nodep ∈ V , two nodes
p, p̄ are added toV . (They correspond to variablexp and its
negationx̄p = 1 − xp, respectively). In addition, there are
two special nodes - the sources and the sinkt which corre-
spond to labels0 and1. Thus,V = {p, p̄ | p ∈ V} ∪ {s, t}.
For each non-zero elementθα (except forθconst) two di-
rected arcs are added to the graph with weightθα; details
can be found in [2, 15].

Finally, a minimums-t cut (S, T ) in G is computed by
computing a maximum flow froms to t. This cut gives
an optimal solution to the LP relaxation and correspond-
ing partial labelingx as follows: (i) if p ∈ S, p̄ ∈ T then
xp = 0; (ii) if p ∈ T, p̄ ∈ S thenxp = 1; (iii) otherwise,
xp = ∅. It is worth noting that the maximum flow inG de-
fines a reparameterization of the energy. There are certain
relations between this reparameterization and partial label-
ing x (complementary slacknessconditions - see e.g. [20]).
Choosing a minimum cut One technical issue is that
graphG may have several minimum cuts(S, T ). They may
correspond to different partial labelingsx with different sets
of labeled nodes. In general, there exist “extreme” cuts
(Smin , T min ) and (Smax , T max ) such that for any other
minimum cut(S, T ) there holdsdom(xmin ) ⊆ dom(x) ⊆
dom(xmax ) wherexmin ,xmax , andx are the labelings de-
fined by these cuts anddom(x) denotes the set of labeled
nodes inx (“domain of x”). Details of how to compute
these cuts can be found in [2, 15, 20]. Note that labeling
x

min is unique, butxmax in general may depend on the
cut.

2.2. Properties of QPBO

We now review properties of partial labelingx produced
by the QPBO method ([12], see also [2]). Perhaps the most
important one is the following:

[P1] (Weak autarky)Let y be an arbitrary complete label-
ing, and letz=FUSE(y,x) be the “fusion” ofy andx:
zp = xp if p ∈ dom(x), andzp = yp otherwise. Then
E(z) ≤ E(y).



If we takey to be a global minimum, then we see thatx is
a part of some optimal solution:

[P2] (Weak persistency, or partial optimality)There exists a
global minimumx

∗ of energy(1) such thatx∗
p = xp for

all labeled nodesp ∈ dom(x).

Strong persistency Properties [P1] and [P2] are valid
for any partial labelingx produced by QPBO. If we take
x = x

min , then these properties can be strengthened:

[P1′] (Strong autarky)Lety be a complete labeling, and let
z=FUSE(y,x). If z 6= y thenE(z) < E(y).

[P2′] (Strong persistency) Anyglobal minimumx
∗ of en-

ergy(1) satisfiesx∗
p = xp for all nodesp ∈ dom(x).

Which nodes are labeled? Clearly, the usefulness of the
algorithm depends on how many nodes are labeled. In gen-
eral, we cannot expect that the method will label all nodes
since minimizing energy (1) is an NP-hard problem. In
some special cases, however, the method is guaranteed to
label all nodes [12]:

[P3] If the energy does not have any frustrated cycles then
labelingsx

max produced by QPBO are complete, i.e.
dom(xmax ) = V .

(A cycle is calledfrustrated if it contains an odd number
of non-submodular terms). The condition of this property
holds, in particular, for submodular functions.

The last property follows from the QPBO construction:

[P4] The algorithm is invariant with respect to “flipping”
a subset of nodesU ⊆ V , i.e. swapping the mean-
ing of 0 and 1 for pixelsp ∈ U . (This flipping trans-
forms submodular terms betweenU andV\U into non-
submodular, and vice versa).

3. Extended Roof Duality

The roof duality works quite well in “simple” cases (e.g.
when the number of non-submodular terms is small), but
in more difficult cases it may leave many nodes unassigned
(Sec. 4). In this paper we study two extensions of the roof
duality approach and show that they outperform the basic
algorithm for many vision applications. The first exten-
sion is the “probing” method introduced in [5]. We call
it QPBOP where ”P” stands for “probing”. Its aim is to
find the global optimum for nodes which QPBO failed to
label. Sec. 3.1 reviews this method and also describes an
efficient implementation. Then in Sec. 3.2 we propose a
new algorithm which we call QPBOI, where ”I” stands for
“improve”. Its aim is to efficiently improve a given refer-
ence solution. Unless noted otherwise, we will assume for
simplicity that QPBO produces the (unique) strongly per-
sistent solutionx = x

min , and write it asx = QPBO(E).
Note, in practicexmin andx

max are often the same [20].

Figure 1.Basic idea of QPBOP.Left: QPBO labeling for the cur-
rent energy, ’?’ means unlabeled. Middle & right: labelingsafter
fixing nodep (red). We can conclude thatx

∗
q = 0 andx

∗
r = x

∗
p

for any global minimumx
∗. Therefore, nodeq can be fixed to 0,

and nodesp andr can be contracted.

We will use an operation called “fixing a node”. Letx =
QPBO(E), and consider unlabeled nodep with xp = ∅

and given labeli ∈ {0, 1}. Define energyE′ = E[p ← i]
as follows:E′(y) = E(y) + Ep(yp) whereEp is a “hard
constraint” term withEp(i) = 0, Ep(1 − i) = Cp andCp

is a sufficiently large constant. If we run QPBO for energy
E′ then we obtain a new partial labelingx′ in which more
nodes may have become labeled. We refer to this behav-
iour as “spreading”. It is easy to show the “monotonicity”
property, i.e. thatx′

q = xq for q ∈ dom(x) andx′
p = i

(see [20]).
Instead of adding termEp, it is also possible to remove

term θp along with all incident pairwise termsθpq while
modifying unary termsθq. Note that adding the hard con-
straint term and removing nodep are equivalent (see [20]).

3.1. QPBOP: Preserving Global Optimality

The basic idea of probing [5] is illustrated in Fig. 1. Let
x = QPBO(E), and consider unlabeled nodep. Let us
fix p to 0 and to 1 and run QPBO in each case. We will
obtain two partial labelingsx0 = QPBO(E[p ← 0]) and
x

1 = QPBO(E[p← 1]). LetU be the set

U =
[

dom(x0) ∩ dom(x1)
]

− [dom(x) ∪ {p}] .

By the strong persistency property, we can draw the follow-
ing information about global minimax∗ of energyE:

x∗
p = i ⇒ x∗

q = xi
q ∀ i ∈ {0, 1}, q ∈ U .

Thus, nodes inU can be excluded from the energy without
affecting the global minimum (or minima). Indeed, con-
sider nodeq ∈ U . Two cases are possible:

i) x0
q = x1

q = j. Thenx∗
q = j for all global minimax∗,

thereforexq can be fixed toj.
ii) x0

q 6= x1
q. This means that either (a)x0

q = 0, x1
q = 1, or

(b) x0
q = 1, x1

q = 0. In case (a) we know thatx∗
p = x∗

q

for all global minimax∗, therefore we can “contract”p
andq. In case (b) there holdsx∗

p = 1 − x∗
q for all global

minima x, therefore we can “flip” variablexq (change
the meaning of 0 and 1) and then contractp andq.

For details of the contract operation see [20]. In this op-
eration edges(q, r) are replaced with edges(p, r), self-
loops are deleted, and parallel edges are merged.

If set U is nonempty, then the operations above will mod-
ify the energy reducing the number of nodes; the new set



of nodes isV − U . Then we run QPBO again for the new
energy obtaining a new partial labelingx′. A “monotonic-
ity” property holds, i.e.x′

q = xq for q ∈ dom(x) (see [20]).
Thus, nodes indom(x) − U are labeled inx′ (and in fact
other nodes may become labeled as well).

We can repeat these operations for other nodes of the
new energy. In the end we obtain a new energyE′ defined
on a graph(V ′, E ′) and functionf : 2V

′

→ 2V which maps
configurationsy of energyE′ to configurationsx of the
original energy1.

Proposition 1. (a) Functionf gives a one-to-one mapping
between the sets of optimal solutions of energiesE′ andE.

(b) For any labelingy ∈ 2V
′

there holdsE(f(y))=E′(y).

Adding directed constraints It often happens that
dom(x0) 6= dom(x1). Then it is possible to add directed
constraints of the form(x∗

p = i) ⇒ (x∗
q = xi

q). More
details and algorithm’s summary can be found in [5, 20].

3.1.1 Efficient Implementation

We now describe an efficient implementation of QPBOP.
As noted in [5], it is important to reuse previous calcula-
tions when the graph is updated (e.g. when the nodes are
contracted). A correct implementation of the update op-
erations, however, requires some care: the graph and flow
constructed by the QPBO method have a certain property
which must be preserved. Boroset al. [5] propose to main-
tain thesymmetrycondition which says that each arc holds
the same flow as its “mate”. This is achieved by modify-
ing the maxflow algorithm2. We propose to maintain the
“relaxed symmetry condition” instead (see [20]). One ad-
vantage of this is that the algorithm can work with integer
capacities, whereas maintaining the symmetry condition re-
quires floating point numbers (even if the original costs are
integers).

We used the maxflow algorithm in [7], and reused flow
and search trees as described in [13]. We modified the code
so that it maintains a list of visited nodes; thus, setU can be
traversed without going through the entire graph. Using the
relaxedsymmetry condition makes the update operation for
nodesp, q quite fast: it involves only these nodes. In con-
trast, maintaining the symmetry condition using techniques
in [7, 13] appears more difficult. After every maxflow com-
putation we would need to go through all edges that have
been accessed and restore the symmetry property. This

1Functionf can be described via two mappingsα : V → V ′ ∪ {0},

σ : V → {0, 1}. For configurationy ∈ 2V
′

labeling x = f(y) is
defined as follows: ifαp = 0 for nodep ∈ V thenxp = σp, otherwise
xp = (yq + σp) mod 2 whereq = αp. Note that mappingα defines a
partitioning of the setV .

2The implementation of [5] is based on Dinic algorithm, but every aug-
mentation is performed on a pair of “mate” paths (personal communica-
tions with G. Tavares).

could affect many edges, which would make reusing the
search trees more complicated.

Our scheme also has a disadvantage: with the symmetry
condition the lower bound on the function (represented by
the amount of pushed flow) never decreases, which is not
necessarily the case with the relaxed symmetry condition.
Order of processing nodes Experimentally, the order in
which nodes are probed affects both the final result and the
running time. The difference in results appears insignifi-
cant in practice (see [20]). However, optimizing the order
is quite important for reducing the number of probed nodes
(and, thus, the running time). We found that a particular
heuristic performs consistently better than random orders3.
Comparison of implementations Our tests on 3 ran-
dom 4-connected grid graphs showed that our implementa-
tion is 400-700 times faster than the implementation of [5]
(see [20]). It should be noted that there are many dif-
ferences between the implementations: maxflow algorithm
used, search tree recycling, symmetry vs. relaxed sym-
metry condition, integer vs. floating point capacities, data
structures for storing the graph, and ordering of processing
nodes. We believe that a major factor in the speed-up is
the maxflow algorithm in [7] together with reusing search
trees [13], whose use is simplified because of the relaxed
symmetry condition. We make our code publicly available;
we hope that this would have a significant practical impact
in vision.

3.2. QPBOI: Improving a Given Solution

So far we have discussed exact methods (QPBO and QP-
BOP) which give information about global minima of the
energy. We now turn to the problem of obtaining a good
approximate solution. Let us assume that we have a (com-
plete) input labelingx obtained via some method (e.g. ran-
dom or max-product BP). Our goal is to try to improve this
labeling using QPBO.

Let us pick an arbitrary subset of nodesS ⊂ V and fix
nodes inS to labels given byx. We denote the obtained en-
ergy asE[S ← x]. Now we can run QPBO for this energy
obtaining partial labelingy. Obviously,yp = xp for nodes
p ∈ S. Property [P1′] immediately implies the following

Proposition 2. Let z = FUSE(x,y), i.e. zp = yp if xp 6=
∅, andzp = xp otherwise. Ifz 6= x thenE(z) < E(x).

Thus, we can setx := z and repeat the procedure for a
different subsetS. The construction guarantees that the en-
ergy of labelingx does not increase. We call this technique
QPBOI, where ”I” stands for improve.

3We split the execution into iterations; one iteration consists of process-
ing nodes in a certain set. In a given iteration we record nodes which made
progress, i.e. whose processing resulted in changes to the energy. We then
erode this set of nodes by a fixed amount (d = 3), and in the next iteration
test only nodes in the eroded set. When the set becomes empty,we process
all nodes again.



To achieve efficiency, we propose to use a nested se-
quence of subsetsS according to some ordering of nodes
π : V → {1, . . . , |V|}. Then flow and search trees can be
reused as in [13]. One iteration of QPBOI is given below.

• Select an ordering of nodesπ.
• Initialization: Computey = QPBO(E), set x :=

FUSE(x,y), S := dom(y).
• For nodesp ∈ V do in the orderπ:

- If p /∈ S computey = QPBO(E[S ∪ {p} ← x]),
setx := FUSE(x,y), S := dom(y).

It is worth mentioning that the QPBOI procedure can be
generalized. If, for example,xp = xq in the current solution
x, then nodesp and q can be contracted. We informally
tested one particular version of such operations (see [20])
but found that it performed worse than fixing nodes.
Local minima of QPBOI In order to understand the ca-
pabilities of QPBOI we now analyze local minima of this
procedure.

Definition 3. Labelingx is calledstable(or QPBO-stable)
if no QPBOI operation can change it, i.e. for any subset
S ⊂ V there holdsyp = xp for p ∈ dom(y) wherey =
QPBO(E[S ← x]).

The theorem below exhibits a large class of functions for
which stable labelings are essentially global minima.

Theorem 4. Suppose energyE and labelingx satisfy at
least one of the following conditions: (a)E does not have
frustrated cycles. (b)θconst = 0, θp;i ≥ 0 for all indexes
(p; i), θpq;ij ∈ {0, C} for all indexes(pq; ij) whereC is a
positive constant, andE(x) < C.

Thenx is stable iff it is a global minimum ofE.

Note that since in case (b) there exists a solution whose cost
is smaller thanC, pairwise terms act as hard constraints;
for any solutiony with E(y) ≤ E(x) there must hold
θpq(yp, yq) = 0 for all edges(p, q). A proof of the theo-
rem is given in [20]; it relies on characterization [P3].

In general, however, there may be stable solutions which
are not optimal. A simple example is the energy

E(x, y, z) = 3|x− y|+ 3|y − z|+ 2xy + (1 − x)(1− y).

(1, 1, 1) is a stable solution, and(0, 0, 0) is the optimum.
Using theorem 4 it is not difficult to show the following

negative result (see [20]):

Theorem 5. Testing whether a labeling is stable is a co-NP
complete problem (under Turing reductions).

Thus, obtaining good orderings in the QPBOI procedure is
a difficult task. Nevertheless, experimental results in Sec-
tion 4 show that in many cases random permutations do de-
crease the energy, at least during the first few iterations.

3.3. Summary of Algorithms

There are several options for using the techniques de-
scribed in Sec. 3. An important question for QPBOI is how
to initialize it. Furthermore, QPBOP and QPBOI can be
combined. We settled on the following four methods:
QPBOP This technique is designed for obtaining partial
optimal solutions. We demonstrate that in many cases it
significantly outperforms QPBO, i.e. it produces fewer un-
labeled nodes.
BP+I First we run QPBO, then max-product BP (only for
unlabeled nodes) and finally improve the solution using QP-
BOI with random permutations of nodes.

We used a “sequential” schedule of BP as in [14]. Be-
fore starting BP, we reparameterized the energy so that
θpq;00 = θpq;11, andθpq;01 = θpq;10 for each edge(p, q).
(Note that it does not make sense to start with the reparame-
terization obtained after running QPBO, since such repara-
meterization is a fixed point of BP).

QPBOI is stopped when the energy has not improved for
5 iterations, and BP is run for a large number of iterations
(here1000) and the best result is taken.
P+BP+I First we run QPBOP obtaining new energyE′ and
mappingf : 2V

′

→ 2V . Then we apply BP+I for energy
E′; this gives solutiony ∈ 2V

′

. The output of P+BP+I is
the labelingx = f(y).
P+I In some scenarios an input labelingx for energyE
is available, and it is desirable that the method does not in-
crease it. (An example is the expansion move algorithm [8];
the input labeling(0, . . . , 0) corresponds to the current con-
figuration.) This can be achieved by “tracking” the input
solution during QPBOP; details are given in [20].

4. Experiments

In this section we will first investigate the performance of
the methods described above with respect to various MRF
settings. Then we consider six different applications with
non-submodular MRFs and compare them to a standard set
of MRF optimization methods. Finally we show the use-
fulness of our new P+I method within the standard alpha-
expansion procedure [8] to optimize a multi-labeled MRF.

4.1. Performance of QPBOP and QPBOI

In the following we measure the improvement of QP-
BOP over QPBO in terms of additionally labeled pixels. For
QPBOI the improvement, with respect to a given reference
solution, is measured in terms of lower energy. We are also
interested in the runtime overhead for both methods with re-
spect to QPBO. In general, the performance of QPBO (and
extended versions) strongly depends on three factors: num-
ber of non-submodular terms (ideally, the number of frus-
trated cycles), connectivity (i.e. average degree of a node),
and strength of unary versus pairwise terms. This strength



0 1 2 3
0

20

40

60

80

100

Unary Strength       (a)

pe
rc

. u
nl

ab
el

le
d

 

 

QPBO; 0.1% NS
QPBOP; 0.1% NS
QPBO; 50% NS
QPBOP; 50% NS

0 5 10 15 20
0

20

40

60

80

100

Unary Strength     (b)

pe
rc

. u
nl

ab
el

le
d

 

 

QPBO; 8con
QPBOP; 8con
QPBO; 24con
QPBOP; 24con

0.5 1 1.5 2 2.5 3
0

1

2

3

4

 

 

Unary Strength     (c)

T
im

e 
(s

ec
.)

QPBO
QPBOP
additional labeling
of QPBOP

83.2%

shown in
percentage

3%

0   0.05 1 168
52

67

82

97

Time (sec.)     (d)

E
n

er
g

y

 

 

P+BP+I
P+Rand+I
BP+I
Rand+I

Figure 2.Performance of QPBOP and QPBOI.As default we use a4-connected random graph in normal form of size100× 100 pixels
with 50% non-submodular terms and unary strength0.8. (a,b) compares QPBO and QPBOP with respect to varying non-submodularity
(NS) and connectivity (con). The percentage of labeled nodes decreases for: (i) a large number of non-submodular terms,(ii) high
connectivity, or (iii) a small unary strength. Note that theimprovement of QPBOP over QPBO differs between0% and90% of additionally
labeled nodes depending on the MRF settings. (c) compares the runtime of QPBO and QPBOP. As to be expected, the runtime increases
significantly when QPBOP labels considerably more nodes than QPBO. For practical use an important range is the unary strength between
1.5 and3, where QPBOP is able to compute (most of the time) the global minimum with only a small runtime overhead. (d) illustrates
energy versus runtime for P+BP+I, BP+I, and both methods with a random starting point (P+Rand+I, Rand+I), i.e. a reference solution
with random labeling. We see that using BP as the starting point consistently gives a better result. For this particular problem running
QPBOP first gives a large improvement in runtime, however, for certain applications the runtime overhead of QPBOP can be considerable
and therefore BP+I may sometimes be preferred in practice.

is computed as: meanp,iθp;i/meanp,q,i,jθpq;ij , after conver-
sion into normal form (similar to [4]). Fig. 2 shows several
variations of these factors.

4.2. Applications

In the following we will compare a standard set of op-
timization techniques [22] (ICM, BP, TRW-S, Graph Cut,
QPBO, and Simulated Annealing) with the new methods
on real world applications where binary non-submodular
MRFs occur. We are interested to see which method
achieves the best performance in a ”reasonable” time, i.e.
up to several seconds depending on the application. There-
fore, we do not plot runtime versus energy but simply report
the energy and runtime of the best result for each method.
Some notes on the competitive methods: Iterative Condi-
tional Modes (ICM) is run with a random traversal order
until convergence. Details of Belief Propagation (BP) are
described in Sec. 3.3. Since graph cut (GC) cannot handle
non-submodular terms we truncated them as in [21]. Sim-
ulated annealing (SA) is capable of producing high qual-
ity results with potentially long runtimes. We tweaked the
parameters of SA for eachindividual problem, to achieve
best results. Finally, TRW-S is guaranteed to give the same
answer as QPBO [16], therefore we omit it. (We verified
experimentally that the result for labeled nodes is identi-
cal. Furthermore, running TRW-S until convergence of the
lower bound is much slower than QPBO in practice.)

Table 1 lists the comparison of all methods for one or
two examples of each of the six applications.
Diagram Recognition Shape recognition in hand-drawn
diagrams is an application where the QPBOP method con-
siderably outperforms standard QPBO. We tested2700 dia-
gram problems, with an average of64 nodes and connectiv-
ity of 4.1. The MRF model is described in [23]. QPBOP
returned the global minimum forall problems, whereas

QPBOP (Global Min.) QPBO (37.1% unlabeled)

Figure 4.Diagram recognition. Given a raw unlabeled hand-
drawing, the task is to classify whether each pen stroke is part
of a container (red and bold) or a connector (blue). QPBOP finds
the global minimum and labels all strokes correctly (left),whereas
standard QPBO finds only part of the global solution and leaves
37.1% of the pen strokes unlabeled (dashed in the right diagram).

Figure 5.New View Synthesiswhere QPBO leaves5731 pixels
(3.9%) unlabeled (black), QPBOP finds the global minimum, and
graph cut (best of all competitors) has visually noticeableartifacts.

QPBO failed to label all nodes in97 cases, with between
5% and56% of nodes unlabeled. One of those challeng-
ing examples is shown in fig. 4. Another difficult example
is listed in table 1 where the new methods (P+BP+I and
BP+I) attain the lowest energy, and QPBOP confirms that
this is indeed the global minimum.

Super-resolution and new view synthesis For super-
resolution we used the approach of [11] where a node la-
bel corresponds to a patch from a reference patch dictio-
nary. The MRF pairwise terms encode the compatibility
of overlapping patches of neighboring nodes. The amount



Applications Sim. An. ICM GC BP BP+I P+BP+I QPBO QPBOP

Diagram recognition (4.8con) 0 (0.28s) 999 (0s) 119 (0s) 25 (0s) 0 (0s) 0 (0s) 56.3% (0s) 0% (0s)GM

New View Synthesis (8con) - (-s) 999 (0.2s) 2 (0.3s) 18 (0.6s) 0 (2.3s) 0 (1.2s) 3.9%(0.7s) 0% (1.4s)GM

Super-resolution (8con) 7 (52s) 68 (0.02s) 999 (0s) 0.03 (0.01s) 0.001 (0.06s) 0 (0.03s) 0.5% (0.016s) 0% (0.047s)GM

Image Segm. 9BC + 1 Fgd Pixel (4con)983 (50s) 999 (0.07s) 0 (28s) 28 (0.2s) 0 (31s) 0 (10.5s) 99.9% (0.08s) 0% (10.5s)GM

Image Segm. 9BC; 4RC (4con) 900 (50s) 999 (0.04s) 0 (14s) 24 (0.2s) 0 (3s) 0 (1.48s) 1% (1.46s) 0% (1.48s)GM

Texture restoration (15con) 15 (165s) 636 (0.26) 999 (0.05s) 19 (0.18s) 0.01 (2.4s) 0 (14s) 16.5% (1.4s) 0% (14s)GM

Deconvolution3 × 3 kernel (24con) 0 (0.4s) 14 (0s) 999 (0s) 5 (0.5s) 3.6 (1s) 0 (0.4s) 45% (0.01s) 43% (0.4s)

Deconvolution5 × 5 kernel (80con) 0 (1.3s) 6 (0.03s) 999 (0s) 71 (0.9s) 8.1 (31s) 8.1 (31s) 80% (0.1s) 80% (9s)

Table 1.Comparison table for different applications. Results are given as: Energy (runtime in seconds). For each problem the energies
are Scaled to the range of0 to 999. The last two columns show the percentage of unlabeled nodesfor QPBO and QPBOP, where GM
means global minimum. For segmentation BC means boundary constraint and RC region constraint. Also, for segmentation,graph cut was
run2

n (n = number BC) times with flow and search tree recycling to obtain the global minimum. Note, ICM and simulated annealing do
not perform well for applications with hard pairwise constraints (infinite links), such as segmentation and new view synthesis.

Figure 3.Image deconvolution.Given a blurry and noisy input image with32 gray-levels, the task is to reconstruct the ground truth. The
new P+I method within alpha-expansion improves results compared to graph cut and QPBO-based alpha expansion both in terms of energy
and visually. Note, for all alpha expansion based methods the order is crucial. Energies of P+I differed between26.3 and27.9 and runtime
between12 and31 sec, best result shown. Also, to improve runtime of P+I we initialized it with standard graph cut based alpha expansion.
BP (E=103), TRW (E=112) and ICM (E=54) perform poorly. Simulated annealing achieved a similar result to P+I in60 sec.

of non-submodularity can be high, e.g.45%. The unary
terms encode color consistency with the low-resolution im-
age. To make it suitable for our purpose we use two labels
and a5 × 5 patch size which correspond to an 8-connected
MRF (no overlap in the3 × 3 center as in [11]). For New
View Synthesis as introduced in [10] we may use the same
MRF structure, where labels are now color modes derived
from depth images (details omitted). We have tested several
examples and parameter settings for both applications and
may conclude that QPBO typically has a smaller number of
unlabeled nodes, e.g. up to3.9% (in total 5731 pixels) for
example in fig. 5. QPBOP is able to find the global min-
imum most of the time with very little extra runtime (see
examples in table 1).

Image segmentation An important issue for interactive
image segmentation is the combination of boundary con-
straints, as in intelligent scissors [17], and region con-
straints, as in [6]. Here we show that this is possible by
including a few non-submodular terms, see fig. 6. We have
tested our system for many images, where two examples are
listed in table 1. The conclusion is that QPBOP is able to
give the global minimum for all examples we have tested,
and outperforms QPBO considerably. The speed of QPBOP
is affected by the number of brush strokes, the more the
faster. All other methods perform very poorly for this appli-
cation. Note, an alternative approach to compute the global
minimum is to run standard graph cut2n times wheren is
the number of unconnected boundary constraints. For the
example in fig. 6 wheren = 9, running512 graph cuts with

Figure 6.Interactive Segmentation with Boundary and Region
Constraints. (a) Input image with superimposed user inputs: one
inside brush (red), one outside brush (blue) and9 unconnected
boundary constraints (green), bold for better visibility.(b) Zoom
into a boundary constraint: Pixels on each line (light and dark
green) are constrained to have the same labeling and one extra non-
submodular link (red) constrains both lines to have opposite labels.
For optimal speed QPBOP first probes pixels at the red links. Note
that alternative formulations, e.g. a ”fat” intelligent scissors brush,
with no specific start and endpoints, are possible and give similar
results. The segmentation result of the penguin using QPBO (c)
has26.7% of unlabeled pixels (red), where QPBOP (d) finds the
global minimum in about the same time as QPBO.

flow and tree recycling [13] and an optimized order took
in the best case16 sec (84 sec without recycling) which is
considerably more than the3.8 sec of QPBOP.

Parameter learning for binary texture restoration In
this application we restore a noisy test image of a texture,
based on an MRF model learned from a training image of
the same texture type. We used the same learning procedure
as described in [15] based on [9] with the only difference
that QPBO is replaced by P+BP+I. We have done this for



one Brodatz texture D103 (see [15]) where the test error (av-
eraged over20 examples) reduces from25.4 to 25.1 when
using P+BP+I instead of QPBO. One example is listed in
table 1 where P+BP+I achieved the global minimum. For
this application BP+I achieved nearly the same result with
a speed-up factor of6.

Image deconvolution In [19] image deconvolution was
formulated as a labeling problem with a pairwise MRF and
solved using graph cut based alpha-expansion. Given an
n×n convolution kernel the MRF connectivity is(2n−1)×
(2n− 1)− 1. Fig. 3 shows an example of reconstructing an
input image with32 different gray-scales and convolution
with a 3 × 3 kernel. To solve this32 label problem we use
alpha-expansion where the P+I method (Sec. 3.3) is used as
the binary optimizer. Rajet al. [18] also use QPBO-based
alpha expansion to reconstruct MR images, although with a
sparsely connected MRF.

We have also used the deconvolution MRF with only two
labels to reconstruct binary images. Table 1 gives two re-
sults with different convolution kernels. The main conclu-
sion is that for highly connected MRFs, e.g. connectivity
80, simulated annealing outperforms all other methods in-
cluding P+BP+I, and QPBOP performs similarly to QPBO.

5. Conclusions and Future Work

We presented an efficient implementation of the QPBOP
method in [5] which is 2-3 orders of magnitude faster than
the implementation of [5] on some vision related graphs.
We introduced a new technique called QPBOI for optimiz-
ing binary non-submodular MRFs, and proved theoretical
properties of this method. We have verified experimentally
that QPBOP finds the global minimum for many vision ap-
plications and that QPBOI nearly always achieves a lower
energy with respect to any given reference solution that we
have tested. Both techniques are efficient due to graph cut
with flow and search tree recycling.

We believe that the main impact of our work lies on
the application side, where we plan to further investigate
MRFs with high order cliques and multiple labels. Also,
most handcrafted MRFs in computer vision are submodu-
lar, which is not necessarily true for learned MRFs. Con-
sequently we believe that the demand for efficient, but gen-
eral, optimizers both during MRF learning and inference,
will increase considerably in the future. Finally, we will
make the code and energies publicly available, as a step to-
wards a benchmarking system for optimizing challenging,
non-submodular MRFs in computer vision, similar to [22].
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