
N4-Fields: Neural Network Nearest Neighbor
Fields for Image Transforms

Yaroslav Ganin Victor Lempitsky

Skolkovo Institute of Science and Technology (Skoltech)
{ganin,lempitsky}@skoltech.ru

Abstract. We propose a new architecture for difficult image processing
operations, such as natural edge detection or thin object segmentation.
The architecture is based on a simple combination of convolutional neural
networks with the nearest neighbor search.
We focus our attention on the situations when the desired image trans-
formation is too hard for a neural network to learn explicitly. We show
that in such situations the use of the nearest neighbor search on top of
the network output allows to improve the results considerably and to
account for the underfitting effect during the neural network training.
The approach is validated on three challenging benchmarks, where the
performance of the proposed architecture matches or exceeds the state-
of-the-art.

1 Introduction

Deep convolutional neural networks (CNNs) [1] have recently achieved a break-
through in a variety of computer vision benchmarks and are attracting a very
strong interest within the computer vision community. The most impressive re-
sults have been attained for image [2] or pixel [3] classification results. The key
to these results was the sheer size of the trained CNNs and the power of modern
GPU used to train those architectures.

In this work, we demonstrate that convolutional neural networks can achieve
state-of-the-art results for sophisticated image processing tasks. The complexity
of these tasks defies the straightforward application of CNNs, which perform
reasonably well, but clearly below state-of-the-art. In particular, we show that
by pairing convolutional networks with a simple non-parametric transform based
on nearest-neighbor search state-of-the-art performance is achievable. This ap-
proach is evaluated on three challenging and competitive benchmarks (edge de-
tection on Berkeley Segmentation dataset [4], edge detection on the NYU RGBD
dataset [5], retina vessel segmentation on the DRIVE dataset [6]). All the re-
sults are obtained with the same meta-parameters, such as the configuration of
a CNN, thus demonstrating the universality of the proposed approach.

The two approaches, namely convolutional Neural Networks and Nearest
Neighbor search are applied sequentially and in a patch-by-patch manner, hence
we call the architecture N4-fields. At test time, an N4-field first passes each

2 Yaroslav Ganin, Victor Lempitsky

Fig. 1: N4-Fields can be applied to a range of complex image processing tasks,
such as natural edge detection (left) or vessel segmentation (right). The pro-
posed architecture combines the convolutional neural networks with the nearest
neighbor search and is generic. E.g. it achieves state-of-the-art performance on
standard benchmarks for these two rather different applications with very little
customization or parameter tuning.

patch through a CNN. For a given patch, the output of the first stage is a
low-dimensional vector corresponding to the activations of the top layer in the
CNN. At the second stage we use the nearest neighbor search within the CNN
activations corresponding to patches sampled from the training data. Thus, we
retrieve a patch with a known pixel-level annotation that has a similar CNN
activation, and transfer its annotation to the output. By averaging the outputs
of the overlapping patches, the transformation of the input image is obtained.

Below, we first review the related works (Section 2), describe the proposed
architecture and the associated training procedures in detail (Section 3), and
discuss the results of applying it on sample problems (Section 4). We conclude
with a short discussion of the merits and the potential of the proposed approach
(Section 5).

2 Related Work

There is a very large body of related approaches, as both neural networks and
nearest neighbor methods have been used heavily as components within image
processing systems. Here, we only review several works that are arguably most
related to ours.

Neural Networks for Image Processing. The use of neural networks for
image processing goes back for decades [7]. Several recent works have investi-
gated large-scale training of deep architectures for complex edge detection and
segmentation tasks. Thus, Mnih and Hinton [8] have used a cascade of two deep
networks to segment roads in aerial images, while Shulz et al. [9] use CNNs to
perform semantic segmentation on standard datasets. Kivinen et al. [10] pro-
posed using unsupervised features extraction via deep belief net extension of
mcRBM [11] followed by supervised neural net training for boundary predic-
tion in natural images. State-of-the-art results on several semantic segmentation

N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms 3

datasets were obtained by Farabet et al. [12] by using a combination of a CNN
classifier and superpixelization-based smoothing. Finally, a large body of work,
e.g. [13, 3] simply frame the segmentation problem as patch classification, mak-
ing generic CNN-based classification easily applicable and successful. Below, we
compare N4-fields against such baseline and find them to achieve better results
for our applications.

Another series of works [14, 15] investigate the use of convolutional neural
networks for image denoising. In this specific application, CNNs benefit greatly
from virtually unlimited training data that can be synthesized, while the gap
between synthetic and real data for this application is small.

Neural networks have also been applied for descriptor learning, which resem-
bles the way they are used within N4-fields. Thus, Chopra et al. [16] introduced
a general scheme for learning CNNs that map input images to multi-dimensional
descriptors, suitable among other things for nearest neighbor retrieval or simi-
larity verification. The learning in that case is performed on a large set of pairs
of matching images. N4-fields are different from this group of the approaches
in terms of their purpose (image processing) and the type of the training data
(annotated images).

Non-parametric Approaches to Image Processing. Nearest neighbor meth-
ods have been applied to image processing with a considerable success. Most
methods use nearest neighbor relations within the same image, e.g. Dabov et
al. [17] for denoising or Criminisi et al. [18] for inpainting. More related to our
work, Freeman et al. [19] match patches in a given image to a large dataset
of patches from different images, to infer the missing high-frequencies and to
achieve super-resolution. All these works use the patches themselves or their
band-passed versions to perform the matching.

Another popular non-parametric framework to perform operations with patches
are random forests. Our work was in many ways inspired by the recent impressive
results in Dollár et al. [20], where random forests are trained on patches with
structured annotations. Their emphasis is on natural edge detection, and their
system represent the state-of-the-art for this task. N4-fields match the accuracy
of [20] for natural edge detection, and perform considerably better for the task
of vessel segmentation in micrographs, thus demonstrating the ability to adapt
to new domains.

3 N4-Fields

3.1 Architecture

We start by introducing the notation, and discussing the way our architecture
is applied to images. The N4-Fields transform images patch-by-patch. Given
an image transform application, we wish to map a single or multi-channel (e.g.
RGB) image patch P of size M ×M to a segmentation, an edge map, or some
other semantically-meaningful annotation A(P), which in itself is a single or
multi-channel image patch of size N × N . We take N to be smaller than M ,

4 Yaroslav Ganin, Victor Lempitsky

ConvNet

Features Dictionary

Fig. 2: The N4 architecture for natural edge detection. The input image is pro-
cessed patch-by-patch. An input patch is first passed through a pretrained convo-
lutional neural network (CNN). Then, the output of the CNN is matched against
the dictionary of sample CNN outputs that correspond to training patches with
known annotations. The annotation corresponding to the nearest neighbor is
transferred to the output. Overall, the output is obtained by averaging the over-
lapping transferred annotations.

so that A(P) represents a desired annotation for the central part of P. For the
simplicity of comparisons, in our experiments we use the sizes proposed in [20],
in particular, M = 34 and N = 16.

Given the annotated data, we learn a mapping F that maps patches to the
desired annotations. At test time, the mapping is applied to all image patches
and their outputs are combined by averaging, thus resulting in an output image.
The output of the processing for a pixel p = (x, y) is the average of the outputs
of N2 patches that contain this pixel. More formally, the output of the mapping
on the input image I is defined as:

F(I)[x, y] =
1

N2

∑
i,j:|i−x|≤N/2
|j−y|≤N/2

F (I(i, j|M)) [x− i, y − i] , (1)

where F(I)[x, y] denotes the value of image transform at pixel (x, y), I(i, j|M)
denotes the image patch of size M ×M centered at (i, j), and F (I(i, j|M)) [x−
i, y− i] is a pixel in the output patch at the position (x− i, y− j) assuming the
origin in the center of the patch.

Obviously, the accuracy of the transform depends on the way the trans-
form F is defined and learned. Convolutional neural networks (CNNs) provide
a generic architecture for learning functions of the multi-channel images and
patches exploiting the translational invariance properties of natural images. The
direct approach is then to learn a mapping P → A(P) in the form of a CNN.
In practice, we found the flexibility of CNNs to be insufficient to learn the cor-
responding mapping even when a large number of layers with large number of
parameters are considered. For complex transforms, e.g. natural edge detection,
we observe a strong underfitting during the training, which results in a subopti-
mal performance at test time.

Convolutional neural network can be regarded as a parametric model, albeit
with a very large number of parameters. A straightforward way to increase the
fitting capacity of the mapping is to consider a non-parametric model. We thus

N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms 5

combine a simple non-parametric mapping (nearest neighbor) and a complex
parametric mapping (convolutional neural network). The input patch P is first
mapped to an intermediate representation CNN(P;Θ), where Θ denotes the
parameters of the CNN. The output CNN(P;Θ) of the CNN mapping (we call
it a neural code) is then compared to a dictionary dataset of CNN outputs,
computed for T patches P1,P2, . . . ,PT taken from the training images, and
thus having known annotations A(P1),A(P2), . . . ,A(PT). The input patch is
then assigned the annotation from the dictionary patch with the closest CNN
output, i.e. A(Pk), where k = arg minT

i=1 ||CNN(Pi) − CNN(P)|| (Figure 2).
If we denote such nearest neighbor mapping as NNB, then the full two-stage
mapping is defined as:

F(P) = NNB
(
CNN(P; Θ) | {(CNN(Pi;Θ) ; A(Pi)) | i = 1..T}

)
, (2)

where NNB(x |M = {(ai|bi)}) denotes the nearest-neighbor transform that maps
x to the value bi corresponding to the key ai that is closest to x over the dataset
M . In our experiments, the dimensionality of the intermediate representation
(i.e. the space of CNN outputs) is rather low (16 dimensions), which makes
nearest neighbor search reasonably easy.

In the experiments, we observe that such a two-stage architecture can success-
fully rectify the underfitting effect of the CNN and result in better generalization
and overall transform quality compared to single stage architectures that include
either CNN alone or nearest neighbor search on hand-crafted features alone.

3.2 Training

The training procedure for an N4-field requires learning the parameters Θ of
the convolutional neural network. Note, that the second stage (nearest neighbor
mapping) does not require any training apart from sampling T patches from the
training images.

The CNN training is performed in a standard supervised way on the patches
drawn from the training images I1, I2, . . . IR. For that, we define the surrogate
target output for each input patch. Since for each training patch P, the desired
annotation A(P) is known, it is natural to take this annotation itself as such
a target (although other variants are possible as described in Section 3.3), i.e.
to train the network on the input-output pairs of the form (P,A(P)). However,
such output can be rather high-dimensional (when the output patch size is large)
and vary non-smoothly w.r.t. small translations and jitter, in particular when our
model applications of edge detection or thin object segmentations are considered.
To address both problems, we perform dimensionality reduction of the output
annotations using PCA. Experimentally, we found that the target dimensionality
can be taken rather small, e.g. 16 dimensions for 16× 16 patches.

Thus, the overall training process includes the following steps:

1. Learn the PCA projection on a subset of N ×N patches extracted from the
training image annotations.

6 Yaroslav Ganin, Victor Lempitsky

conv 7x7

96 maps

ReLU

max-pool 2x2
conv 5x5

128 maps

ReLU

max-pool 2x2
conv 3x3

256 maps

ReLU

fully-conn

768 units

ReLU

fully-conn

768 units

ReLU

fully-conn

16 units

Fig. 3: The CNN architecture used in our experiments. See Section 3.3 for details.

2. Train the convolutional neural network on the input-output pairs
{(P,PCA(A(P))} sampled from the training images.

3. Construct a dictionary {(CNN(Pi;Θ);A(Pi))|i = 1..T} by drawing T ran-
dom patches from the training images and passing them through the trained
network.

After the training, the N4-field can be applied to new images as discussed
above.

3.3 Implementation Details

Training the CNN. We use the heavily modified CUDA-ConvNet CNN tool-
box1. The CNN architecture that was used in our experiments is loosely inspired
by [2] (it comprises the layers shown in Figure 3). We also tried a dozen of other
CNN designs (deeper ones and wider ones) but the performance always stayed
roughly the same, which suggests that our system is somewhat insensitive to the
choice of the architecture given the sufficient number of free parameters.

The model was trained on 34 × 34 patches extracted at randomly sampled
locations of the training images. Each patch is preprocessed by subtracting the
per-channel mean (across all images). Those patches are packed into mini-batches
of size 128 (due to the software/hardware restrictions) and presented to the
network. The initial weights in the CNN are drawn from Gaussian distribution
with zero mean and σ = 10−2. They are then updated using stochastic gradient
descent with momentum set to 0.9. The starting learning rate η is set to 10−1

(below in Section 4 we introduce an alternative target function which demands
smaller initial η = 10−3). As commonly done, we anneal η throughout training
when the validation error reaches its plateau.

As the amount of the training data was rather limited, we observed overfit-
ting (validation error increasing, while training error decreasing) alongside with
underfitting (training error staying high). To reduce overfitting, we enrich the
training set with various artificial transformations of input patches such as ran-
dom rotations and horizontal reflections. Those transformations are computed
on-the-fly during the training procedure (new batches are prepared in parallel
with the network training).

Along with data augmentation we apply two regularization techniques which
have become quite common for CNNs, namely dropout [21] (we randomly discard
half of activations in the first two fully-connected layers) and `2-norm restriction
of the filters in the first layer [21, 22].

1 https://code.google.com/p/cuda-convnet/

N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms 7

Testing Procedure. At test time we want to calculate activations for patches
centered at all possible locations within input images. A naive approach would
be to apply a CNN in the sliding window fashion (separate invocation for each
location). However this solution may be computationally expensive especially in
case of deep architectures. Luckily it is rather easy to avoid redundant calcu-
lations and to make dense applications efficient by feeding the network with a
sequence of shifted test images [23].

After neural codes for all patches are computed, nearest-neighbors search is
done by means of k-d trees provided as a part of VLFeat package [24]. We use
default settings except for maximum number of comparisons which we set to 30.

Our proof-of-concept implementation runs reasonably fast taking about 6
seconds to process an image of size 480 × 320, although we were not focusing
on speed. Computational performance may be brought closer to the real-time
by, for example, applying the system in a strided fashion [20] and/or finding a
simpler design for the CNN.

Multi-scale Operation. Following the works [20, 25] we apply our scheme at
different scales. For each input image we combine detections produced for origi-
nal, half and double resolutions to get the final output. While various blending
strategies may be employed, in our case even simple averaging gave remarkably
good results.

Committee of N4-Fields. CNNs are shown [2, 23, 3] to perform better if out-
puts of multiple models are averaged. We found that this technique works quite
well for our system too. One rationale would be that different instances of the
neural network produce slightly different neural codes hence nearest-neighbor
search may return different annotation patches for the same input patch. In
practice we observe that averaging amplifies relevant edges and smooths the
noisy regions. The latter is especially important for the natural edge detection
benchmarks, as the output of N4-fields is passed through the non-maximum
suppression.

4 Experiments

We evaluate our approach on three datasets. Within two of them (BSDS500 and
NYU RGBD), the processing task is to detect natural edges, and in the remain-
ing case (DRIVE) the task is to segment thin vessels in retinal micrographs.
Across the datasets, we provide comparison with baseline methods, with the
state-of-the-art on those datasets, illustrate the operation of the method, and
demonstrate characteristic results.

CNN Baselines. All three tasks correspond to binary labeling of pixels in the
input photographs (boundary/not boundary, vessel/no vessel). It is therefore
natural to compare our approach to CNNs that directly predict pixel labels.
Given the input patch, a CNN can produce a decision either for the single central
pixel or for multiple pixels (e.g. a central patch of size 16×16) hence we have two
CNN baselines. We call them CNN-central and CNN-patch respectively. Each of

8 Yaroslav Ganin, Victor Lempitsky

Target/Target

Neural/Neural

Neural/Target

Query

Target/Target

Neural/Neural

Neural/Target

Query

Fig. 4: Examples of nearest neighbor matchings of query patches to dictionary
patches. For all patches, the ground truth annotations (edge sets) of the central
parts are shown alongside. The righthand panels show the results of the near-
est neighbor searches for different combinations of the query encoding and the
dictionary patch encoding. ”Neural” corresponds to the encoding with top-layer
activations CNN(P) of the CNN, while ”Target” corresponds to the “ground
truth”’ encoding PCA(A(P)) that the CNN is being trained to replicate. Match-
ing neural codes to target codes (Neural/Target) works poorly thus highlighting
the gap between the neural codes and the target PCA codes (which is the man-
ifestation of the underfitting during the CNN training). By using neural codes
for both the queries and the dictionary patches, our approach is able to over-
come such underfitting and to match many patches to correct annotations (see
Neural/Neural matching).

the CNNs has the same architecture as the CNN we use within N4-fields, except
that the size of the last layer is no longer 16 but equals the number of pixels
we wish to produce predictions for (i.e. 1 for CNN-central and 256 for CNN-
patch). At test time, we run the baseline on every patch and annotate chosen
subsets of pixels with the output of the CNN classifier applying averaging in the
overlapping regions. As with our main system, to assess the performance of the
baseline, we use a committee of three CNN classifiers at three scales.

Nearest Neighbor Baseline. We have also evaluated a baseline that replaces
the learned neural codes with “hand-crafted” features. For this, we used SIFT
vectors computed over the input M×M patches as descriptors and use these vec-
tors to perform the nearest-neighbor search in the training dataset. Since SIFT
was designed mainly for natural RGB photographs, we evaluate this baseline for
the BSDS500 edge detection only.

N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms 9

Alternative Encoding (AE). Given the impressive results of [20] on edge
detection, we experimented with a variation of our method inspired by their
method. We annotate each patch with a long binary vector that looks at the
pairs of pixels in the output N×N patch and assigns it 1 or 0 depending whether
it belongs to the object segment. We then apply PCA dimensionality reduction
to 16 components. More formally, we define the target annotation vector during
the CNN training to be:

B(P) = PCA((v1, v2, . . . , vL)) , (3)

where L =
(
N2

2

)
and vi is defined for i-th pair (pl, pm) of pixels in the ground

truth segmentation S(P) and is equal to 1 {S(P)[pl] = S(P)[pm]}. In the exper-
iments, we observe a small improvement for such alternative encoding.

0.25 0.5 0.75 1 1.25

·10−2

0.6

0.7

0.8

Tolerance

F
-m

e
a
su

re

N4-fields ODS

N4-fields OIS

SE ODS

SE OIS

(a) BSDS500 [4]

0.25 0.5 0.75 1 1.25

·10−2

0.4

0.5

0.6

0.7

Tolerance

F
-m

e
a
su

re

N4-fields ODS

N4-fields OIS

SE ODS

SE OIS

(b) NYU RGBD [5]

Fig. 5: Performance scores for different tolerance thresholds (default value is
0.75 · 10−2) used in the BSDS500 benchmark [4]. Algorithms’ performance
(ODS and OIS measures plotted as dashed and solid lines respectively) is go-
ing down as the tolerance threshold is decreased. N4-fields (blue lines) handles
more stringent thresholds better, which suggests that cleaner edges are produced,
as is also evidenced by the qualitative results. See Section 4 for details.

BSDS500 Experiments. The first dataset is Berkley Segmentation Dataset
and Benchmark (BSDS500) [4]. It contains 500 color images divided into three
subsets: 200 for training, 100 for validation and 200 for testing. Edge detec-
tion accuracy is measured using three scores: fixed contour threshold (ODS),
per-image threshold (OIS), and average precision (AP) [4, 20]. In order to be
evaluated properly, test edges must be thinned to one pixel width before run-
ning the benchmark code. We use the non-maximum suppression algorithm from
[20] for that.

In general, N4-fields perform similarly to the best previously published meth-
ods [20, 10, 26]. In particular, the full version of the system (the committee of
three N4-fields applied at three scales) matches the performance of the men-
tioned algorithms , with the alternative encoding performing marginally better

10 Yaroslav Ganin, Victor Lempitsky

0 0.2 0.4 0.6 0.8 1

·105

2,000

3,000

4,000

5,000

Epoch

0.55

0.6

0.65

0.7

0.75

Training error

Validation error

Validation ODS

Validation OIS

Fig. 6: The validation score (average precision) of the full N4-fields and error
rates (loss) of the underlying CNN measured throughout the training process.
The strong correlation between the values suggests the importance of large-scale
learning for the good performance of N4-fields. This experiment was performed
for the BSDS500 edge detection (hold out validation set included 20 images).

N4-fields Input Structured Edge [20]

Fig. 7: Representative results on the BSDS500 dataset. For comparison, we give
the results of the best previously published method [20]. The red numbers cor-
respond to Recall/Precision/F-measure. We give two examples where N4-fields
perform better than [20], and one example (bottom row) where [20] performs
markedly better according to the quantitative measure.

N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms 11

ODS OIS AP

SIFT + NNB .59 .60 .60

CNN-central .72 .74 .75

CNN-patch .73 .75 .74

gPb-owt-ucm [4] .73 .76 .73

SCG [25] .74 .76 .77

SE-MS, T = 4 [20] .74 .76 .78

DeepNet [10] .74 .76 .76

PMI + sPb, MS [26] .74 .77 .78

N4-fields .75 .76 .77

N4-fields, AE .75 .77 .78

(a) BSDS500 [4] (Any)

ODS OIS AP

SE-MS, T = 4 [20] .59 .62 .59

DeepNet [10] .61 .64 .61

PMI + sPb, MS [26] .61 .68 .56

N4-fields, AE .64 .67 .64

(b) BSDS500 [4] (Consensus)

ODS OIS AP

CNN, central .60 .62 .55

CNN, patch .58 .59 .49

gPb [4] .53 .54 .40

SCG [25] .62 .63 .54

SE-MS, T = 4 [20] .64 .65 .59

N4-fields .61 .62 .56

N4-fields, AE .63 .64 .58

(c) NYU RGBD [5]

Table 1: Edge detection results on BSDS500 [4] (both for the original ground-
truth annotation and “consensus” labels) and NYU RGBD [5]. Our approach
(N4-fields) achieves performance which is better or comparable to the state-of-
the-art. We also observe that the relative performance of the methods in terms
of perceptual quality are not adequately reflected by the standard performance
measures.

(Table 1-a). Following [27] in order to account for the inherent problems of the
dataset we also test our approach against the so-called “consensus” subset of
the ground-truth labels. Within this setting our method significantly outper-
forms other algorithms in terms of ODS and AP (Table 1-b).

The benchmark evaluation procedure does not perform strict comparison of
binary edge masks but rather tries to find the matching between pixels within
certain tolerance level and then analyzes unmatched pixels [4]. We observed that
the default distance matching tolerance threshold, while accounting for natural
uncertainty in the exact position of the boundary, often ignores noticeable and
unnatural segmentation mistakes such as spurious boundary pixels. Therefore,
in addition to the accuracy evaluated for the default matching threshold, we
report results for more stringent thresholds (Figure 5a-left).

It is also useful to investigate how successful is the deep learning, and what
is its role within the N4-fields. It is insightful to see whether the outputs of
the CNN within the N4-fields, i.e. CNN(P) are reasonably close to the codes
PCA(A(P)) that were used as target during the learning. To show this, in Fig-
ure 4 we give several representative results of the nearest neighbor searches where

12 Yaroslav Ganin, Victor Lempitsky

different types of codes are used on the query and on the dictionary dataset sides
(alongside the corresponding patches). It can be seen, that there are very ac-
curate matches (in terms of similarity between true annotations) between PCA
codes on both sides, and reasonably good matches between neural (CNN) codes
on both sides. However, when matching the neural code of an input patch to
PCA codes on the dataset side the results are poor. This is especially noticeable
for patches without natural boundaries in them as we force our neural network
to map all such patches into one point (empty annotation is always encoded
with the same vector). This qualitative performance results in a notoriously bad
quantitative performance of the system that uses such matching (from the neural
codes in the test image to the PCA codes in the training dataset).

While CNN is clearly unable to learn to reproduce the target codes closely,
there is still a strong correlation between the training error (the value of the loss
function within the CNN) and the performance of the N4-fields (Figure 6). The
efficiency of the learned codes and its importance for the good performance of
N4-fields is also highlighted by the fact that the nearest neighbor baseline using
SIFT codes performs very poorly. Thus, optimizing the loss functions introduced
above really makes edge maps produced by our algorithm agree with ground
truth annotations.

Input N4-fields CNN, patch CNN, central SE [20]

Fig. 8: Results on the NYU RGBD dataset. For comparison, we give the results
of the best previously published method [20] and the CNN baseline. We show a
representative result where the N4-fields perform better (top), similarly (mid-
dle), or worse (bottom) than the baseline, according to the numberic measures
shown in red (recall/precision/F-measure format). We argue that the numerical
measures do not adequately reflect the relative perceptual performance of the
methods.

NYU RGBD Experiments. We also show results for the NYU Depth dataset
(v2) [5]. It contains 1,449 RGBD images with corresponding semantic segmenta-

N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms 13

tions. We use Ren and Bo [25] script to translate the data into BSDS500 format
and use the same evaluation procedure, following training/testing split proposed
by [25]. The CNN architecture stays the same except for the number of input
channels which is now equal to four (RGBD) instead of three (RGB).

The results are summarized in Table 1-c. Our approach almost ties the state-
of-the-art method by [20] for the default matching threshold. However, just like
in the case of the BSDS500 dataset this difference in scores may be due to the
peculiarity of the benchmark. Indeed, Figure 5b-right shows that for smaller
values of matching thresholds, N4-fields match or outperform the accuracy of
Structured Edge detector [20].

Note on the Quantitative Performance. During the experiments, we ob-
served a clear disconnect between the relative performance of the methods ac-
cording to the quantitative measures, and according to the actual perceptual
quality. This was especially noticeable for the NYU RGBD dataset (Figure 8).
We provide extended uniformly-sampled qualitative results at the project web-
site2.

Input Expert annotation N4-fields SE [20]

Fig. 9: Representative results on the DRIVE dataset. A close match to the human
expert annotation is observed.

DRIVE Dataset. In order to demonstrate wide applicability of our method,
we evaluate it on the DRIVE dataset [6] of the micrographs obtained within
the diabetic retinopathy screening program. It includes forty 768 × 584 images
split evenly into a training and a test sets. Ground truth annotations include
manually segmented vasculature as well as ROI masks.

We use exactly the same CNN architecture as in the BSDS500 experiment.
Without any further tuning our system achieves state-of-the-art performance

2 http://sites.skoltech.ru/compvision/projects/n4/ at the moment of publica-
tion.

14 Yaroslav Ganin, Victor Lempitsky

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

N4-fields (AUC = 0.89)

Becker et al. [28] (AUC = 0.89)

CNN, patch (AUC = 0.87)

CNN, central (AUC = 0.86)

SE [20] (AUC = 0.69)

Fig. 10: Results for the DRIVE dataset [6] in the form of the recall/precision
curves. Our approach matches the performance of the current state-of-the-art
method by Becker et al [28] and performs much better than baselines and [20].

comparable to the algorithm proposed by Becker et al. [28]. Precision/recall
curves for both approaches as well as for the baseline neural networks and [20]
(obtained using the authors’ code) are shown in Figure 10. Notably, there is
once again a clear advantage over the CNN baselines. Poor performance of [20]
is likely to be due to the use of default features that are not suitable for this
particular imaging modality. This provides an extra evidence for the benefits of
fully data-driven approach.

5 Conclusion

We have presented a new approach to machine-learning based image process-
ing. We have demonstrated how convolutional neural networks can be efficiently
combined with the nearest neighbor search, and how such combination can im-
prove the performance of standalone CNNs in the situation when CNN training
underfits due to the complexity of a problem at hand. State-of-the-art results are
demonstrated for natural edge detection in RGB and RGBD images, as well as
for thin object (vessel) segmentation. Compared to the structured forests method
[20], the proposed approach is slower, but can be adapted to new domains (e.g.
micrographs) without retuning.

The future work may concern the fact that we use a PCA compression to
define the target output during the CNN training. A natural idea is then to
learn some non-linear transformation in the label space in parallel to the CNN
training on the image patch input, so that the gap between the neural codes of
the input patches and the target codes is minimized, and a closer match between
the neural and the target codes is obtained. It remains to be seen whether this
will bring the improvement to the overall performance of the system.

N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms 15

References

1. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard,
W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation net-
work. In: NIPS. (1989) 396–404

2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: NIPS. (2012)

3. Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural net-
works segment neuronal membranes in electron microscopy images. In: NIPS.
(2012) 2852–2860

4. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5) (May 2011)
898–916

5. Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light
sensor. In: ICCV Workshops, IEEE (2011) 601–608

6. Staal, J., Abrmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-
based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging
23(4) (2004) 501–509

7. Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural
networks - a review. Pattern recognition 35(10) (2002) 2279–2301

8. Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images.
In: ECCV. Springer (2010) 210–223

9. Schulz, H., Behnke, S.: Learning object-class segmentation with convolutional
neural networks. In: ESANN. Volume 3. (2012)

10. Kivinen, J.J., Williams, C.K.I., Heess, N.: Visual boundary prediction: A deep
neural prediction network and quality dissection. In: AISTATS. (2014) 512–521

11. Ranzato, M., Hinton, G.E.: Modeling pixel means and covariances using factorized
third-order boltzmann machines. In: CVPR. (2010) 2551–2558

12. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features
for scene labeling. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 35(8) (2013) 1915–1929

13. Jain, V., Murray, J.F., Roth, F., Turaga, S.C., Zhigulin, V.P., Briggman, K.L.,
Helmstaedter, M., Denk, W., Seung, H.S.: Supervised learning of image restoration
with convolutional networks. In: ICCV. (2007) 1–8

14. Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In:
NIPS. (2008) 769–776

15. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can plain neural
networks compete with bm3d? In: CVPR. (2012) 2392–2399

16. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: CVPR. Volume 1. (2005) 539–546

17. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse
3d transform-domain collaborative filtering. In: Electronic Imaging 2008, Interna-
tional Society for Optics and Photonics (2008) 681207–681207

18. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by
exemplar-based image inpainting. Image Processing, IEEE Transactions on 13(9)
(2004) 1200–1212

19. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Inter-
national Journal of Computer Vision 40(1) (2000) 25–47

20. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV.
(2013)

16 Yaroslav Ganin, Victor Lempitsky

21. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Im-
proving neural networks by preventing co-adaptation of feature detectors. CoRR
abs/1207.0580 (2012)

22. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
CoRR abs/1311.2901 (2013)

23. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
Integrated recognition, localization and detection using convolutional networks.
CoRR abs/1312.6229 (2013)

24. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms. http://www.vlfeat.org/ (2008)

25. Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour
detection. In: NIPS. (2012) 593–601

26. Isola, P., Zoran, D., Krishnan, D., Adelson, E.H.: Crisp boundary detection using
pointwise mutual information. In: ECCV. (2014)

27. Hou, X., Yuille, A., Koch, C.: Boundary detection benchmarking: Beyond f-
measures. In: CVPR. Volume 2013., IEEE (2013) 1–8

28. Becker, C.J., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for
curvilinear structure segmentation. In: MICCAI. Volume 8149 of Lecture Notes in
Computer Science. (2013) 526–533

