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Abstract usually corresponds to pixels, amg € {0, 1} denotes the
label of nodep. It is well-known that if the function? is

Many computer vision applications rely on the efficient submodular, i.e. every pairwise tefy, satisfies

optimization of challenging, so-called non-submodular, b
nary pairwise MRFs. A promising graph cut based ap- 0g(0,0) + 0,0 (1,1) < 0,4(0,1) + 0,4(1,0),  (2)
proach for optimizing such MRFs known as “roof duality”

was recently introduced into computer vision. We study two then a global minimum of’ can be computed in polynomial
methods which extend this approach. First, we discuss antime as a minimuns-¢ cut in an appropriately constructed
efficient implementation of the “probing” technique intro-  graph (“submodular graph cuts”). Submodular functions
duced recently by Borost al.[5]. It simplifies the MRF  are very important, for example, for the image segmentation
while preserving the glObal Optimum. Our code is 400-700 pr0b|em (See e.g. [6]) In many vision app"cationsy how-
faster on some graphs than the implementation of [5]. Sec-ever, condition (2) is not satisfied. We focus on the problem
ond, we present a new technique which takes an arbitrary of minimizing non-submodular functions, which is a very
input labeling and tries to improve its energy. We give theo- challenging task (in general, NP-hard).

retical characterizations of local minima of this procedur A promising approach for this problem callembf dual-

We applied both techniques to many applications, in- ity was proposed in [12] (see a review in [15]). It produces
cluding image segmentation, new view synthesis, superpartof an optimal solution. Borost al. [3] give an efficient
resolution, diagram recognition, parameter learning,tex algorithm for computing a roof dual. It can be viewed as a
ture restoration, and image deconvolution. For several ap- generalization of the standard graph cut algorithm used in
plications we see that we are able to find the global mini- yisjon: for submodular functions the two methods give the
mum very efficiently, and considerably outperform the orig- same answer and have exactly the same running time, ex-
inal roof duality approach. In comparison to existing tech- cept for a linear time overhead. We will refer to this method
niques, such as graph cut, TRW, BP, ICM, and simulated 35 theQPBOalgorithm, which stands fajuadratic pseudo-

annealing, we nearly always find a lower energy. boolean optimization this is what the minimization prob-
lem (1) is called in [12, 3]. Recently it was successfully ap-
1. Introduction plied to vision applications such as MR reconstruction [18]

. . and texture restoration [15].
Most early vision problems can be formulated in terms Our contributions  In some cases the roof duality ap-

of Markov random fields (MRFs). Algorithms for MRF in- S

ference therefore are of E‘undan)1entgl importance for Com_proach does not Wor_k very well, i.e. I leaves many nod_es
- _ . unlabeled. We investigate two extensions of the roof dyalit

puter vision. Th? MAP'MRF approach (Computing maxi- approach. The first one is the “probing” method introduced

mum a posteriori configurations in an MRF) has proven to recently in [5]. This is an exact technique: it simplifies the

be extremel_y successful for many vision a:jpphcgt_lons such energy by contracting and fixing nodes while preserving the
as ster_eo, image segmenta_t|on, Image denoising, S‘uF’erg';Iobal optimum. We describe an efficient implementation
resolution, new view synthesis and others. We refer to [22]

. T . o and observe that our code is 400-700 times faster than the
fqr an overview of MRF optimization technlques_m vision. ¢ giare of [5] on several-connected grid graphs (such
Binary MRFs In this paper we focus on a special class of 445 are common in vision.) Our experiments show that
MRFs. Namely, we consider the problem of minimizing an his makes the algorithm practical for vision applications
energy function of the form Second, we develop a new approximate technique: it

_ takes an input solution and tries to improve its energy. The

B(x) = feonst + Z Op(p) + Z Opa(Tp, ) - (1) energy is guaranteed not to increase, and experimentally of
ten decreases. Both techniques can be combined; in some
HereG = (V, &) is an undirected graph. The set of nodles  cases such combination outperformed other methods that

peEV (p,q)€EE



we tested (simulated annealing, ICM, max-product belief we can subtract a constant from componehis;; for all
propagation, graph cut, and TRW). i € {0,1} and add the same constand}g;.

Last but not least, we show the importance of the roof Normal form We will say that the vectof is in anormal
duality approach and its extensions for many vision appli- formif it satisfies the following:
cations, such as image segmentation, diagram recognition, )
new view synthesis, and image deconvolution. Note, exper- (a)m%n{epﬂv 0y:1} = 0 for all nodesp. _
iments in [5] were outside computer vision. (b) min{6pq.05, Opg;1;} =0 forall (p, ¢) €€ and;j € {0, 1}.
Related work There is an extensive literature devoted to normal form implies the following
minimizing energy (1). Exact methods for this problem Bogo1, Opairo > 0 if €dge(p, q) is submodular; antq.o; =
are usually branch-and-bound style methods, with differen , " = "5 o~ g > 0/if ( ; dul:

: o pg;10 = U, Upg;005 Upg;11 = p,q) is supermodular (see

techniques for obtaining a lower bound. A large number of fig. 1 in [15]).
heuristic ideas have also been applied to this problem, e'g'AIgorithm The first step of the QPBO algorithm is to repa-
tabu search, scatter search, simulated annealing, emaluti

. . rameterize vectat into a normal form. This can be done in
ary algorithms. We refer to [1, 4] and references therein for linear time (see e.g. [15]). Then a directed weighted graph
an overview of different exact and approximate methods.

G = (V, A) is constructed. For each noges V, two nodes

2. Optimizing Binary MRFs: Roof duality p,p are added td’. (They correspond to variablg, and its

. . . . . negationz, = 1 — z,, respectively). In addition, there are
In this section we give an overview of the roof duality ap- . . .
oo . . . two special nodes - the sourg@nd the sink which corre-

proach for optimizing binary MRFs introduced in [12]. The ~
: ; . . : spond to label andl. Thus,V = {p,p | p € V} U {s,t}.
idea is to solve a particular linear programming (LP) relax- .

) . . For each non-zero elemeéy, (except forf..,st) two di-
ation of the energy where integer constrainfs< {0, 1} rected arcs are added to the graph with weightdetails
are replaced with linear constraints € [0, 1]. It can be grap

. . . o can be foundin [2, 15].
shown that this LP has a half-integer optimal solutiome. : L . .
zp, € {0,1, %} for every nodep. It is convenient to define Finally, a minimums-¢ cut (S, T') in G is computed by

. : . . computing a maximum flow frons to ¢. This cut gives
the correspondingartial labelingx of the integer problem an optimal solution to the LP relaxation and correspond-
with z,, € {0,1, @} where valuez means that the node is P P

sunlabeled”. ing partial labelingk as follows: (i) ifp € S,p € T then

The LP relaxation above can be solved in several dif- 7 — 0; (i it p € T,p € Sthenz, = 1 (iii) otherwise,

ferent ways. The algorithm in [3] is perhaps the most ef- &7 — 2. Itis worth noting that the maximum flow i@ de- .
ficient. We review this method, which we call QPBO, in fines a reparameterization of the energy. There are certain

Secti . . . . __relations between this reparameterization and partiaiab
ection 2.1. As we mentioned, it produces a partial labeling . .
. : L . . ing x (complementary slacknesenditions - see e.g. [20]).
x. Properties of this labeling (in particularersistencyor . o L .
partial optimality) are discussed in Section 2.2, Choosing a minimum cut _O_ne technical issue is that
graphG may have several minimum cutS, 7'). They may
2.1. The QPBO Algorithm correspond to different partial labelingsvith different sets
of labeled nodes. In general, there exist “extreme” cuts
We describe the algorithm of [3] using the notion of (gmin 7min) gnd (gmax Tmax) gych that for any other
reparameterization minimum cut(S, T') there holdglom(x™") C dom(x) C
Reparameterization Let us introduce the following no-  dom(x™*) wherex™* | x™#* andx are the labelings de-
tation. The energy of eq. (1) is specified by the constantfined by these cuts antbm(x) denotes the set of labeled
termfconst, Unary termsl, (i) and pairwise term8, (i, j) nodes inx (“domain of x”). Details of how to compute
(i,7 € {0,1}). It will be convenient to denote the last two these cuts can be found in [2, 15, 20]. Note that labeling
terms as,.; andd,,.;;, respectively. We can concatenate x™* is unique, butx™** in general may depend on the
all these values into a single vectbe= {0, |« € T} where cut.
the index set i€ = {const} U {(p;4)} U {(pg;ij)}. Note
that (pq;ij) = (qp; ji), SO0,.;; andf,,.;; are the same  2.2. Properties of QPBO
element. We will use the notatidh, to denote a vector of We now review properties of partial labelingproduced

S|z\e/2 anc;;p_q to clilegote a vector Of. size 4'f g ifth by the QPBO method ([12], see also [2]). Perhaps the most
ectord’ is called aeparameterizatiof vectord if the important one is the following:

energy functiong’” andE that they define are the same, i.e.

E'(x) = E(x) for all labelingsx. As a particular example, [P1] (Weak autarky) ety be an arbitrary complete label-
we can subtract some constant from vecttysr ¢,, and ing, and letz=FUSHYy, x) be the “fusion” ofy andx:
add the same constant #,.s;. Another possible trans- zp = xp if p € dom(x), andz, = y, otherwise. Then
formation involves edgép, ¢) € £ and labelj € {0,1}: E(z) < E(y).

pq;00 — epq;ll =0,



If we takey to be a global minimum, then we see thkais
a part of some optimal solution:

[P2] (Weak persistencyor partial optimality)There exists a
global minimumx* of energy(1) such thatz;, = x,, for
all labeled nodep € dom(x).

Strong persistency Properties P1] and [P2] are valid
for any partial labelingc produced by QPBO. If we take
x = x™" | then these properties can be strengthened:

[P17 (Strong autarky) ety be a complete labeling, and let
z=FUSHy x). If z # y thenE(z) < E(y).

[P2] (Strong persistency) Anglobal minimumx* of en-
ergy (1) satisfiese;, = =, for all nodesp € dom(x).

Which nodes are labeled? Clearly, the usefulness of the

0?7?2772 000072 04l017?
pqr pqr pqgr
Figure 1.Basic idea of QPBOPLeft: QPBO labeling for the cur-
rent energy, '?" means unlabeled. Middle & right: labeliradter
fixing nodep (red). We can conclude thaf, = 0 andz; = z
for any global minimumx™. Therefore, node can be fixed to O,
and node® andr can be contracted.

We will use an operation called “fixing a node”. Let=
QPBQ(E), and consider unlabeled nogewith z, = &
and given labet € {0,1}. Define energye’ = Elp « i]
as follows: E'(y) = E(y) + E,(y,) WwhereE,, is a “hard
constraint” term withE,,(i) = 0, E,(1 — i) = C, andC,
is a sufficiently large constant. If we run QPBO for energy
E’ then we obtain a new partial labeling in which more
nodes may have become labeled. We refer to this behav-

algorithm depends on how many nodes are labeled. In geniour as “spreading”. It is easy to show the “monotonicity”

eral, we cannot expect that the method will label all nodes
since minimizing energy (1) is an NP-hard problem. In

property, i.e. thatr;, = z, for ¢ € dom(x) andx), = i
(see [20]).

some special cases, however, the method is guaranteed to |nstead of adding tern,,, it is also possible to remove

label all nodes [12]:

[P3] If the energy does not have any frustrated cycles then
labelingsx™#* produced by QPBO are complete, i.e.
dom(x™a*) = V.

(A cycle is calledfrustratedif it contains an odd number
of non-submodular terms). The condition of this property
holds, in particular, for submodular functions.

The last property follows from the QPBO construction:

[P4] The algorithm is invariant with respect to “flipping”
a subset of node& C V, i.e. swapping the mean-
ing of 0 and 1 for pixelgp € U. (This flipping trans-
forms submodular terms betwekrand V\/ into non-
submodular, and vice versa).

3. Extended Roof Duality

The roof duality works quite well in “simple” cases (e.qg.
when the number of non-submodular terms is small), but

in more difficult cases it may leave many nodes unassignedS

(Sec. 4). In this paper we study two extensions of the roof

duality approach and show that they outperform the basic

term 0,, along with all incident pairwise termg,, while
modifying unary termd#),. Note that adding the hard con-
straint term and removing nogeare equivalent (see [20]).

3.1. QPBOP: Preserving Global Optimality

The basic idea of probing [5] is illustrated in Fig. 1. Let
x = QPBQ(E), and consider unlabeled noge Let us
fix p to 0 and to 1 and run QPBO in each case. We will
obtain two partial labelingg’ = QPBQ(E[p « 0]) and
x! = QPBOE[p «+ 1]). LetU be the set

U= [dom(xo) N dom (x* )] — [dom(x) U {p}].
By the strong persistency property, we can draw the follow-
ing information about global minim=* of energyF:
= Vie{0,1},q €U.

Thus, nodes i/ can be excluded from the energy without
affecting the global minimum (or minima). Indeed, con-
ider nodey € Y. Two cases are possible:

* ¢ * 1
.I'p—l xq—xq

i) ) =z} = j. Thena} = j for all global minimax*,
thereforer, can be fixed tg.

algorithm for many vision applications. The first exten- i) :62 £ xé This means that either (3‘2 = o,x; =1,or

sion is the “probing” method introduced in [5]. We call
it QPBOP where "P” stands for “probing”. Its aim is to
find the global optimum for nodes which QPBO failed to

label. Sec. 3.1 reviews this method and also describes an

efficient implementation. Then in Sec. 3.2 we propose a
new algorithm which we call QPBOI, where "I” stands for
“improve”. Its aim is to efficiently improve a given refer-
ence solution. Unless noted otherwise, we will assume for
simplicity that QPBO produces the (unique) strongly per-
sistent solutionk = x™*, and write it asx = QPBQ(E).
Note, in practicec™™ andx™* are often the same [20].

(b) zy = 1,z = 0. In case (a) we know that; = z

for all global minimax*, therefore we can “contracy)

andg. In case (b) there holds; = 1 — z, for all global
minimax, therefore we can “flip” variable, (change
the meaning of 0 and 1) and then contraeindg.

For details of the contract operation see [20]. In this op-
eration edgesgq, r) are replaced with edgdsp, ), self-
loops are deleted, and parallel edges are merged.

If seti/ is nonempty, then the operations above will mod-
ify the energy reducing the number of nodes; the new set



of nodes is¥ — /. Then we run QPBO again for the new could affect many edges, which would make reusing the

energy obtaining a new partial labeling. A “monotonic-
ity” property holds, i.ex; = z, for ¢ € dom(x) (see [20]).
Thus, nodes inlom(x) — U are labeled ik’ (and in fact
other nodes may become labeled as well).

search trees more complicated.

Our scheme also has a disadvantage: with the symmetry
condition the lower bound on the function (represented by
the amount of pushed flow) never decreases, which is not

We can repeat these operations for other nodes of thenecessarily the case with the relaxed symmetry condition.

new energy. In the end we obtain a new enefjydefined
on a graph()’, £’) and functionf : 2" — 2¥ which maps
configurationsy of energyE’ to configurationsx of the
original energy.

Proposition 1. (a) Functionf gives a one-to-one mapping
between the sets of optimal solutions of energieand £.

(b) For any labelingy € 2" there holdsE(f(y))=FE'(y).

Adding directed constraints It often happens that
dom(x?) # dom(x!). Then it is possible to add directed
constraints of the fornfz, = i) = (z} = ). More

details and algorithm’s summary can be found in [5, 20].

3.1.1 Efficient Implementation

Order of processing nodes Experimentally, the order in
which nodes are probed affects both the final result and the
running time. The difference in results appears insignifi-
cant in practice (see [20]). However, optimizing the order
is quite important for reducing the number of probed nodes
(and, thus, the running time). We found that a particular
heuristic performs consistently better than random ofders
Comparison of implementations Our tests on 3 ran-
dom 4-connected grid graphs showed that our implementa-
tion is 400-700 times faster than the implementation of [5]
(see [20]). It should be noted that there are many dif-
ferences between the implementations: maxflow algorithm
used, search tree recycling, symmetry vs. relaxed sym-
metry condition, integer vs. floating point capacities,adat
structures for storing the graph, and ordering of procgssin

We now describe an efficient implementation of QPBOP. hodes. We believe that a major factor in the speed-up is
As noted in [5], it is important to reuse previous calcula- the maxflow algorithm in [7] together with reusing search
tions when the graph is updated (e.g. when the nodes ardrees [13], whose use is simplified because of the relaxed
contracted). A correct implementation of the update op- Symmetry condition. We make our code publicly available;
erations, however, requires some care: the graph and flowVe _h(_)pe that this would have a significant practical impact
constructed by the QPBO method have a certain property!n Vision.

which must be preserved. Boresal. [5] propose to main-

tain thesymmetrycondition which says that each arc holds
the same flow as its “mate”. This is achieved by modify-

ing the maxflow algorithrh We propose to maintain the

3.2. QPBOI: Improving a Given Solution

So far we have discussed exact methods (QPBO and QP-
BOP) which give information about global minima of the

“relaxed symmetry condition” instead (see [20]). One ad- energy. We now turn to the problem of obtaining a good
vantage of this is that the algorithm can work with integer approximate solution. Let us assume that we have a (com-
capacities, whereas maintaining the symmetry condition re plete) input labeling obtained via some method (e.g. ran-
quires floating point numbers (even if the original costs are dom or max-product BP). Our goal is to try to improve this

integers).

We used the maxflow algorithm in [7], and reused flow

labeling using QPBO.
Let us pick an arbitrary subset of nod&sc V and fix

and search trees as described in [13]. We modified the codenodes inS to labels given byk. We denote the obtained en-

so that it maintains a list of visited nodes; thus,/g&tan be

ergy asE[S — x]. Now we can run QPBO for this energy

traversed without going through the entire graph. Using the obtaining partial labeling.. Obviously,y,, = x,, for nodes
relaxedsymmetry condition makes the update operation for p € S. Property P1’] immediately implies the following

nodesp, ¢ quite fast: it involves only these nodes. In con-
trast, maintaining the symmetry condition using techngque
in [7, 13] appears more difficult. After every maxflow com-
putation we would need to go through all edges that have

Proposition 2. Letz = FUSEx,y), i.e.z, = y, if x, #
@, andz, = z, otherwise. Iz # x thenE(z) < E(x).

Thus, we can set := z and repeat the procedure for a

been accessed and restore the symmetry property. Thiglifferent subses. The construction guarantees that the en-

IFunction f can be described via two mappings: V — V' U {0},
o :V — {0,1}. For configurationy € 2V’ labelingx = f(y) is
defined as follows: ik, = 0 for nodep € V thenz, = o}, otherwise
zp = (yq + op) mod 2 whereq = o,. Note that mappingy defines a
partitioning of the sev.

2The implementation of [5] is based on Dinic algorithm, butrgvaug-
mentation is performed on a pair of “mate” paths (personatrooinica-
tions with G. Tavares).

ergy of labelingx does not increase. We call this technique
QPBOI, where "I" stands for improve.

3We split the execution into iterations; one iteration cetssof process-
ing nodes in a certain set. In a given iteration we record s@d@ch made
progress, i.e. whose processing resulted in changes tméngye We then
erode this set of nodes by a fixed amouht£ 3), and in the next iteration
test only nodes in the eroded set. When the set becomes emegtypcess
all nodes again.



To achieve efficiency, we propose to use a nested se-3.3. Summary of Algorithms
guence of subsetS according to some ordering of nodes
m:V —{1,...,|V|}. Then flow and search trees can be
reused as in [13]. One iteration of QPBOI is given below.

There are several options for using the techniques de-
scribed in Sec. 3. An important question for QPBOI is how
to initialize it. Furthermore, QPBOP and QPBOI can be

e Select an ordering of nodes combined. We settled on the following four methods:

e Initialization: Computey = QPBQE), setx := QPBOP This technique is designed for obtaining partial
FUSEx,y), S := dom(y). optimal solutions. We demonstrate that in many cases it

e For nodew € V do in the orderr: significantly outperforms QPBO, i.e. it produces fewer un-
- If p ¢ S computey = QPBOE[S U {p} « x]), labeled nodes.

o ,7 BP+l First we run QPBO, then max-product BP (only for
setx := FUSHx,y), & = dom(y). unlabeled nodes) and finally improve the solution using QP-
It is worth mentioning that the QPBOI procedure can be BOI with random permutations of nhodes.
generalized. If, for example,, = xz, in the current solution We used a “sequential” schedule of BP as in [14]. Be-
x, then node® andq can be contracted. We informally fore starting BP, we reparameterized the energy so that
tested one particular version of such operations (see [20])0p4.00 = Opg:11, aNAOpg.01 = Opq:10 fOr each edgép, q).
but found that it performed worse than fixing nodes. (Note that it does not make sense to start with the reparame-
Local minima of QPBOI In order to understand the ca- terization obtained after running QPBO, since such repara-
pabilities of QPBOI we now analyze local minima of this meterization is a fixed point of BP).
procedure. QPBOI is stopped when the energy has not improved for
5 iterations, and BP is run for a large number of iterations
(here1000) and the best result is taken.
P+BP+| Firstwe run QPBOP obtaining new enetf{yand
mappingf : 2¥° — 2Y. Then we apply BP+l for energy
E’; this gives solutiony € 2¥". The output of P+BP+l is
The theorem below exhibits a large class of functions for the labelingx = f(y).

which stable labelings are essentially global minima. P+l In some scenarios an input labelisgfor energy
is available, and it is desirable that the method does not in-
crease it. (An example is the expansion move algorithm [8];
the input labelind0, . . ., 0) corresponds to the current con-
figuration.) This can be achieved by “tracking” the input
solution during QPBOP; details are given in [20].

Definition 3. Labelingx is calledstable(or QPBO-stable

if no QPBOI operation can change it, i.e. for any subset
S C V there holdsy, = z, for p € dom(y) wherey =
QPBQE[S < x]).

Theorem 4. Suppose energ¥ and labelingx satisfy at
least one of the following conditions: (&) does not have
frustrated cycles. (bYconst = 0, 6p;; > 0 for all indexes
(p;4), Opqii; € {0,C} for all indexes(pg;ij) whereC'is a

positive constant, anfl(x) < C.

Thenx is stable iff it is a global minimum of’. 4. Experiments

Note that since in case (b) there exists a solution whose cost
is smaller thanC', pairwise terms act as hard constraints
for any solutiony with E(y) < E(x) there must hold
Opq(yp,yq) = 0 for all edges(p, ¢). A proof of the theo-
rem is given in [20]; it relies on characterizatioRd].

In general, however, there may be stable solutions which
are not optimal. A simple example is the energy

] In this section we will first investigate the performance of

' the methods described above with respect to various MRF
settings. Then we consider six different applications with
non-submodular MRFs and compare them to a standard set
of MRF optimization methods. Finally we show the use-
fulness of our new P+l method within the standard alpha-
expansion procedure [8] to optimize a multi-labeled MRF.

E(z,y,2) =3z —y|+3ly —2[+2zy + (1 —2)(1 =y)- 4.1 performance of QPBOP and QPBOI

(1,1,1) is a stable solution, an@, 0, 0) is the optimum. In the following we measure the improvement of QP-
Using theorem 4 it is not difficult to show the following  BOP over QPBO in terms of additionally labeled pixels. For
negative result (see [20]): QPBOI the improvement, with respect to a given reference

solution, is measured in terms of lower energy. We are also
interested in the runtime overhead for both methods with re-
spect to QPBO. In general, the performance of QPBO (and
Thus, obtaining good orderings in the QPBOI procedure is extended versions) strongly depends on three factors: num-
a difficult task. Nevertheless, experimental results in-Sec ber of non-submodular terms (ideally, the number of frus-
tion 4 show that in many cases random permutations do de-rated cycles), connectivity (i.e. average degree of a jode
crease the energy, at least during the first few iterations.  and strength of unary versus pairwise terms. This strength

Theorem 5. Testing whether a labeling is stable is a co-NP
complete problem (under Turing reductions).
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Figure 2.Performance of QPBOP and QPBOI.As default we use da-connected random graph in normal form of sl#® x 100 pixels
with 50% non-submodular terms and unary stren@th (a,b) compares QPBO and QPBOP with respect to varying nbmsdularity
(NS) and connectivity (con). The percentage of labeled satkrreases for: (i) a large number of non-submodular tefifdigh
connectivity, or (iii) a small unary strength. Note that thgprovement of QPBOP over QPBO differs betw&éh and90% of additionally
labeled nodes depending on the MRF settings. (c) compagemithime of QPBO and QPBOP. As to be expected, the runtinmmeases
significantly when QPBOP labels considerably more nodes @RBO. For practical use an important range is the unarggtineoetween
1.5 and3, where QPBOP is able to compute (most of the time) the glotiainmum with only a small runtime overhead. (d) illustrates
energy versus runtime for P+BP+l, BP+l, and both methodh witandom starting point (P+Rand+|, Rand+l), i.e. a refegesolution
with random labeling. We see that using BP as the startingt mainsistently gives a better result. For this particulabfem running
QPBOP first gives a large improvement in runtime, howevercéstain applications the runtime overhead of QPBOP carohsiderable
and therefore BP+I may sometimes be preferred in practice.

is computed as: megpd,,.;/mean ,; j0,q:i;, after conver- OPBOP (Global Min.) OPBO3(7.1% unlabeled)

sion into normal form (similar to [4]). Fig. 2 shows seve
variations of these factors. : ;
4.2. Applications = = ;
In the following we will compare a standard set of ¢ —— S
timization techniques [22] (ICM, BP, TRW-S, Graph C

QPBO, and Simulated Annealing) with the new meth

on real world applications where binary non-submod

MRFs occur. We are interested to see which met...uFigure 4.Diagram recognition. Given a raw unlabeled hand-
achieves the best performance in a "reasonable” time, i.e.drawing, the task is to classify whether each pen stroke iis pa
up to several seconds depending on the application. Thereof & container (red and bold) or a connector (blue). QPBOFfind
fore, we do not plot runtime versus energy but simply report the global minimum and labels all strokes correctly _(Ie;(ﬁ)l,ereas
the energy and runtime of the best result for each method Standard QPBO finds only part of the global solution and Isave
Some notes on the competitive methods: Iterative Condi-37'1% of the pen strokes unlabeled (dashed in the right diagram).

tional Modes (ICM) is run with a random traversal order ¥ i . .l
non-submodular terms we truncated them as in [21]. Sim-

parameters of SA for eadndividual problem, to achieve ooy |1\ eleq black), QPBOP finds the global minimum, and
experimentally that the result for labeled nodes is identi- QPBO failed to label all nodes 07 cases, with between

until convergence. Details of Belief Propagation (BP) are
ulated annealing (SA) is capable of producing high qual-
m) QPBO (0.7s) QPBOP (1.4s) Graph Cut (0.3s)
best results. Finally, TRW-S is guaranteed to give the same
cal. Furthermore, running TRW-S until convergence of the 5% and56% of nodes unlabeled. One of those challeng-

described in Sec. 3.3. Since graph cut (GC) cannot handle
ity results with potentially long runtimes. We tweaked the _ : : ;
Figure 5.New View Synthesisvhere QPBO leaves731 pixels
o o graph cut (best of all competitors) has visually noticealbt#acts.
answer as QPBO [16], therefore we omit it. (We verified

lower bound is much slower than QPBO in practice.) @ng_exam_ples is shown in fig. 4. Another difficult example
Table 1 lists the comparison of all methods for one or is listed in table 1 where the new methods (P+BP+l and
two examples of each of the six applications. BP+l) attain the lowest energy, and QPBOP confirms that

Diagram Recognition Shape recognition in hand-drawn this is indeed the global minimum.

diagrams is an application where the QPBOP method con-Super-resolution and new view synthesis For super-
siderably outperforms standard QPBO. We te&t&ib dia- resolution we used the approach of [11] where a node la-
gram problems, with an average®f nodes and connectiv-  bel corresponds to a patch from a reference patch dictio-
ity of 4.1. The MRF model is described in [23]. QPBOP nary. The MRF pairwise terms encode the compatibility
returned the global minimum foall problems, whereas of overlapping patches of neighboring nodes. The amount



Applications [sim. An.| ICM GC BP BP+I [ P+BP+I[| QPBO | QPBOP |

Diagram recognition (4.8con) 0(0.28s)| 999 (0s) | 119 (0s) 25 (0s) 0 (0s) 0 (0s) 56.3% (0s) 0% (0s)GM
New View Synthesis (8con) -(-s) | 999 (0.2s)| 2(0.3s) 18 (0.6s) 0(2.3s) 0(1.2s)|| 3.9%(0.7s) | 0% (1.4s)GM

Super-resolution (8con) 7 (52s) | 68(0.02s)| 999 (0s) |0.03 (0.01s) 0.001 (0.06s) 0 (0.03s)(| 0.5% (0.016s) 0% (0.047sGM

Image Segm. 9BC + 1 Fgd Pixel (4car§83 (50s) 999 (0.07s) 0 (28s) 28 (0.2s) 0(31s) |0(10.5s)|99.9% (0.08s) 0% (10.5s)GM
Image Segm. 9BC; 4RC (4con) | 900 (50s) 999 (0.04s) 0 (14s) 24 (0.2s) 0(3s) 0(1.48s)|| 1% (1.46s) | 0% (1.48s)GM
Texture restoration (15con) 15 (165s) 636 (0.26)| 999 (0.05s) 19 (0.18s)| 0.01(2.4s)| 0 (14s) || 16.5% (1.4s)| 0% (14s)GM
Deconvolution3 x 3 kernel (24con) | 0 (0.4s) | 14 (0s) 999 (0s) 5(0.5s) 3.6 (1s) 0(0.4s) || 45% (0.01s) 43% (0.4s)

Deconvolution5 x 5 kernel (80con) | 0(1.3s) | 6(0.03s) | 999 (0s) | 71 (0.9s) 8.1 (31s) |8.1(31s)|| 80% (0.1s) 80% (9s)

Table 1.Comparison table for different applications. Results are given as: Energy (runtime in seconds). For eatigm the energies
are Scaled to the range 0fto 999. The last two columns show the percentage of unlabeled nod«€3PBO and QPBOP, where GM
means global minimum. For segmentation BC means boundastrednt and RC region constraint. Also, for segmentatjoaph cut was
run2™ (n = number BC) times with flow and search tree recycling taiwbthe global minimum. Note, ICM and simulated annealing do
not perform well for applications with hard pairwise coastts (infinite links), such as segmentation and new viewtrsagis.

Ground Truth Input Image o-exp GC; E=41 {1sec) o-exp QPBO; E=30 {1.3sec) o-exp P+l; E=26.3 (12sec)
Figure 3.Image deconvolution.Given a blurry and noisy input image wig2 gray-levels, the task is to reconstruct the ground trutlie Th
new P+l method within alpha-expansion improves resultspamed to graph cut and QPBO-based alpha expansion bothmie térenergy
and visually. Note, for all alpha expansion based methaglstter is crucial. Energies of P+ differed betwe&érB and27.9 and runtime
betweenl2 and31 sec, best result shown. Also, to improve runtime of P+I wedlzed it with standard graph cut based alpha expansion.
BP (E=103), TRW (E=112) and ICM (E=54) perform poorly. Simulated annealing achieved a similauiteto P+1in60 sec.

of non-submodularity can be high, e4%. The unary
terms encode color consistency with the low-resolution im- |
age. To make it suitable for our purpose we use two labels;
and a5 x 5 patch size which correspond to an 8-connected
MRF (no overlap in thed x 3 center as in [11]). For New
View Synthesis as introduced in [10] we may use the same
MRF structure, where labels are now color modes derived
from depth images (details omitted). We have tested severe

(c) QPBO (3.81s)
examples and parameter settings for both applications andrigure 6.Interactive Segmentation with Boundary and Region
may conclude that QPBO typically has a smaller number of Constraints. (a) Input image with superimposed user inputs: one

(d) QPBOP (3.84s)

(a

(b)

inside brush (red), one outside brush (blue) andnconnected
boundary constraints (green), bold for better visibilifg) Zoom
into a boundary constraint: Pixels on each line (light anckda
green) are constrained to have the same labeling and omenextr
submodular link (red) constrains both lines to have oppdatels.
For optimal speed QPBOP first probes pixels at the red linkée N
that alternative formulations, e.g. a "fat” intelligenissors brush,

unlabeled nodes, e.g. up 3% (in total 5731 pixels) for
example in fig. 5. QPBOP is able to find the global min-
imum most of the time with very little extra runtime (see
examples in table 1).

Image segmentation An important issue for interactive
image segmentation is the combination of boundary CON- jith no specific start and endpoints, are possible and giméasi

straints, as in intelligent scissors [17], and region con- requits. The segmentation result of the penguin using QRBO (
straints, as in [6]. Here we show that this is possible by has26.7% of unlabeled pixels (red), where QPBOP (d) finds the
including a few non-submodular terms, see fig. 6. We have global minimum in about the same time as QPBO.

tested our system for many images, where two examples are ) o

listed in table 1. The conclusion is that QPBOP is able to flow and tree recycling [13] and an optimized order took
give the global minimum for all examples we have tested, in the best casét sec g4 sec without recycling) which is

and outperforms QPBO considerably. The speed of QpBOPCONnsiderably more than tties sec of QPBOP.

is affected by the number of brush strokes, the more theParameter learning for binary texture restoration In
faster. All other methods perform very poorly for this appli  this application we restore a noisy test image of a texture,
cation. Note, an alternative approach to compute the globalbased on an MRF model learned from a training image of
minimum is to run standard graph it times wheren is the same texture type. We used the same learning procedure
the number of unconnected boundary constraints. For theas described in [15] based on [9] with the only difference
examplein fig. 6 where = 9, running512 graph cuts with  that QPBO is replaced by P+BP+l. We have done this for
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