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Abstract

In many microscopy applications the images may contain both regions of low and high cell
density corresponding to different tissues or colonies at different stages of growth. This poses a
challenge to most previously developed automated cell detection and counting methods, which
are designed to handle either the low-density scenario (through cell detection) or the high-density
scenario (through density estimation or texture analysis).

The objective of this work is to detect all the instances of an object of interest in microscopy
images. The instances may be partially overlapping and clustered. To this end we introduce a
tree-structured discrete graphical model that is used to select and label a set of non-overlapping
regions in the image by a global optimization of a classification score. Each region is labelled with
the number of instances it contains – for example regions can be selected that contain two or three
object instances, by defining separate classes for tuples of objects in the detection process.

We show that this formulation can be learned within the structured output SVM framework,
and that the inference in such a model can be accomplished using dynamic programming on a
tree structured region graph. Furthermore, the learning only requires weak annotations – a dot on
each instance. The candidate regions for the selection are obtained as extremal region of a surface
computed from the microscopy image, and we show that the performance of the model can be
improved by considering a proxy problem for learning the surface that allows better selection of
the extremal regions. Furthermore, we consider a number of variations for the loss function used
in the structured output learning.

The model is applied and evaluated over six quite disparate data sets of images covering:
fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and
histopathology images, and is shown to exceed the state of the art in performance.
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Figure 1: Given an input image (a) our model considers a pool of nested regions (b) and accomplishes detection by
picking a non-overlapping subset of regions (c), where each region is assigned a label corresponding to the estimated
number of objects (green=1, blue=2, purple=3). Such solution can be further refined to estimate individual object
locations (d). The learning in our model is performed based on weak annotation (red dots) and is driven by an
instance count loss. Solutions with zero loss (c and e) as well as non-zero loss (f and g) are shown. In the latter case,
arrows indicate violations from the perfect correspondence between the solution and the ground truth dotting.

1. Introduction

Automatic detection of objects (e.g. cell colonies, individual cells or nuclei) in microscopy
images plays a crucial role in the analysis of microscopy-based experiments within a wide variety
of microscopy applications for clinical and commercial settings. On its own, detection is able to
determine the presence (and quantity) of an object of interest, such as cancer cells in a pathology
image, but furthermore, it can also be the starting point for other objectives such as object segmen-
tation or tracking. Among the challenges that characterise object detection in microscopy images,
one that stands out is the necessity to deal with the presence of a large number of objects, often
partially overlapping.

In many microscopy imaging modalities, objects of interest can often be identified as bright
or dark blobs in one of the image channels. Such blobs correspond to extremal regions [22], and
a natural approach to detection and understanding such images is (a) to consider the set of all
extremal regions and (b) to identify those extremal regions that actually correspond to objects of
interest. This is the approach that we pursue in this work. Several key challenges need to be
addressed to make this approach successful, namely:

• Each object of interest typically corresponds to multiple, very similar and overlapping, ex-
tremal regions. The challenge then is to pick a subset of regions corresponding to objects
of interest, so that each object of interest is represented by only one region. We show how
this can be achieved via organizing extremal regions into a tree-shaped (or forest-shaped)
discrete graphical model with binary labels. Message propagation (dynamic programming)
in such a tree (forest) then produces a desired subset of non-overlapping extremal regions
corresponding to objects.

• In more challenging images, it is often the case that groups of tightly overlapping objects (i.e.
cells in a dense cluster) cannot be distinguished on the basis of extremal regions. In other
words, for certain objects, there might not exist extremal regions that include one object
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but exclude others in the same group. We show that the model can be extended to handle
such challenging situations. The extended model is able to identify the blobs (extremal
regions) that correspond to multiple overlapping objects, and to label simultaneously the
selected regions with labels that indicate the number of objects that each selected extremal
region corresponds to (Figure 1). This extension greatly widens the applicability of the
approach without changing the topology of the underlying graphical model or increasing
the complexity of the inference.

• Apart from the model and the inference in the model, a key question is one of machine
learning, i.e. a method to identify which extremal regions correspond to objects and which
do not (and in the extended case, identify the number of objects within certain regions). We
demonstrate that all this can be done in a weakly-supervised learning setting, so that the
method is trained on a set of dotted representative images, where each object is annotated
only by a dot placed inside of it. The training is performed using latent structured output
support vector machines [34] with a specially designed counting loss-function.

• Finally, we address the task of automatically identifying a “good” image channel that con-
tains extremal regions that are “good” for our approach. Specifically, we propose a method
that automatically optimizes over a linear combination of input channels (where some in-
put channels can actually correspond to filtered versions of other channels) to determine an
input image. After such an optimization, the resulting image gives rise to extremal regions
that allows the efficient identification of individual objects or small groups of overlapping
objects. This procedure only requires the same dot annotated images as above.

We conduct a set of experiments with synthetic and real microscopy images and show that the
proposed method achieves very good detection accuracies despite large amounts of overlap, and
very low effective spatial resolution. We assess the effect of the different elements of our detection
system and show that the combination of them results in the highest accuracy. The resulting
system outperforms other methods for instance detection in microscopy images, and is comparable
in counting accuracy with the methods that are trained to count (and do not perform detection).
While microscopic image modalities form a natural domain for our method, the proposed approach
is general and can be applied to macroscopic medical or non-medical images, as demonstrated in
[3].

This paper extends the previous conference papers [2, 3] that developed the initial approach.
In comparison to the more recent conference version [3], this paper adds the following exten-
sions: (i) it develops in more detail the inference procedure on the tree-structured graphical model
(Section 5); (ii) it provides further evaluation and insights into the loss function, along with a
new variant of it (Section 6.1); (iii) it proposes a method for picking a linear combination of in-
put channels that optimizes the method’s performance (Section 7); and (iv) it provides additional
experiments with challenging microscopy images (Section 8).

2. Background

Instance detection in crowded scenes. Most computer vision methods that address the task of
understanding images with multiple overlapping objects fall into two classes. The first is based on
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individual object detection. Such detection can be based on a sliding window or Hough transform,
followed by an appropriate non-maxima suppression procedure [18, 9, 5], stochastic fitting of
interacting particles or object models [11, 10, 33], or region-based detection [23, 25, 2]. The
second class contains the methods that avoid the detection of individual instances but instead
perform analysis based on local or global texture and appearance descriptors, e.g. by recovering
the overall real-valued count of objects in the scene [15, 21, 7, 28] or by estimating the local
real-valued density of the objects in each location of interest [20, 13].

Depending on the degree of overlap between objects, the first or the second class of methods
might be more appropriate. For low object-density images with infrequent overlaps between them,
detection methods may perform very well, while regression/density estimation methods can e.g.
hallucinate small but non-zero object density/object count spread across the parts of images that do
not in fact contain any objects. Furthermore, the localization of individual objects in the detection-
based approaches facilitates more intricate analysis by revealing patterns of co-location, providing
the possibility for shape and size estimation of individual instances, and allowing the linkage of
individual detections through time for video analysis.

However, for the high-density images detection-based analysis may fail badly, especially when
the amount of overlap and inter-occlusion between objects makes the detection of individual in-
stances hard or impossible even for human experts. In such situations, the performance of den-
sity/global count estimation methods degrade more gracefully than detection-based methods. The
analysis in this case is essentially reduced to texture matching between the test image and the
training set, which may be feasible even when individual instances are not distinguishable.

In real life, many applications require the processing algorithm to handle both the high and
the low-density scenarios. Furthermore, the two cases may co-exist within the same image. For
example, a microscopy image may contain both regions of low and high cell density corresponding
to different tissues or colonies at different stages of growth. Our proposed method aims to perform
within such scenario, making the link between individual instance detection and instance counting
in dense scenes.
Biological object detection in microscopy images. It is often convenient to model biological
objects (i.e. cells) in microscopy images as regions of local minima or maxima in the intensity
channels, thus common blob detectors (or related custom algorithms) have commonly been ap-
plied for this instance detection task [1, 27, 30, 6, 16, 32]. A blob detector approach within the
microscopy image analysis scenario also benefits from the fact that the common task can be seen
as detection of multiple instance of the same object (i.e. all cells in the image of a cell culture
will look similar). However, in non-trivial scenarios, such as cluttered images with cell overlap,
or cases where cell discrimination is required, blob detectors do not have the flexibility to capture
complex cell models, and thus, fail to achieve a good balance between sensitivity and specificity.
Nevertheless, if they are sensitive enough, blob detectors can produce useful sets of candidates
that can be further evaluated with more complex statistical models and this is demonstrated in this
work.
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(a) Synthetic cells in fluorescence (b) Weak-fluorescence molecular imaging

(c) HeLa in Phase contrast (d) Blastocyst

(e) Histopathology (f) Cell nuclei in fluorescence

Figure 2: Example images from the various microscopy datasets used throughout the paper. See Section 3 for details.
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3. Datasets

We first introduce the datasets and metrics used to evaluate the performance of our system
before describing the system itself. Six distinct microscopy datasets spanning different modalities
and imaging conditions are used. For each of the datasets, the data used for training is divided
into several random splits, which are later used to compute means and standard deviations of the
evaluation metrics. The task, in all cases, is to detect all instance of the objects (i.e. cells) which
have been annotated with dots on a training set. Similarly, the testing sets have been dot-annotated
for the purpose of performance evaluation.

The metrics used for the evaluation of the different concepts and methods throughout the paper
are the following: the mean counting error (MCE), which measures instance counting accuracy for
a dataset withN images asMCE = 1

N

∑N
i=1 | ĉi−ci |, and the F1score = 2∗ precision∗recall

precision+recall
, which

measures instance detection accuracy. Precision and recall are defined in terms of true positive
(TP), false positive (FP) and false negative (FN) detections in the following way: Precision =
TP/(TP + FP ) and Recall = TP/(TP + FN). The assessment of the predictions within
a testing image is done by matching the predicted object centroids with the ground-truth dot-
annotations using the Hungarian algorithm subject to the constraint that a predicted centroid must
lie within a radius ρ of a ground-truth dot. For each dataset, ρ is set to be the average radius of
the single objects. Matched pairs of predicted centroids and ground-truth dots are considered true
positives, unmatched predictions are considered false positives, and unmatched dot-annotations
are considered false negatives.
Synthetic fluorescence microscopy (Figure 2a). The synthetic dataset [20] represents a good
benchmark for comparison of cell detection and counting methods as it contains perfect ground
truth annotations due to its synthetic nature. It consists of 200 images of cell nuclei on fluores-
cence microscopy generated with [17]. This dataset can contain severe overlap between instances,
which makes it challenging for detection-based methods and more appropriate for counting-based
methods. The synthetic dataset is divided into 100 images for training and 100 for testing, and
several random splits of the training set are proposed in [20]. Such splits consist of five sets of N
training images and N validation images, for N = 1, 2, 4, 8, 16, 32.
Weak-fluorescence molecular imaging (Figure 2b). The molecular dataset consists of images of
gels with DNA colonies obtained through in vitro amplification [8] (the method is also known as
a “polony” technique [24]). Each colony represents a progeny of a single molecule that contains a
certain nucleotide sequence. The images were obtained using a confocal microchip laser scanner
(PerkinElmer ScanArray Express). Automated counting in this case could enable fully-automatic
and real-time monitoring of molecular colonies [29]. While in some circumstances (e.g. diag-
nostics based on marker RNA) high counting accuracy might not be needed, in other cases (e.g.
measuring gene expression) achieving high counting accuracy (<20%) is of great importance.
This dataset consists of 198 images with shot-noise and low contrast characteristic of weak flu-
orescence, which poses an additional challenge for methods based on blob detection. As in the
synthetic dataset, the molecular data is divided in half for training and testing. We further split the
training set into five different random groups consisting of 60 training images and 30 validation
images each.
HeLa cells on phase contrast microscopy (Figure 2c). This dataset introduced in [2] consists
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of 22 phase contrast images of HeLa cell cultures, and it is a subset of a control set collected for
detailed colony growth monitoring in radiation experiments. The HeLa dataset is split into 11
images for training and 11 for testing. Due to the limited amount of training data, training and
validation is done on a leave-one-out fashion following [2].
Blastocysts (Figure 2d). Cell number in in vitro produced blastocysts is one of the important
parameters for estimation of embryo developmental potential, and thus, oocyte quality. The cell
count at different times of in vitro embryo development is routinely used in the research targeting
the improvement of assisted reproduction technologies both for animals and for humans. Labeling
of cell nuclei by fluorescent dyes binding to a double-stranded DNA is routinely used method
to visualize either fixed or living cells. This dataset contains 22 images of the outer cell layer of
blastocysts. The images in this dataset show severe cell overlap resulting from the projection of the
blastocysts (spheres) into a 2D image, making the individual cell detection task quite challenging.
Still, 2D microscopy is a popular tool for this task due to its much lower cost compared to 3D
microscopy, and the tendency of the majority of the cells (so called inner cell mass) to concentrate
on one side from the blastocyst cavity thus allowing analysis after the projection to 2D. We divide
the training data into 5 random splits, consisting of 8 training images and 3 for validation.
Lymphocytes in histopathology (Figure 2e). The histopathology dataset was introduced in [14]
and the task is the detection of lymphocytes on stained breast cancer tissue, which is a prognosis
indicator for various types of breast cancers. The main challenge of the task comes from the
fact the lymphocytes need to be discriminated from the cancer cells, which have very similar
appearance. The dataset consists of 20 images and is divided in half for testing and training, and
five random splits of 8 and 2 images for training and validation are used in the experiments.
Cell nuclei on fluorescence microscopy (Figure 2f). The final dataset is another real example of
fluorescence microscopy where cell nuclei need to be detected. The images correspond to RNA
interference experiments on mouse embryonic stem cells, where single cell detection is required
for further processing in order to characterize cell changes in the population as a response to
different experimental conditions. Partial cell overlap and cells slightly out of focus pose the main
difficulties for nuclei detection in these images. The dataset consists of 20 images and, once more,
is divided in half for training and testing, where five random splits of 8 and 2 images for training
and validation are used in the experiments.

4. Model overview

For an input image I containing multiple instances of an object class (some of which may
be overlapping) we want to automatically detect the instances and provide an estimate of their
location. We start by generating a pool ofN nested regions (see Figure 3 for a case whereN = 13),
such that for each pair of regionsRi andRj in the pool, these regions are either nested (i.e.Ri ⊂ Rj

or Ri ⊃ Rj) or they do not overlap (Ri ∩ Rj = ∅). In the simplest case, a pool can comprise
extremal regions of the input image (i.e. connected components of the binary images I > τ where
τ is an arbitrary threshold). More generally, we can transform the input image in various ways,
creating a new map J where higher-value regions correspond to higher probabilities of an object’s
presence. The pool of candidate regions can then be generated as a set of extremal regions in the
transformed image J (see Section 7) .
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Figure 3: Typically, many extremal regions are nested within and between cells (especially when there is cell clump-
ing) forming a tree structure. For example, the boundaries of several extremal regions that appear in the close-up of
a cell image are shown, which can be represented by the tree structure. The parent-child relationships in the tree cor-
respond to the nestedness of the regions. The tree structure is utilized by the inference algorithm. The colour-coding
matches regions in the cell images with their corresponding node in the tree-structured graph.

Once the pool of nested regions is generated, each region is scored using a set of classifiers
that evaluate the similarity of such region to each of D classes, where each class signifies the
integer number of instances of the object that the region contains (i.e. a region of class d contains
d instances). During the learning stage (detailed in Section 6), these classifiers are trained in a
coordinated fashion within a structured output framework. Given the scores of the classifiers,
an inference procedure (detailed in Section 5) selects a non-overlapping subset of regions. The
inference also assigns each selected region in the subset a class label that indicates the number of
objects that our system believes this region represents. The choice of the region subset and the
class labels are driven by the optimization process that simply maximizes the total classifier score
corresponding to selected regions and class labels subject to a non-overlap constraint.

5. Inference on the model

Given a set of nested candidate regions, let Vi(d) denote the classifier score of a region Ri for
class d (the higher the score, the more this region looks like a typical region containing d object
centroids). For notational simplicity, we also define Vi(0) = 0. We introduce the optimization
variables y = {yi|i = 1 . . . N}, where yi = 0 means that the region Ri is not selected, and
yi = d ∈ 1 . . . D means that the region Ri is selected and assigned class d. We denote with Y the
set of all y that meet the non-overlap constraint, i.e. such that ∀i, j : ifRi∩Rj 6= ∅ then yi ·yj = 0.
Then the inference is accomplished through the following constrained maximization:

F (y) = max
y∈Y

N∑
i=1

Vi(yi). (1)
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This constrained maximization thus simply tries to maximize the cumulative score of all selected
regions.

The maximization of (1) can be performed exactly and efficiently by exploiting the nestedness
property of the region pool. Indeed, one can consider the tree-structured model, where each node
corresponds to a region and where parent-child links correspond to the nestedness relation (Fig-
ure 3). Namely, the node Rj becomes a parent of the node Ri if Rj is the smallest region in the
pool that Ri strictly belongs to. In this way, the region pool can be organized into a set of trees
(i.e. a forest). The idea is then to realize the scores and the non-overlap constraints using pairwise
terms of a graphical model with the topology defined by the region trees.

We achieve this using the same trick as in [19]. We introduce the auxiliary variables z that are
uniquely determined by the initial variables y in the following sense: zi = d > 0 iff either yi = d
or some yk such thatRk is an ancestor ofRi in the tree equals d (note that two ancestors of the same
region cannot be assigned non-zero labels simultaneously as long as y ∈ Y). The optimization (1)
can then be rewritten as a pairwise tree-structured MRF on the auxiliary variables:

F (z) = max
z

∑
i|p(i)6=0

Wi(zi, zp(i)) +
∑

i|p(i)=0

Vi(zi), (2)

where p(i) maps region Ri to the number of its parent region (p(i) = 0 for root regions in the
forest), Wi(d, d) = 0, Wi(d, 0) = Vi(d), Wi(0, d>0) = −∞, and Wi(d1, d2 6= d1) = −∞ as long
as d2 > 0.

After such variable change, all y ∈ Y are one-to-one mapped to z configurations with the
finite values of the functional (2) and this mapping preserves F . Indeed, the infinite terms in Wi

enforce the monotonicity of the labelling (from the root to the leaves), meaning that along each
path from the root to a leaf the first t (potentially t=0) nodes are assigned zi = 0 and the rest
(potentially zero) nodes are assigned some constant label d. This corresponds to the labeling that
assigns yi=d to the (t+1)’th node along the path and yi=0 to all other nodes along the path. As
a result, no overlaps are possible between the regions with yi 6= 0 (since each path in the tree has
at most one node with yi 6= 0). The non-infinite terms Wi(zi, zp(i)) at the non-root nodes encode
the terms Vi(yi) in the original functional (1) (once again, the monotonicity of the labeling z along
any path from the root to a leaf ensures that at most one non-zero non-infinite term Wi(zi, zp(i))
corresponding to yi 6= 0 is present within such path).

The optimization task (2) can be accomplished via tree-based dynamic programming [26] (the
max-sum version of the algorithm). It is then trivial to compute the optimal solution of (1) from
the optimal solution of (2).

6. Learning region classifiers

The model for the evaluation of the candidate regions can be trained on weakly annotated
(dotted) images and does not require more detailed annotations (e.g. bounding boxes). Thus, we
assume that we are given a set of images annotated with dots, where each dot is placed inside each
instance of the object. The learning is driven by an instance count loss (IC-loss) (3), denoted as
LIC , that penalizes all deviations from the one-to-one correspondences between annotation dots
and the selected regions (Figure 1).
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Suppose we have M training images Ij indexed by j. Let dji now be the number of dots con-
tained in the candidate regionRj

i , andDj andN j be the total number of dots and candidate regions
in Ij respectively. The IC-loss imposed by such annotation on each possible region labeling y is
formulated as:

L(yj) =
Nj∑
i=1

[yji > 0]∆(dji , y
j
i ) +Dj −

Nj∑
i=1

[yji > 0]dji . (3)

Here, the first term penalizes the deviations between the assigned class label yji of the selected
regions and the true number dji of dots inside of it. The penalty is determined by the function
∆(·, ·), described in Section 6.1. The last two terms correspond to the total number of unmatched
(uncovered) dots for the yj configuration under the non-overlap constraint, and thus penalize false
negatives (missed detections).

Assuming that the properties of each region Rj
i (i.e. region appearance) in the pool of can-

didates are characterized by the feature vector f ji , we set the classification scores to be linear
functions of these feature vectors: V j

i (d) = (wd · f ji ), where wd is the parameter vector for the
dth class, and has the same dimensionality as the feature vector. The aim of the learning is to
find a vector w =

[
wT

1 ,w
T
2 , . . . ,w

T
D

]T so that the inference (1) produces configurations with low
IC-loss.

A simple approach for learning w is to train binary classifiers for each of the D classes, in a
one-versus-rest fashion. However, such an approach ignores the inference process and the non-
overlap constraint imposed by the inference. We therefore perform learning within a structured
output learning framework; specifically, a structured SVM [31]. Thus, since the loss (3) is dis-
continuous w.r.t. w and hence cannot be optimized directly, a convex upper bound is optimized
instead. The minimization objective on w can then be written as:

min
w
||w||2 +

C

M

M∑
j=1

max
yj∈Yj

(
LIC(yj) + w ·

(
Ψ(f j,yj)−Ψ(f j, ȳj)

))
, (4)

where the first term is the regularization on w, the second term is the upper bound on the training
error, C is a constant that controls the trade-off between them, ȳj is some given “ground-truth”
configuration (see later after (6)) with zero IC-loss, and Ψ(f j,yj) is the joint feature representation
defined as follows:

Ψ(f j,yj) =
[ ∑Nj

i=1[yj = 1]f ji , . . . ,
∑Nj

i=1[yj = D]f ji

]T
. (5)

The optimization objective (4) can be minimized with a cutting plane algorithm [31], for which
an efficient way of computing the most violated constraint is required. Specifically, we need to
compute the second term of equation (4) for a fixed w (loss-augmented inference). Fortunately,
in our case the loss (3) decomposes in an appropriate way, and the loss-augmented inference
corresponds to the following optimization (after removing the terms independent from yj):

max
yj∈Yj

Nj∑
i=1

[yji > 0]
(
∆(dji , y

j
i )− d

j
i

)
+ w ·

(
Ψ(f j,yj)

)
, (6)

The maximization of (6) is then reduced to the optimization (1) with V j
i (yji ) = wyji

· f ji +

∆(dji , y
j
i )− d

j
i and solved with the same dynamic programming inference.
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Reestimating the “ground truth” configuration. In the derivation above, the “ground truth” config-
uration ȳ was assumed given for each image; however, only dot-annotations are given at training
time (not labeled regions), thus multiple “correct” (i.e. zero-loss) region configurations can be
consistent with such annotation (Figure 1c,e). To handle this, we follow a conventional way [34]
and add the “ground truth” configuration for each image into the optimization (4) as a latent vari-
able hj ∈ Hj (where Hj denotes the set of all labelings with the zero IC-loss). The learning is
reformulated as the following optimization:

min
w,hj∈Hj

{
||w||2 +

C

M

M∑
j=1

max
yj∈Yj

(
L(yj) + w ·Ψ(f j,yj)

)
− C
M

M∑
j=1

w ·Ψ(f j,hj)

}
.

(7)

The new objective can then be optimized by alternation. This implies that we need to provide
a way of imputing the latent variable such that the problem is reduced to the standard structured
SVM in (4) for each iteration of the alternation algorithm. Specifically, at the beginning of iteration
t for each training image j, we need to find hj ∈ Hj that maximizes

∑M
j=1 (w ·Ψ(f j,hj)). To

achieve this, we run the optimization (1) over Yj but set V j
i (yji ) = w ·Ψ(f j,hj) + dji · v − [yji 6=

dji ] ·N j v, where v is a very large positive constant. This choice of V j
i ensures that the maximum

in (1) is attained for a zero-loss configuration from H and that the costs of all such configurations
differ from

∑M
j=1 (w ·Ψ(f j,hj)) by the same constant N j v.

6.1. Penalization function for the IC-loss
The simplest choice for the penalization function ∆(dji , y

j
i ) is to directly measure the difference

between the class yji of a region and the number dji of dots it contains as ∆u(dji , y
j
i ) = |dji − y

j
i |.

This penalization has the same behaviour regardless of the estimated class or the true number of
dots inside the region. However, when considering the possibility of regions containing multiple
objects, we should take into account the increasing intra-class variability (e.g. of region shape)
for higher-order classes (which is consequently a more demanding learning task for the classifier).
Also, consider assigning a class 7 to a region that contains 6 instances. This is not as bad as
assigning a class 3 to a region with 2 instances, thus it should not be penalized as heavily. To
address such issues, we propose several variants of the penalization function, and their evaluation
is detailed next.

We evaluate the variants of the penalization function ∆(·, ·) shown in Table 1. We first present
simple variations where a region Rj

i has a cost equal to the absolute (∆u) or squared (∆x2) differ-
ence between the class yji assigned to Rj

i and the number dji of dots it contains. We then consider
the intuition that the penalization must compensate for the bias towards lower order classes cre-
ated by the higher intraclass variability within higher order classes. Therefore, in the variant ∆s

the difference between dji and yji is re-scaled in proportion to dji , which effectively softens the
penalization of errors in higher order classes. ∆a re-scales penalties similar to ∆s, but only in
cases where there is a direct bias towards lower order classes; that is, when yji ≥ dji . Finally, we
introduce the variant ∆g, with the same form as ∆a but a key difference in how the true number of
objects inside the region Rj

i is measured. As opposed to counting the number of dot-annotations
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∆u(dji , y
j
i ) |dji − y

j
i |

∆x2(dji , y
j
i ) (dji − y

j
i )

2

∆s(dji , y
j
i ) |yji − d

j
i |/(d

j
i + 1)

∆a(dji , y
j
i )

{
(yji − d

j
i )/(d

j
i + 1), if yji ≥ dji

dji − y
j
i , if yji ≤ dji

∆g(Dj
i , y

j
i )

{
(yji −D

j
i )/(D

j
i + 1), if yji ≥ Dj

i

Dj
i − y

j
i , if yji ≤ Dj

i

,

where F j
0 =

∑
P∈Pj N (p;P, σ) and Dj

i =
∑

p∈Rj
i
F j

0 (p)

Table 1: Variants of the penalization function ∆(·, ·).

inside a candidate region (dji ), we adopt the principle of “smoothed” dot-annotations of [20]. By
placing Gaussian kernels centered on every dot-annotation of an image, we produce an object
density map which allows us to evaluate candidate regions w.r.t. their coverage of objects. Let
Pj be the set of dot-annotations in image Ij . F j

0 =
∑

P∈Pj N (p;P, σ) emulates a ground truth
object density map such that integrating over any region in the image produces a non-negative real
value indicative of the number of objects contained within such region. For notation simplicity we
introduce Dj

i =
∑

p∈Rj
i
F j

0 (p) which represents the object density contained within the candidate

region Rj
i (continuous analogous to dji ) and replaces dji in ∆g. Finally, we note that learning from

the smoothed annotations would have a benefit similar to that of jittering the dot annotations for
the purpose of training data augmentation.

The quantitative comparison between the variants of the penalization function is done over the
synthetic fluorescence dataset (Figure 2a), for the splits of N = 32: five draws of 32 training
images and 32 validations images (see Section 3 for details). The validation metric used in these
experiments is the F1-score score (i.e. the mean counting error reported also corresponds to the
operating point of best detection accuracy and not that of lowest counting error). The results are
shown in Table 2.

As expected, the unweighted penalization ∆u results in the highest precision, but it tends to
dismiss higher order classes, leading to a lower recall and higher counting error when compared to
other variants of penalization function. The symmetrically re-scaled penalization ∆s shows a more
balanced performance by increasing the recall over ∆u without much loss in precision. Finally,
the asymmetric functions ∆a and ∆g achieve the best precision-recall balance, while providing
a significant improvement in the mean counting error over all other variants. The difference in
performance between ∆a and ∆g is minor. However, the qualitative examination of the results
shows that the regions selected tend to better delineate objects of interest when using ∆g. This is
expected as ∆g encourages the selection of regions that fully cover the objects of interest.

6.2. Implementation details
Postprocessing for inference. Several potential applications and performance measures require
the output of the method to be in the form of the sets of individual instances. We use a very
simple postprocessing in this case. For each selected region Ri we run k-means with k = yi on the
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Precision Recall F1-score MCE
∆u 98.52± 0.06 87.62± 0.07 92.75± 0.04 19.00± 0.19

∆x2 92.58± 1.26 89.07± 1.38 90.77± 0.14 12.65± 2.75
∆s 96.75± 0.03 90.19± 0.01 93.35± 0.01 12.06± 0.81
∆a 95.00± 0.96 91.38± 0.75 93.15± 0.13 7.98± 2.07
∆g 95.00± 0.07 91.97± 0.04 93.46± 0.01 7.31± 1.09

Table 2: Evaluation of the variants of the instance-count loss function for a detection-based (F1-score)
validation. Penalizing errors concerned with higher order classes less than those with lower order classes
results in higher recall and lower counting errors. See Table 1 and the text for the definitions of the functions.

a

b
la,b

z

Figure 4: The intuition behind the surface optimization (8) is that we want to collect extremal regions on a surface
that is higher (by a margin) in the dot-annotations a and b than it is in a point z between them. z is a latent variable
which indicates a location within the line la,b connecting a pair of dot-annotations. See text for more detail.

image coordinates of all pixels in that region, thus obtaining an estimate for the set of centroids of
individual objects. An example of this postprocessing is shown in Figure 1(d).
Initialization and termination for learning. The initialization of w for the alternation-based
maximization (7) is obtained by learning and concatenating a set ofD binary classifiers w1,w2, · · ·wD

in a one-versus-rest fashion. The positive training examples for the binary classifier wd consist of
all regions in the training images that contain d dots. The alternations are stopped once the amount
of change in the ground truth configuration with respect to the previous iteration ||ȳt−ȳt−1||

M
falls be-

low a pre-specified threshold ε.

7. Crafting a surface for extremal region computation

Collecting extremal regions as candidates for object detection from the intensity channel of mi-
croscopy images is often successful [2], but not optimal. For example, images with high levels of
noise (i.e. weak-fluorescence images – Figure 2b), low contrast or images with highly inhomoge-
neous objects can break the assumption that there exist extremal regions which can approximately
represent each of the objects of interest or even a weaker assumption that extremal regions corre-
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spond to object groups. Nevertheless, for such cases, we show that it is often possible to combine
intensity channels and their modifications in order to obtain a new channel with extremal regions
that are better suited for object detection. Throughout the paper, we refer to the height map defined
over the generated 2D image channel as a surface. The computation of this surface can be done as
a preprocessing step that is independent from other parts of the system.

Here, we propose to compute a surface optimised for extremal region collection in a supervised
manner as a linear combination of feature channels, where a channel is a filtered version of the
original image. That is, given a set of images I, with their corresponding N feature channels X ,
we aim to learn a weight vector α such that for any image Ij , the surface can be computed as
Sj = α1 ·Xj

1 + α2 ·Xj
2 + ...+ αN ·Xj

N . In order to compute α, we design a cost function based
on the following intuition. Assuming that we are focusing on bright blobs, an extremal region
is a connected component of an image where all values inside of it are higher than all values on
its boundary. Therefore, we want our surfaces to be (i) higher inside the objects of interest than
between them, as well as (ii) smooth.

In order to enforce the condition (i), we make use of the object localization supervision pro-
vided by the user in the form of dot annotations, which are also used to train the model described
in Section 4 and are assumed to mostly lie within the objects of interest. Let a and b be the dot-
annotations for two neighbouring instances of an object in our images, and z be a point between
them whose selection is described below (see Figure 4). We want the surface Sj to be higher
in a and b than it is in z by some margin. More generally, for every pair of neighbouring dot-
annotations in Ij , we want Sj(a) ≥ Sj(z) + 1 and Sj(b) ≥ Sj(z) + 1. We build this constraint
on the basis of pairs of neighbouring dots. More specifically, we consider each dot together with
its closest neighbour (not necessarily reciprocal). Let the matrices F (a), F (b) and F (z) denote
respectively the values at the dot positions a, b and z in each of the feature channels X associated
to the images in I where they belong. For example, for a single image Ij with N feature channels
and D dot-annotations a, we define

F j(a) =


Xj

1(a1) Xj
1(a2) . . . Xj

1(aD)

Xj
2(a1) Xj

2(a2) Xj
2(aD)

... . . . ...
Xj
N(a1) Xj

N(a2) Xj
N(aD)


Therefore, Sj(a) = αTF j(a) contains the values of the surface Sj at each dot a. When

using the entire training set I, the matrices corresponding to each image are concatenated as
F (a) = [F 1(a), F 2(a), . . . , F J(a)]. F (a), F (b) and F (z) are used to easily compute the margin
violations within the constraints of the optimization (8), where one slack variable ξa,b is introduced
for every pair a and b of dot-annotations.

To enforce the smoothness condition (ii), we simply attempt to down-weight “noisy” feature
channels by measuring the standard deviation in the distribution of their Laplacian. For a single
image Ij with N feature channels, we build the vector Lj containing the standard deviation of
the Laplacian of each feature channel: Lj = [σ(4Xj

1), σ(4Xj
2), . . . , σ(4Xj

N)]T . For the entire
training set I, we compute a single vector L as the mean standard deviation of the corresponding
feature channels.
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Finally, we find α through the minimization

min
α

αTL+ λ
∑
∀a,b∈D

ξa,b

s.t. αT (F (a)− F (z)) ≥ 1 + ξ,

αT (F (b)− F (z)) ≥ 1 + ξ,

ξ � 0, α � 0.

(8)

The parameter λ controls the weights between the smoothness and margin violation terms in
the cost function and is determined through cross-validation. In more detail, we compute on a
validation set the number of margin violations for a set of values of λ. The notion of margin
violation is the same as used in the optimization (8). We choose the λ with the lowest number of
margin violations which is also within a pre-defined level of noise, measured through αTL on the
validation set.

Selection of z. The variable z corresponds to the location between every pair of dot-annotations
which would serve as reference for the optimization in (8). However, in contrast to the dot-
annotations, the locations of z are unknown in advance. We choose to model z as latent variables,
and thus, the optimization (8) is alternated with the imputation of z. The latent variable is initial-
ized as the set of middle points of line segments la,b connecting a and b (Figure 4). For subsequent
iterations, z is determined as minz S

j(z),∀z ∈ la,b, that is during each imputation the line segment
point with the lowest surface value is selected.
Implementation details. In all of our experiments, the feature channels X computed for the
surface derivation in every image consist of (i) five scales of Gabor filter, each of which is the
sum of the Gabor filters at different orientations, (ii) the original image blurred with eight different
Gaussian kernels, and (iii) differences of the blurred images (difference of Gaussians). In case of
color images, the luminosity channel of the Lab color space is used as the original image. Within
the cross-validation of the hyperparameter λ of (8), the noise limit of the resulting surface is set
empirically to 0.1. The time required for the surface learning varies depending on the number
of data points, but in our experiments is in the range of minutes. At testing time, generating
the surface given the weight vector takes under a second as it only implies computing the global
features and combining them linearly.

7.1. Validation experiments
In order to demonstrate the usefulness of the surface optimization, we assess the performance

of the model on the weak-fluorescence molecular dataset (Figure 2b) with and without this pre-
processing step.

Qualitatively, it can be seen (Figure 5) that the surface optimization procedure has two positive
effects: first, due to the smoothness enforced on the surface (Figure 5c), the pool of candidate
regions (Figure 5d) is both smaller and with higher quality (i.e. regions better approximate the
boundaries of the objects) than the one obtained from the original image (Figure 5b); secondly,
due to the margin imposed on the surface computation, the contrast of the objects is enhanced
leading to a higher recall in the object detection. Quantitatively, Table 3, the surface computation
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Precision Recall F1-score MCE
No surface optimization 81.65± 1.24 57.89± 1.27 67.79± 0.58 10.98± 0.34
Surface optimization 80.01± 3.62 75.09± 2.17 77.43± 1.98 7.13± 0.23

Table 3: Evaluation of the effect produced by the computation of candidate regions on an optimized
surface. The evaluation is done on the molecular dataset (Figure 2b).

(a) Original (b) Region pool on (a) (c) Surface (d) Region pool on (c)

Figure 5: The effect of surface optimization for the computation of candidate regions. When dealing with highly
noisy images such as (a), the resulting pool of extremal candidate regions might not be appropriate (b). Through the
computation of an optimized surface (c) for the collection of extremal regions, the pool of candidate regions (d) can be
improved significantly. In this particular example, the surface (c) optimization has selected to keep and combine only
four of the feature channels available: two of Gabor filters (two different scales), a channel of difference of Gaussians,
and a channel of Gaussian smoothing.

on the molecular dataset leads to higher detection accuracy and lower computation time per image
due to the reduced number of candidate regions.

8. Experiments and results

We now evaluate the performance of the model on the datasets described in Section 3. Within
these experiments, the full system refers to the method described in this paper using the penal-
ization function ∆g (see Section 6.1) and the surface learning (see Section 7). The usage of the
optimized surface, however, is determined via cross-validation. Thus, the surface is not enabled
for datasets where it is not beneficial. Instead, extremal regions are collected directly from the in-
tensity channel of the image. The reasons for discarding the surface learning are discussed within
the analysis of the experiments.

The full system is compared in all cases against its single class version (i.e. as presented in [2]),
denoted as singletons. Additionally, we show the performance of the single class version combined
with the surface optimization (singletons w/ surface) when the latter is required. Finally, we show
results of other detection and counting methods when available (i.e. for the publicly available
datasets).

The hyperparameters of the model (e.g. C in (7)) are learnt via cross-validation using the
appropriate measure. That is, the precision and recall values shown in this section correspond
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to the combination of hyperparameters that produced the highest F1-score on the validation sets,
whereas MCE values correspond to those hyperparameters that produced the lowest mean counting
error.

In all experiments, the feature vector f ji used to encode each candidate region consists of the
concatenation of descriptors that aim to characterise the size, shape, colour (or intensities) and
information regarding the local context of regions. The specific dimensions of the descriptors
where chosen empirically, but the method is not sensitive to such choices. In detail, a feature
vector concatenates the following descriptors: (i) a 150-dimensional vector soft-encoding region
size by setting to 1 the entry corresponding to the size of the region, and then smoothing the
resulting binary vector with a Gaussian kernel, (ii) a 12-dimensional histogram of intensities inside
the region, (iii) two 8-dimensional histogram of difference of intensities between the boundary of
the extremal region and a dilation of it (over two different dilation scales), (iv) a shape descriptor
represented by a 60-dimensional histogram of the distribution of the boundary of the region on a
size-normalized polar coordinate system, and finally, (v) a binary vector of the same dimension
as the number of classes which encodes the number of leaf regions (i.e. regions without nested
regions in the pool) nested within a given region. This last descriptor often indicates the presence
of individual objects existing inside the region being encoded.

Finally, the parameters for the computation of the MSERs are maintained for all of the ex-
periments.

8.1. Synthetic cells
We perform the evaluation over this dataset using the splits of N = 32 proposed in [20], which

consist of 5 different splits with 32 images for training and 32 for validation. Results are presented
in Table 4, and an example can be seen in Figure 6.

The high cell confluency in the synthetic cell dataset poses a difficult challenge for detection
algorithms due to very high cell overlap. Therefore, it is expected that counting algorithms such
as [13, 20] would outperform detection methods. Nonetheless, our method is able to produce a
comparable mean counting error (MCE), while providing estimates of object localization evaluated
with precision and recall. The single class version of our method is unable to detect objects
in dense groups, and thus fails badly in this dataset. The extension to multiple classes (tuples)
allows the method to handle cell clusters and boosts the recall of the detection, especially when
the penalization in the cost function is re-scaled to compensate for the high intraclass variability
of high order classes (see Section 6.1).

We note that the surface optimization was ruled out of the evaluation on this dataset during
cross-validation due to the reason explained next. The surface learning breaks clusters into smaller
parts, as expected. However, when this occurs within dense clusters of high-order class (i.e. with
more than 5 heavily overlapping cells) the number of resulting elements tends to be less than
the number of instances that the cluster originally contained. When such smaller elements are
parsed as lower order classes, the benefit of the rescaled cost function (∆g) for handling high-order
classes is then diminished, resulting in a considerable reduction of the overall detection recall.
Nevertheless, we argue that the existence of such high-order clusters with heavily overlapping
(and indistinguishable) instances is an artifact created by the synthetic nature of this dataset and
we did not encounter such extreme cases in real microscopy images.
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MCE Prec. Rec. F1-score
Fiaschi et al. [13] 3.2± 0.1 - - -
Lempitsky & Zisserman [20] 3.5± 0.2 - - -
Barinova et al.[4] 6.0± 0.5 - - -
Singletons 51.2± 0.8 98.87± 1.52 72.07± 0.85 83.37± 1.20
Full system w/o surface 5.06± 0.2 95.00± 0.75 91.97± 0.43 93.46± 0.15

Table 4: Detection and counting accuracy for the synthetic cell dataset (split N=32). Please see text Section 8.1
for details.

Original Selected Regions Detection

Figure 6: Example detection result in the synthetic dataset. Selected regions (middle) are colour-coded according to
the number of instances they contain: green = 1, blue = 2, magenta = 3 and cyan = 5. In the detection image (right),
correct detections are denoted with a green ‘+’, false detections with a red ‘x’ and missed instances with a yellow ‘◦’.

8.2. Molecules in fluorescence microscopy
Within our experiments, the molecular dataset shows the greatest benefit of the surface opti-

mization for extremal region collection. The latter was observed in both the single and multiple
class versions of our system, and it is an expected result considering the intuition shown in Figure 5
of the refinement of the candidate region pool. Results are presented in Table 5, and an example
can be seen in Figure 7.

MCE Prec. Rec. F1-score
Singletons 15.59± 0.48 88.14± 1.75 41.19± 1.78 56.11± 1.51
Singletons w/ surface 6.88± 0.50 84.01± 2.59 69.75± 1.54 76.20± 1.61
Full system 7.12± 0.36 80.01± 3.62 75.09± 2.17 77.43± 1.98

Table 5: Detection and counting accuracy for the molecular dataset. See Section 8.2 for details.

8.3. HeLa in phase contrast microscopy
With relatively limited cell overlap and mostly well-defined cell boundaries, experiments on

the phase contrast microscopy dataset showed the least benefit from the additional components of
our system over the single class version. For example, the full system mostly produces singleton
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Original Surface

Selected Regions Detection

Figure 7: Example detection result in the dataset of molecular imaging with weak-fluorescence. Selected regions
(bottom left) are colour-coded according to the number of instances they contain: green = 1 and blue = 2. In the
detection image (bottom right), correct detections are denoted with a green ‘+’, false detections with a red ‘x’ and
missed instances with a yellow ‘◦’.
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Original Selected Regions Detection

Figure 8: Example detection result for HeLa cells in phase contrast microscopy. All the selected regions (middle) in
this image correspond to singletons. In the detection image (right), correct detections are denoted with a green ‘+’,
false detections with a red ‘x’ and missed instances with a yellow ‘◦’.

detection and the surface optimization was discarded during cross-validation. Nevertheless, the
experiments show the high accuracy that can be achieved in this microscopy modality when using
extremal regions as candidates (along with the appropriate region evaluation and selection model).

For this dataset, we have added the detection result of a recent method for cell detection and
segmentation based on correlation clustering [35] (authors’ implementation). The latter achieves a
high detection accuracy with the added benefit of optimizing for cell segmentation. Nevertheless,
it is outperformed in the detection task by the full version of our system. Even though the raw
output of our method are regions which can often match the boundaries of the objects, we do not
compare segmentation metrics as our method does not optimize segmentation masks.

The results are presented in Table 6, and an example can be seen in Figure 8.

MCE Prec. Rec. F1-score
Correlation clustering [35] - - - 95
Singletons 2.36± 0.67 93.70± 0.20 91.94± 0.72 92.81± 0.35
Full system w/o surface 3.84± 1.44 98.51± 1.16 95.76± 0.27 97.10± 0.27

Table 6: Detection and counting accuracy for the phase contrast dataset of [2]. See Section 8.3 for details.

8.4. Blastocysts
We found the performance of our system on the challenging blastocysts dataset to significantly

benefit from both the surface optimization and the handling of overlapping regions. The latter
was expected due to the large amount of cell overlap present in this dataset, resulting from the
projection of the blastocyst sphere (3D) into a 2D image. Results are presented in Table 7, and an
example can be seen in Figure 9.

8.5. Cell nuclei in fluorescence microscopy
The assessment of our detection method on the cell nuclei dataset showed that the detection

accuracy (F1-score) remained similar across the different variants of the method, but the mean
20



Original Surface

Selected Regions Detection

Figure 9: Example detection result in the blastocyst dataset. Selected regions (bottom left) are colour-coded according
to the number of instances they contain: green = 1, blue = 2, magenta = 3 and yellow = 4. In the detection image
(bottom right), Correct detections are denoted with a green ‘+’, false detections with a red ‘x’ and missed instances
with a yellow ‘◦’.
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MCE Prec. Rec. F1-score
Singletons 37.79± 1.11 97.51± 0.83 62.84± 2.49 76.39± 1.63
Singletons w/ surface 25.35± 2.03 94.59± 0.29 72.87± 1.29 82.31± 0.78
Full system 9.24± 1.52 90.47± 1.00 81.77± 1.18 85.90± 0.94

Table 7: Detection and counting accuracy for the blastocyst dataset. See Section 8.4 for details.

counting error benefited from the extremal region collection over the optimized surface as opposed
to the intensity channel. The reason is that the surface optimization managed to enhance the
contrast on image areas that would be otherwise missed by the candidate region detection. Thus,
the detection recall increased. Results are presented in Table 8, and an example can be seen in
Figure 10.

MCE Prec. Rec. F1-score
Singletons 46.82± 2.49 93.71± 0.23 81.74± 0.50 87.32± 0.19
Singletons w/ surface 16.90± 1.83 89.57± 1.10 88.48± 0.83 89.01± 0.19
Full system 20.42± 4.10 87.12± 1.17 91.10± 0.75 89.05± 0.29

Table 8: Detection and counting accuracy for the dataset of cell nuclei in fluorescence microscopy. See Sec-
tion 8.5 for details.

8.6. Lymphocytes in histopathology images
As in the phase contrast dataset, the dataset for detection lymphocytes on breast cancer tis-

sue [14] does not present significant cell overlap and individual instances can be selected through
blob detection. However, the presence of breast cancer cells with very similar appearance (i.e.
same staining) and under a low effective spatial resolution, increases the difficulty of the detection
task. For example, the method of [16] suffers in this case from relying on the properties of the
staining to discern between similar elliptical blobs. On the other hand, our method uses additional
discriminative features which increase the detection accuracy. Results are presented in Table 9,
and an example can be seen in Figure 11.

MCE Prec. Rec. F1-score
LIPSyM [16] - 70.08 70.21 69.84
Singletons 3.7± 2.05 85.89± 1.21 89.90± 0.98 87.85± 1.13
Full system w/o surface 3.9± 2.65 84.09± 1.65 91.06± 1.5 87.40± 1.66

Table 9: Results for the dataset of the ICPR 2010 Pattern Recognition in Histopathological Images contest [14].
See Section 8.6 for details.

8.7. Results analysis
The experiments in this section show a wide variety of scenarios for object detection in mi-

croscopy images, where the benefits and limitations of the different elements of our proposed
model have been shown.
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Original Surface

Selected Regions Detection

Figure 10: Example of cell nuclei detection in fluorescence microscopy. Selected regions (bottom left) are colour-
coded according to the number of instances they contain: green = 1, blue = 2, magenta = 3 and red = 7. In the
detection image (bottom right), correct detections are denoted with a green ‘+’, false detections with a red ‘x’ and
missed instances with a yellow ‘◦’.
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Original Selected Regions Detection

Figure 11: Example detection result for the dataset of the ICPR 2010 Pattern Recognition in Histopathological Images
contest [14]. Selected regions (middle) in this image correspond to singletons. In the detection image (right), correct
detections are denoted with a green ‘+’, false detections with a red ‘x’ and missed instances with a yellow ‘◦’.

The first aspect to emphasize is the applicability of extremal region trees as candidates for
object detection in microscopy images, as initially observed in [2]. We have found that amongst the
pool of candidates in the different trees, we can often find regions that provide a good delineation
of the objects of interest from where strong features can be computed. This can be confirmed
by inspecting the selected regions on the result images and noting that in most cases the method
produces a fairly good segmentation of the objects regardless of the fact that only dot annotations
are being used, and no post-processing of the regions is being done at any stage.

In terms of detection accuracy, for datasets with limited amount of object overlap, even the
model limited to singleton detection would show a decent performance (i.e. F1-score higher than
87% in histopathology, fluorescence and HeLa on phase contrast datasets). As overlap is intro-
duced, the singleton-based model is still able to keep a high precision but quickly drops its recall.
Intuitively, this comes from the fact that clusters of objects will be discarded during the evalua-
tion for not fitting the model of the single object. When enabled to detect tuples of objects, the
model can usually find a much better balance between precision and recall on datasets with object
overlap, which translates into higher F1-score and lower counting errors (e.g. in synthetic cells and
blastocyst).

The introduction of the surface learning for the computation of extremal regions was found
to mainly benefit extremal region collection for two conditions: noise and poor contrast. In the
case of noisy images, best represented in this paper by the molecular dataset, the surface learning
mainly helps by appropriately smoothing the objects. On the smooth surface, we observe more
uniform candidate regions which better delineate the objects, providing better candidates to learn
from, and to select from at test time. The case of poor contrast is best represented in this paper
by the dataset of cell nuclei in fluorescence microscopy. Although not an extreme case, these
images contain regions where cell nuclei are slightly out of focus and become much harder to
distinguish. Nevertheless, due to the contrast enhancement term in the surface optimization, out-
of-focus nuclei become easier to differentiate by the extremal regions, aiding the recall even for the
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singleton baseline model. On the negative side, the surface was found to be harmful in cases with
extreme overlap. Specifically, in the synthetic cell dataset where most of the objects are severely
(and unrealistically) overlapping, the surface learning would break high-order clusters into smaller
cluster with the appearance of singletons, negatively affecting recall. Therefore, the usage of the
surface learning would be discarded during validation. Finally, we found cases where extracting
the candidate regions directly from the image was good enough due to limited overlap and fairly
homogeneous objects, and thus, the surface learning made no contribution (e.g. phase contrast and
histopathology datasets).

The time required to train the method for each of our datasets is in the range of hours on a
standard desktop computer (Intel i7 processor), while testing on a new image usually requires
seconds. The bottleneck at testing time is in the feature computation, as each candidate region
(usually slightly over a thousand per image) needs to be encoded individually. Nevertheless, the
encoding of the regions is done in parallel, and thus, testing time reduces as more processing cores
are used.

Overall, the most time consuming step of the end-to-end pipeline is the annotation of a training
set, and the number of annotated images required to achieve a good performance will vary depend-
ing on the difficulty of the case. Nevertheless, we note that in simple cases very few images on
training set can be sufficient to learn a reliable classifier. For example, high accuracy on the phase
contrast dataset was achieved with a training set of only 11 images.

Finally, we note that although the methodology to compute cell centers from detected regions
through k-means is quite simplistic, and considering that the F1-score is based on cell centroid
matching, we did not encounter examples where the performance of the method was harmed by
faulty cell centre estimations given the criteria for the valid detection radius.

9. Summary and conclusion

We have presented a method for object detection in microscopy images (extending [2, 3])
which is particularly suitable for images with multiple overlapping instances of an object. De-
pending on the difficulty of the detection task, the model has the flexibility to choose to detect
overlapping objects in groups containing a variable number of instances, as well as individual
instances if the task is easy. Such ability to pick the optimal level of granularity is seamlessly
obtained during the learning of the model. The inference in the model is computationally efficient,
requiring only a few hundred classifier evaluations followed by tree-based dynamic programming.

To handle particularly challenging scenarios such as detection on noisy microscopy imaging
modalities, we included a pre-processing module which takes the input images and generates a
smooth and contrast-enhanced surface that is optimized for the collection of extremal regions as
object detection candidates. We found this generated surface to be helpful in most of our exper-
iments with overlapping instances, not helpful in the cases of mostly non-overlapping instances,
and harmful in the case of the synthetic dataset which contains large clusters of extremely over-
lapping instances. Variants of the surface could be produced in different ways that could be more
appropriate for cases where the objects of interest have a much more complex appearance such
as in human detection. One example of an alternative surface would be to compute a pixel-wise
probability map of individual object detections.
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We note that the method is not restricted to the usage of extremal regions as candidates. In
practice, any method that produces nested candidate regions such that they result in tree-structured
graphical models can make direct use of the learning method and inference procedure. For ex-
ample, recursive spectral clustering or superpixel merging. However, the quality of the pool of
candidate regions is a key issue as good delineation of the objects of interest seems to facilitate
learning good features for the classification stage. We also note that the pool of candidates is not
limited to 2D regions as the nestedness condition can be preserved in 3D regions (i.e. 3D MSERs
[12]), which could allow a straightforward extension of the method for 3D data. Arguably, the
main conceptual difficulty for such extension is the hardness of obtaining dotted annotations for
3D images.

The proposed method is suitable for processing batches of data, for example, coming from
high-throughput screenings. In such a scenario, time is not normally a critical constraint, and it
is therefore feasible to use a method based on supervised learning, which requires data annota-
tion and model training. Moreover, for use cases where the experimental setup is standard, the
annotation and training efforts are only required once, making the system more practical.
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[13] Fiaschi, L., Nair, R., Köethe, U., Hamprecht, F., 2012. Learning to count with regression forest and structured

labels. In: Proc. ICPR.
[14] Gurcan, M. N., Madabhushi, A., Rajpoot, N., 2010. Pattern recognition in histopathological images: An icpr

2010 contest. In: Recognizing Patterns in Signals, Speech, Images and Videos. pp. 226–234.
[15] Kong, D., Gray, D., Tao, H., 2006. A viewpoint invariant approach for crowd counting. In: Proc. ICPR.
[16] Kuse, M., Wang, Y., Kalasannavar, V., Khan, M., Rajpoot, N., et al., 2011. Local isotropic phase symmetry

measure for detection of beta cells and lymphocytes. Journal of Pathology Informatics 2 (2), 2.
[17] Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O., 2007. Computational framework

for simulating fluorescence microscope images with cell populations. IEEE TMI 29 (7), 1010–1016.
[18] Leibe, B., Leonardis, A., Schiele, B., 2008. Robust object detection with interleaved categorization and segmen-

tation. IJCV.
[19] Lempitsky, V., Vedaldi, A., Zisserman, A., 2011. A pylon model for semantic segmentation. In: NIPS.
[20] Lempitsky, V., Zisserman, A., 2010. Learning to count objects in images. In: NIPS.
[21] Marana, A., Velastin, S., Costa, L., Lotufo, R., 1997. Estimation of crowd density using image processing. In:

Image Processing for Security Applications, IEE Colloquium on.
[22] Matas, J., Chum, O., Urban, M., Pajdla, T., 2004. Robust wide-baseline stereo from maximally stable extremal

regions. Image and Vision Computing 22 (10), 761–767.
[23] Matas, J., Zimmermann, K., 2005. A new class of learnable detectors for categorisation. In: SCIA.
[24] Mitra, R. D., Church, G. M., 1999. In situ localized amplification and contact replication of many individual dna

molecules. Nucleic Acids Research 27 (24), e34–e39.
[25] Neumann, L., Matas, J., 2011. Text localization in real-world images using efficiently pruned exhaustive search.

In: ICDAR.
[26] Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauff-

man, California.
[27] Peng, H., Zhou, X., Li, F., Xia, X., Wong, S. T. C., 2009. Integrating multi-scale blob/curvilinear detector

techniques and multilevel sets for automated segmentation of stem cell images. In: ISBI.
[28] Ryan, D., Denman, S., Fookes, C., Sridharan, S., 2009. Crowd counting using multiple local features. In: Proc.

DICTA.
[29] Samatov, T. R., Chetverina, H. V., Chetverin, A. B., 2006. Real-time monitoring of dna colonies growing in a

polyacrylamide gel. Analytical biochemistry 356 (2), 300–302.
[30] Smith, K., Lepetit, V., 2008. General constraints for batch multiple-target tracking applied to largescale videomi-

croscopy. In: CVPR.
[31] Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y., 2004. Support vector machine learning for interdepen-

dent and structured output spaces. In: Proc. ICML.
[32] Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M., Hufnagl, P., Dietel, M., Denkert, C., Klauschen,

F., 2012. Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach.
Scientific reports 2, 503.

[33] Wu, B., Nevatia, R., 2009. Detection and segmentation of multiple, partially occluded objects by grouping,
merging, assigning part detection responses. IJCV 82 (2), 185–204.

[34] Yu, C., Joachims, T., 2009. Learning structural SVMs with latent variables. In: Proc. ICML.
[35] Zhang, C., Yarkony, J., Hamprecht, F., 2014. Cell detection and segmentation using correlation clustering. In:

Medical Image Computing and Computer-Assisted Intervention MICCAI 2014. Vol. 8673.

27


